Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = cone-calorimeter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6665 KiB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Viewed by 175
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 414
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

16 pages, 2882 KiB  
Article
Synergistic Enhancement of Fire Retardancy and Mechanical Performance in Silicone Foams Using Halogen-Free Fillers
by Seong-Jun Park, Tae-Soon Kwon, Hee-Joong Sim, Yeon-Gyo Seo, Kyungwho Choi and Hong-Lae Jang
Fire 2025, 8(7), 243; https://doi.org/10.3390/fire8070243 - 23 Jun 2025
Viewed by 359
Abstract
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with [...] Read more.
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with unfilled silicone foam under both static and dynamic loading conditions. Uniaxial compression and simple shear tests were conducted to assess mechanical behavior, and a second-order Ogden model was employed to represent hyperelasticity in the finite element analysis. Fire performance was evaluated using cone calorimeter tests in accordance with ISO 5660-1. The results showed a 53.6% reduction in peak heat release rate (PHRR) and a 48.1% decrease in MARHE upon the addition of flame retardants, satisfying relevant fire safety standards. Although the addition of fillers increased the compressive stiffness and reduced rebound resilience, static comfort indices remained within acceptable ranges. These findings confirm that halogen-free filled silicone foams exhibit significantly enhanced fire retardancy while maintaining sufficient mechanical integrity and seating comfort, demonstrating their potential as eco-friendly alternatives to conventional polyurethane foams in large-scale transportation applications. Full article
Show Figures

Graphical abstract

14 pages, 13138 KiB  
Article
Effect of Multiple Phosphorus-Nitrogen Flame Retardant on the Properties of PA66
by Haoyang Zhang, Jiyu He and Xiangmei Li
Polymers 2025, 17(11), 1537; https://doi.org/10.3390/polym17111537 - 31 May 2025
Cited by 1 | Viewed by 642
Abstract
PA66 is a widely used engineering plastic, but its flammability reduces safety during application. The 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and its derivatives are a class of flame retardants with excellent flame-retardant efficiency, which can significantly improve the flame retardancy of PA66. This work synthesized [...] Read more.
PA66 is a widely used engineering plastic, but its flammability reduces safety during application. The 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and its derivatives are a class of flame retardants with excellent flame-retardant efficiency, which can significantly improve the flame retardancy of PA66. This work synthesized a DOPO derivative flame retardant, DT, containing multiple P/N elements and comprehensively characterized its structure using FTIR and NMR. Flame-retardant PA66 materials were prepared by twin-screw extrusion blending with PA66, and their thermal stability, crystallization properties, flame retardancy, and mechanical properties were investigated. When the DT content reached 15%, the vertical burning classification test achieved the UL-94 V-0, and the limiting oxygen index (LOI) rose up 27.2%. In the cone calorimeter test, the peak of heat release rate (PHRR) and total heat release (THR) of the material decreased significantly, and a distinct char layer formed, increasing NH3 release and decreasing the C-H structure after combustion, improving PA66 flame-retardant properties. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Unveiling Thermal Degradation and Fire Behavior of 110 kV Ultra-High-Voltage Flame-Retardant Cable Sheath After Thermal Aging
by Yaqiang Jiang, Wei He, Xinke Huo, Xuelian Lu, Kaiyuan Li and Fei Xiao
Polymers 2025, 17(9), 1273; https://doi.org/10.3390/polym17091273 - 6 May 2025
Viewed by 563
Abstract
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 [...] Read more.
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 vertical burning, cone calorimeter, open flame, and muffle furnace tests. The results showed that thermal aging causes a slight decrease in the LOI value of the cable sheath (28.3% vs. 28.5%), but it also passed the UL-94 V-0 test. The butane torch test showed that the cable sheath was more easily ignited after aging; however, a better char layer was formed in the later stage of burning, which led to a longer failure time. Interestingly, the aging treatment prolonged the ignition time of the cable sheaths and reduced the peak heat release rate (pHRR) and total heat release (THR) by 17.5% and 24.4%, respectively, in the cone calorimeter test, indicating that aging resulted in a reduction in the fire hazard of the cable sheaths. Moreover, aging mechanisms were proposed based on the composition and structural evolution of the cable sheaths. In summary, this work comprehensively evaluated the fire hazard of 110 kV ultra-high-voltage cables and provided theoretical support for the formulation improvement, durability enhancement, and fire protection design of cable sheath materials. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

17 pages, 7837 KiB  
Article
Advanced Phosphorus–Protein Hybrid Coatings for Fire Safety of Cotton Fabrics, Developed Through the Layer-by-Layer Assembly Technique
by Xuqi Yang, Xiaolu Li, Wenwen Guo, Abbas Mohammadi, Marjan Enetezar Shabestari, Rui Li, Shuyi Zhang and Ehsan Naderi Kalali
Polymers 2025, 17(7), 945; https://doi.org/10.3390/polym17070945 - 31 Mar 2025
Viewed by 534
Abstract
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. [...] Read more.
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. During combustion, the phosphate groups (−PO₄2−) in phosphorus containing flame retardant layers interact with the amino groups (–NH2) of protein, forming ester bonds, which results in the generation of a crosslinked network between the amino groups and the phosphate groups. This structure greatly enhances the thermal stability of the residual char, hence improving fire resistance. Cone calorimeter and flammability tests show significant improvements in fire safety, including lower peak heat release rates, reduced smoke production, and higher char residue, all contributing to better flame-retardant performance. pHRR, THR, and TSP of the flame-retarded cotton fabric demonstrated 25, 54, and 72% reduction, respectively. These findings suggest that LbL-assembled protein–phosphorus-based coatings provide a promising, sustainable solution for creating efficient flame-retardant materials. Full article
Show Figures

Graphical abstract

26 pages, 5256 KiB  
Article
Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions
by Matiss Pals, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane and Alexandr Arshanitsa
Plants 2025, 14(5), 775; https://doi.org/10.3390/plants14050775 - 3 Mar 2025
Viewed by 1192
Abstract
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed [...] Read more.
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1–2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox. Full article
Show Figures

Figure 1

16 pages, 5390 KiB  
Article
Flammability of Plant-Based Loose-Fill Thermal Insulation: Insights from Wheat Straw, Corn Stalk, and Water Reed
by Martins Andzs, Ramunas Tupciauskas, Andris Berzins, Gunars Pavlovics, Janis Rizikovs, Ulla Milbreta and Laura Andze
Fibers 2025, 13(3), 24; https://doi.org/10.3390/fib13030024 - 24 Feb 2025
Cited by 1 | Viewed by 1148
Abstract
This study investigates the fire resistance capabilities of newly developed loose-fill thermal insulation materials crafted from annual plants such as wheat straw, corn stalk, and water reed. Three processing methodologies were employed: mechanical crushing (raw, size ≤ 20 mm), chemi-mechanical pulping (CMP) using [...] Read more.
This study investigates the fire resistance capabilities of newly developed loose-fill thermal insulation materials crafted from annual plants such as wheat straw, corn stalk, and water reed. Three processing methodologies were employed: mechanical crushing (raw, size ≤ 20 mm), chemi-mechanical pulping (CMP) using 4% sodium hydroxide, and steam explosion (SE). An admixture of boric acid (8%) and tetraborate (7%) was added to all treated materials to enhance fire retardancy. The fire reaction characteristics of the insulation materials were assessed using a cone calorimeter measuring the key parameters like time to ignition, total heat release, heat release