Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (230)

Search Parameters:
Keywords = confining pressure ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 7521 KiB  
Article
Study on Optimization of Construction Parameters and Schemes for Complex Connecting Tunnels of Extra-Long Highway Tunnels Based on Field Monitoring and Numerical Simulation
by Shaohui He, Jiaxuan Liu, Dawei Huang and Jianfei Ma
Infrastructures 2025, 10(8), 197; https://doi.org/10.3390/infrastructures10080197 - 26 Jul 2025
Viewed by 253
Abstract
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, [...] Read more.
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, established an on-site monitoring scheme and a refined numerical simulation model. It systematically analyzed the impact of various construction parameters on the construction process of connecting tunnels and the main tunnel, and on this basis, optimized the construction scheme, improving construction efficiency. The research results show that (1) after the excavation of the connecting tunnel, the confining pressure at the top of the working face decreases rapidly, while the confining pressure on both sides increases rapidly; the extreme point of the confining pressure decrease is located at the central point at the top of the excavated working face. (2) For Class III surrounding rock excavated using the full-face blasting method, the maximum influence range of working face excavation on the stratum along the tunneling direction is approximately 4D (where D represents the excavation step). (3) The larger the excavation step of the connecting tunnel, the more obvious the stress concentration phenomenon at the central point of the working face arch crown, and the excavation step should be optimally controlled within the range of 2–3 m. (4) When explosives in the blast hole adopt decoupled charging, the ratio of borehole diameter to charge diameter can be increased to utilize the air gap to buffer the energy generated by the explosion. Full article
Show Figures

Figure 1

18 pages, 3954 KiB  
Article
Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading
by Shuai Qi, Jinhui Liu, Wei Ma, Jing Wang, Houwang Bai and Shaojian Wang
Appl. Sci. 2025, 15(13), 7590; https://doi.org/10.3390/app15137590 - 7 Jul 2025
Viewed by 235
Abstract
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect [...] Read more.
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect of w through monotonic triaxial testing. Three typical remolding water contents (w = 19%, 27.5% and 35%) and three confining pressures (σ3 = 200 kPa, 700 kPa and 1200 kPa) were considered. Results showed that the mechanical behavior of frozen clay soils displayed a clear dependence on w, which was controlled by microstructural evolution. As w increased, the shear strength qmax, resilient modulus E0 and cohesion c increased, which resulted from the progressive development of ice bonding within the shear plane. A threshold w value was found at wopt = 27.5%, marking a structural transition and separating the variations of qmax, E0 and c into two regimes. When w ≤ 27.5%, the soil fabric was controlled by clay aggregates. As w increased, the growth in ice cementation was confined within these aggregates, leading to limited increase in qmax, E0 and c. However, as w exceeded 27.5%, the soil fabric transitioned into a homogeneous matrix of dispersed clay particles. In this case, increasing w greatly promoted the development of an interconnected ice cementation network, thus significantly facilitating the increase in qmax, E0 and c. The friction angle φ decreased with w increasing, primarily due to the lubrication effect caused by the growing ice. In addition, the enhanced lubrication effect in the clay particle-dominated fabric (w > 27.5%) resulted in a larger reduction rate of φ. Regarding Poisson’s ratio v and dilation angle ψ, the w increase led to growth in both parameters. This phenomenon could be explained by the increased involvement of solid ice into the soil structure. Full article
Show Figures

Figure 1

15 pages, 2836 KiB  
Article
Pressure-Amplified Structural Superiority in Silty Clays: Dynamic Divergence Between Undisturbed and Remolded States
by Jinhu Hu, Banglong Zhou, Penggang Li, Jing Wang and Yayuan Yang
Buildings 2025, 15(13), 2319; https://doi.org/10.3390/buildings15132319 - 2 Jul 2025
Viewed by 267
Abstract
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining [...] Read more.
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining pressures) to pioneer the quantification of pressure-amplified structural superiority. The experimental results reveal that: (1) Undisturbed soils exhibit 20–30% higher maximum shear stress (τdmax) and shear modulus (Gdmax) than remolded counterparts at 300 kPa, far exceeding the <5% deviation at 50 kPa due to enhanced particle-cementation synergy under pressure. (2) The normalized shear modulus ratio (Gd/Gdmax) exhibits low sensitivity to confining pressure, with Gd/Gdmaxγd relationship curves predominantly confined within a narrow band range. A triphasic evolutionary characteristic is manifested in the progressive reduction of Gd/Gdmax with increasing shear strain (γd), and quasi-linear attenuation is observed within the shear strain range of 1 × 10−4γd ≤ 1 × 10−2. (3) Remolded and undisturbed specimens demonstrate close correspondence in damping ratio (λd) across consolidation pressures. Under identical γd conditions, undisturbed specimens consistently exhibit lower λd values than remolded counterparts, attributable to enhanced energy dissipation resulting from structural homogenization in remolded soils, with λdmax magnitudes ranging between 0.2 and 0.3. The research provides mechanistic insights for seismic design of underground structures in silty clay terrains, particularly regarding disturbance sensitivity under deep burial conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 410
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

19 pages, 4003 KiB  
Article
The Risk to the Undersea Engineering Ecosystem of Systems: Understanding Implosion in Confined Environments
by Craig Tilton and Arun Shukla
J. Mar. Sci. Eng. 2025, 13(6), 1180; https://doi.org/10.3390/jmse13061180 - 17 Jun 2025
Viewed by 653
Abstract
As humans continue to develop the undersea engineering ecosystem of systems, the consequences of catastrophic events must continue to be investigated and understood. Almost every undersea pressure vessel, from pipelines to sensors to unmanned vehicles, has the potential to experience a catastrophic collapse, [...] Read more.
As humans continue to develop the undersea engineering ecosystem of systems, the consequences of catastrophic events must continue to be investigated and understood. Almost every undersea pressure vessel, from pipelines to sensors to unmanned vehicles, has the potential to experience a catastrophic collapse, known as an implosion. This collapse can be caused by hydrostatic pressure or any combination of external loadings from natural disasters to pressure waves imparted by other implosion or explosion events. During an implosion, high-magnitude pressure waves can be emitted, which can cause adverse effects on surrounding structures, marine life, or even people. The imploding structure, known as an implodable volume, can be in a free-field or confined environment. Confined implosion is characterized by a surrounding structure that significantly affects the flow of fluid around the implodable volume. Often, the confining structure is cylindrical, with one closed end and one open end. This work seeks to understand the effect of fluid flow restriction on the physics of implosion inside a confining tube. To do so, a comprehensive experimental study is conducted using a unique experimental facility. Thin-walled aluminum cylinders are collapsed inside a confining tube within a large pressure vessel. High-speed photography and 3D Digital Image Correlation are used to gather structural displacement and velocities during the event while an array of dynamic pressure sensors capture the pressure data inside the confining tube. The results of this work show that by changing the size of the open end, referred to as the flow area ratio, there can be a significant effect on the structural deformations and implosion severity. It also reveals that only certain configurations of holes at the open end of the tube play a role in the dynamic pressure pulse measured at the closed end of the tube. By understanding the consequences of an implosion, designers can make decisions about where these pressure vessels should be in relation to other pressure vessels, critical infrastructure, marine life, or people. In the same way that engineers design for earthquakes and analyze the impact their structures have on the environment around them, contributors to the undersea engineering ecosystem should design with implosion in mind. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4203 KiB  
Article
Long-Term Anisotropic Mechanical Characterization of Layered Shale—An Experimental Study for the BaoKang Tunnel of the Zhengwan Railway, China
by Jun Zhao, Changming Li and Wei Huang
Processes 2025, 13(6), 1900; https://doi.org/10.3390/pr13061900 - 16 Jun 2025
Viewed by 436
Abstract
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and [...] Read more.
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and failure characteristics of different bedding stratified rocks, this research employed an MTS815 electro-hydraulic servo rock testing system and a French TOP rheometer. Triaxial compression tests, rheological property tests, and long-term cyclic and unloading tests were conducted on shale samples under varying confining pressures and bedding angles. The results indicate that (1) under triaxial compression, shale demonstrates pronounced anisotropic behavior. When the confining pressure is constant, the peak strength of the rock sample exhibits a “U”-shaped variation with the bedding angle (its minimum value at 60°). For a fixed bedding angle, the peak strength of the rock sample progressively increases as the confining pressure rises. (2) The mode of shale failure varies with the angle: at 0°, shale exhibits conjugate shear failure; at 30°, shear slip failure along the bedding is controlled by the bedding weak plane; at 60° and 90°, failure occurs through the bedding. (3) During the creep process of layered shale, brittle failure characteristics are evident, with microcracks within the sample gradually failing at stress concentration points. The decelerated and stable creep stages are prominent; while the accelerated creep stage is less noticeable, the creep rate increases with increasing stress level. (4) Under low confining pressure, the peak strength during cyclic loading and unloading creep processes is lower than that of conventional triaxial tests when the bedding plane dip angles are 0° and 30°, which is the opposite at 60° and 90°. (5) In the cyclic loading and unloading process, Poisson’s ratio gradually increases, whereas the elastic modulus, shear modulus, and bulk modulus gradually decrease. Full article
Show Figures

Figure 1

35 pages, 8248 KiB  
Article
Pre-Failure Deformation Response and Dilatancy Damage Characteristics of Beishan Granite Under Different Stress Paths
by Yang Han, Dengke Zhang, Zheng Zhou, Shikun Pu, Jianli Duan, Lei Gao and Erbing Li
Processes 2025, 13(6), 1892; https://doi.org/10.3390/pr13061892 - 15 Jun 2025
Viewed by 362
Abstract
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks [...] Read more.
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks under high stress levels is insufficient currently, and especially, the stress path under simultaneous unloading of axial and confining pressures is rarely discussed. Therefore, three representative mechanical experimental studies were conducted on the Beishan granite in the pre-selected area for high-level radioactive waste (HLW) geological disposal in China, including increasing axial pressure with constant confining pressure (path I), increasing axial pressure with unloading confining pressure (path II), and simultaneous unloading of axial and confining pressures (path III). Using the deviatoric stress ratio as a reference, the evolution laws and characteristics of stress–strain relationships, deformation modulus, generalized Poisson’s ratio, dilatancy index, and dilation angle during the path bifurcation stage were quantitatively analyzed and compared. The results indicate that macro-deformation and the plastic dilatancy process exhibit strong path dependency. The critical value and growth gradient of the dilatancy parameter for path I are both the smallest, and the suppressive effect of the initial confining pressure is the most significant. The dilation gradient of path II is the largest, but the degree of dilatancy before the critical point is the smallest due to its susceptibility to fracture. The critical values of the dilatancy parameters for path III are the highest and are minimally affected by the initial confining pressure, indicating the most significant dilatancy properties. Establish the relationship between the deformation parameters and the crack-induced volumetric strain and define the damage variable accordingly. The critical damage state and the damage accumulation process under various stress paths were examined in detail. The results show that the damage evolution is obviously differentiated with the bifurcation of the stress paths, and three different types of damage curve clusters are formed, indicating that the damage accumulation path is highly dependent on the stress path. The research findings quantitatively reveal the differences in deformation response and damage characteristics of Beishan granite under varying stress paths, providing a foundation for studying the nonlinear mechanical behavior and damage failure mechanisms of hard brittle rock under complex loading conditions. Full article
Show Figures

Figure 1

20 pages, 10249 KiB  
Article
The Effect of Cementation on Microstructural Evolution and Particle Characteristics of Calcareous Sand Under Triaxial Loading
by Wanying Wang, Jiepeng Huang, Degao Chen, Qingzi Luo and Bingxiang Yuan
Buildings 2025, 15(12), 2041; https://doi.org/10.3390/buildings15122041 - 13 Jun 2025
Viewed by 437
Abstract
Calcareous sands are widely distributed across the South China Sea’s continental shelf and coastlines. Understanding their mechanical behavior and microstructural evolution under cementation is critical for coastal engineering applications. While previous studies have investigated cemented calcareous sands, the comparative analyses of particle breakage [...] Read more.
Calcareous sands are widely distributed across the South China Sea’s continental shelf and coastlines. Understanding their mechanical behavior and microstructural evolution under cementation is critical for coastal engineering applications. While previous studies have investigated cemented calcareous sands, the comparative analyses of particle breakage and microstructural characteristics between cemented and pure sands remain limited. This study combines triaxial compression tests with X-ray CT scanning and Digital Volume Correlation analysis to systematically examine both material types. Pre- and post-loading CT scans enabled the detailed tracking of microstructural transformations. Results demonstrate that cemented specimens exhibit higher strength–stiffness properties with strain-softening behavior compared to pure sand under 200 kPa confining pressures. A quantitative analysis revealed greater particle breakage in cemented sand, while pure sand showed more pronounced increases in particle sphericity and the aspect ratio during deformation, accompanied by reduced porosity variation along specimen height (coefficient of variation decreased from 15.2% to 12.8% for pure sand. Microstructural analysis indicated moderate increases in pore sphericity and reduced anisotropy in both materials. Fractal dimension analysis demonstrated more significant structural reorganization in cemented sands. Both materials exhibited increases in key morphological parameters, including the throat equivalent radius, channel length, pore equivalent radius, and coordination number, with changes being more substantial in cemented sands. Within shear band regions, cemented sands displayed marked reductions in pore and throat quantities. These findings elucidate fundamental relationships between cementation effects and micro–macro mechanical responses, providing theoretical support for geotechnical applications involving calcareous sands. Full article
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
Weight-Based Numerical Study of Shale Brittleness Evaluation
by Yu Suo, Fenfen Li, Qiang Liang, Liuke Huang, Liangping Yi and Xu Dong
Symmetry 2025, 17(6), 927; https://doi.org/10.3390/sym17060927 - 11 Jun 2025
Viewed by 269
Abstract
The implementation of lean drilling and completion design techniques is a pivotal strategy for the petroleum and natural gas industry to achieve green, low-carbon, and intelligent transformation and innovation. These techniques significantly enhance oil and gas recovery rates. In shale gas development, the [...] Read more.
The implementation of lean drilling and completion design techniques is a pivotal strategy for the petroleum and natural gas industry to achieve green, low-carbon, and intelligent transformation and innovation. These techniques significantly enhance oil and gas recovery rates. In shale gas development, the shale brittleness index plays a crucial role in evaluating fracturing ability during hydraulic fracturing. Indoor experiments on Gulong shale oil were conducted under a confining pressure of 30 MPa. Based on Rickman’s brittleness evaluation method, this study performed numerical simulations of triaxial compression tests on shale using the finite discrete element method. The fractal dimensions of the fractures formed during shale fragmentation were calculated using the box-counting method. Utilizing the obtained data, a multiple linear regression equation was established with elastic modulus and Poisson’s ratio as the primary variables, and the coefficients were normalized to propose a new brittleness evaluation method. The research findings indicate that the finite discrete element method can effectively simulate the rock fragmentation process, and the established multiple linear regression equation demonstrates high reliability. The weights reassigned for brittleness evaluation based on Rickman’s method are as follows: the coefficient for elastic modulus is 0.43, and the coefficient for Poisson’s ratio is 0.57. Furthermore, the new brittleness evaluation method exhibits a stronger correlation with the brittleness mineral index. The fractal characteristics of crack networks and the relationship between symmetry response and mechanical parameters offer a new theoretical foundation for brittle weight distribution. Additionally, the scale symmetry characteristics inherent in fractal dimensions can serve as a significant indicator for assessing complex crack morphology. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 14922 KiB  
Article
Strain Rate Effects on Characteristic Stresses and Dynamic Strength Criterion in Granite Under Triaxial Quasi-Static Compression
by Lu Liu, Jinhui Ouyang, Wencheng Yang and Sijing Wang
Appl. Sci. 2025, 15(11), 6214; https://doi.org/10.3390/app15116214 - 31 May 2025
Viewed by 524
Abstract
To investigate the effects of the strain rate and confinement on characteristic stresses and strength criterion in granite under static to quasi-static loading, triaxial compression tests were systematically conducted across strain rates of 10−6 to 10−2 s−1 and confining pressures [...] Read more.
To investigate the effects of the strain rate and confinement on characteristic stresses and strength criterion in granite under static to quasi-static loading, triaxial compression tests were systematically conducted across strain rates of 10−6 to 10−2 s−1 and confining pressures of 0–40 MPa. Stress–strain curves, characteristic stresses, macro-fracture patterns, and dynamic strength criterion were analyzed. The experimental results indicate the following: (1) crack damage stress (σcd) and peak stress (σp) show strong linear correlations with logarithmic strain rate, while crack initiation stress (σci) exhibits weaker rate dependence; (2) linear regression establishes characteristic stress ratios σci = 0.58σp and σcd = 0.85σp; (3) macroscopic fractures transition from Y-shaped shear patterns under low confinement and strain rate conditions to X-shaped shear failures at higher confinement and strain rate; (4) the Mohr–Coulomb criterion effectively characterizes dynamic strength evolution in granite, with cohesion increasing 22% across tested strain rates while internal friction angle remains stable at around 50°; (5) variations in microcrack activity intensity during rock deformation stages result in the dynamic increase factor for characteristic stresses (CSDIF) of σci being lower than σcd and σp. More importantly, σcd and σp exhibit CSDIF reductions as confining pressure increases. This differential behavior is explained by confinement-enhanced shear fracturing dominance during crack propagation stages, combined with the lower strain rate sensitivity of shear versus tensile fracture toughness. Full article
Show Figures

Figure 1

20 pages, 13202 KiB  
Article
Microstructural Mechanical Characteristics of Soft Rock and the Water–Rock Coupling Mechanism
by Yuankai Zhang, Xiaoshan Li, Wenhai Yu, Yunhui Lu, Jiancheng Chen, Xinhong Song, Yonghong Wu and Liu Yang
Processes 2025, 13(5), 1410; https://doi.org/10.3390/pr13051410 - 6 May 2025
Viewed by 447
Abstract
The strength of soft rock masses progressively deteriorates under dissolution effects, leading to extensive pore development and structural loosening within the rock matrix. This process induces water and sand inrush phenomena at excavation faces, posing substantial challenges to construction safety. This study systematically [...] Read more.
The strength of soft rock masses progressively deteriorates under dissolution effects, leading to extensive pore development and structural loosening within the rock matrix. This process induces water and sand inrush phenomena at excavation faces, posing substantial challenges to construction safety. This study systematically investigates the strength degradation mechanisms and engineering disaster evolution of soft rock subjected to water–rock interactions. Utilizing representative water-rich soft rock specimens from a tunnel in central Yunnan, a multi-scale analytical framework incorporating X-ray diffraction mineral analysis systems, triaxial mechanical testing systems for rocks, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) was implemented. This integrated methodology comprehensively elucidates the macro–meso damage evolution mechanisms of soft rock under water–rock coupling interactions. The results indicate that as the dolomite content decreases and the impurity content increases, the softening grade of the rock rises, leading to more extensive pore development. Uniaxial compression tests revealed that the Poisson’s ratio of soft rock is significantly higher than that of typical rock. Triaxial compression tests demonstrated that confining pressure has a substantial impact on soft rock, particularly affecting Poisson’s ratio. Increased water content was found to significantly reduce the strength of the soft rock. Compared to loose soft rock, the radial strain of denser soft rock was markedly greater than the axial strain, and the soaking damage effect was more pronounced. This study provides a valuable insight into the mechanical and permeability behavior of soft rock under different conditions, and provides valuable insights into the solutions for soft rock in geological engineering such as tunnel excavations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 9537 KiB  
Article
Study on Wellbore Stability of Shale–Sandstone Interbedded Shale Oil Reservoirs in the Chang 7 Member of the Ordos Basin
by Yu Suo, Xuanwen Kong, Heng Lyu, Cuilong Kong, Guiquan Wang, Xiaoguang Wang and Lingzhi Zhou
Processes 2025, 13(5), 1361; https://doi.org/10.3390/pr13051361 - 29 Apr 2025
Cited by 1 | Viewed by 437
Abstract
Wellbore instability is a major constraint in large-scale shale oil extraction. This study focuses on the shale–sandstone interbedded shale oil reservoirs in the Chang 7 area, delving into the evolutionary principles governing wellbore stability in horizontal drilling operations within these formations. A geological [...] Read more.
Wellbore instability is a major constraint in large-scale shale oil extraction. This study focuses on the shale–sandstone interbedded shale oil reservoirs in the Chang 7 area, delving into the evolutionary principles governing wellbore stability in horizontal drilling operations within these formations. A geological feature analysis of shale–sandstone reservoir characteristics coupled with rigorous mechanical experimentation was undertaken to investigate the micro-mechanisms underpinning wellbore instability. The Mohr–Coulomb failure criterion applicable to sandstone and the multi-weakness planes failure criterion of shale were integrated to analyze the stress distribution of surrounding rocks within horizontal wells, facilitating the computation of collapse pressure and fracture pressure. A finite element model of wellbore stability in shale–sandstone horizontal drilling was established, and then we conducted a comprehensive analysis of the impacts of varying elastic moduli, Poisson’s ratio, and in-situ stress on wellbore stability. The findings reveal that under varying confining pressures, the predominant failure mode observed in most sandstone samples is characterized by inclined shear failure, coupled with a reduced incidence of crack formation. The strength of shale escalates proportionally with increasing confining pressure, resulting in a reduced susceptibility to failure along its inherent weak planes. This transition is characterized by a gradual shift from the prevalent mode of longitudinal splitting towards inclined shear failure. As the elastic modulus of shale rises, the discrepancy between circumferential and radial stresses decreases. In contrast, with the increasing elastic modulus of sandstone, the gap between circumferential and radial stresses widens, potentially inducing potential instabilities in the wellbore. An increase in sandstone’s Poisson’s ratio corresponds to a proportional increase in the difference between circumferential and radial stresses. Under reverse fault stress regimes, wellbore collapse and instability are predisposed to occur. Calculations of collapse pressure and fracture pressure reveal that the safety density window is minimized at the interface between shale and sandstone, rendering it susceptible to wellbore instability. These research findings offer significant insights for the investigation of wellbore stability in interbedded shale–sandstone reservoirs contributing to the academic discourse in this field. Full article
(This article belongs to the Special Issue Advanced Research on Marine and Deep Oil & Gas Development)
Show Figures

Figure 1

20 pages, 8770 KiB  
Article
Failure and Energy Evolution Characteristics of Saturated Natural Defective Material Under Different Confining Pressures
by Zhihao Gao, Shihao Guo, Xiaoyong Yang, Shanchao Hu, Junhong Huang, Yafei Cheng, Dawang Yin and Jinhao Dou
Materials 2025, 18(9), 2027; https://doi.org/10.3390/ma18092027 - 29 Apr 2025
Viewed by 451
Abstract
In nature, many brittle materials contain natural defects such as microcracks or joints, for example, rocks. Under water-saturated conditions, the strength of defective materials undergoes varying degrees of attenuation, leading to material failure and even structural instability in engineering contexts. Moreover, the deformation [...] Read more.
In nature, many brittle materials contain natural defects such as microcracks or joints, for example, rocks. Under water-saturated conditions, the strength of defective materials undergoes varying degrees of attenuation, leading to material failure and even structural instability in engineering contexts. Moreover, the deformation and failure of defective brittle materials are essentially the result of the accumulation and dissipation of energy. Studying the energy evolution of defective brittle materials under load is more conducive to reflecting the intrinsic characteristics of strength changes and overall failure of brittle materials under external loading. Natural defective brittle rock materials were firstly water saturated and triaxial compression tests were performed to determine the mechanical properties of water-saturated materials. The energy evolution patterns of water-saturated materials under varying confining pressures were also obtained. Using the discrete element method, the macro- and micro-failure characteristics of water-saturated materials were investigated, revealing the mesoscopic mechanisms of deformation and failure evolution in these materials. The results indicate that confining pressure significantly enhances the peak compressive strength and elastic modulus of water-saturated defective materials. When the confining pressure increased from 0 MPa to 20 MPa, the peak strength and elastic modulus of the water-saturated materials increased by 126.8% and 91.9%, respectively. Confining pressure restricts the radial deformation of water-saturated materials and dominates the failure mode. As confining pressure increases, the failure mode transitions from tensile splitting (at 0 MPa confining pressure) to shear failure (at confining pressures ≥ 10 MPa), with the failure plane angle gradually decreasing as confining pressure rises. Confining pressure significantly alters the energy storage–release mechanism of water-saturated defective brittle materials. At peak load, the total energy, elastic energy, and dissipated energy increased by 347%, 321%, and 1028%, respectively. The ratio of elastic energy storage to peak strain ratio shows a positive correlation, and the elastic storage ratio of water-saturated defective brittle materials under confining pressure is always higher than that without confining pressure. When the strain ratio exceeds 0.94, a negative correlation between confining pressure and the rate of elastic storage ratio is observed. From the perspective of mesoscopic fracture evolution in water-saturated defective brittle materials, the crack propagation path shifts from the periphery to the center of the material, and the fracture angle decreases linearly from 89° to 58° as confining pressure increases. The dominant direction of crack development is concentrated within the 45–135° range. The findings elucidate the mechanisms by which water saturation and confining pressure influence the strength degradation of natural defective brittle materials from both mesoscopic and energy perspectives, providing theoretical support for the stability control of related engineering structures. Full article
Show Figures

Figure 1

16 pages, 5082 KiB  
Article
Study on the Dynamic Deformation Characteristics of Artificial Structural Loess
by Yu Xi, Mingming Sun, Xueqing Hua, Yao Zhang and Ye Yuan
Buildings 2025, 15(7), 1198; https://doi.org/10.3390/buildings15071198 - 6 Apr 2025
Cited by 1 | Viewed by 409
Abstract
Due to the difficulties in sampling, high sensitivity to humidity, and inconvenience in storage, undisturbed loess is prone to changes in its original structure. Therefore, trace amounts of cement and salt are added to remolded soil to simulate the structure of undisturbed loess. [...] Read more.
Due to the difficulties in sampling, high sensitivity to humidity, and inconvenience in storage, undisturbed loess is prone to changes in its original structure. Therefore, trace amounts of cement and salt are added to remolded soil to simulate the structure of undisturbed loess. The GDS dynamic three-axial test apparatus was used to investigate the influence of dry density, cement content, and confining pressure (CP) on the dynamic distortion characteristics of artificially structured soil. Based on dynamic triaxial tests, the Hardin–Drnevich (H-D) model was established through fitting analysis. The research findings indicate that increased dry density, cement content, and CP can enhance the soil’s resistance to distortion. Under dynamic loading, the higher the CP, the smaller the damping ratio of the soil. With a dry density of 1.20 g/cm3 and 2% cement, the dynamic modulus of the artificially structured loess is similar to that of undisturbed loess. With a dry density of 1.60 g/cm3 and 2% cement, the CP is 200 kPa, the soil’s dynamic modulus of elasticity (DM-E) peak value is 113.14 MPa, and the damping ratio is 0.258. The good agreement between trial data and the predicted results demonstrates that the H-D hyperbolic model is appropriate for representing the DM-E of artificially structured loess. A three-dimensional model of the dynamic deformation characteristics and microstructure of artificial structural loess under dynamic loads was established. The findings can guide the study of the mechanical properties of loess under dynamic loading. Full article
(This article belongs to the Special Issue Building Vibration and Soil Dynamics—2nd Edition)
Show Figures

Figure 1

Back to TopTop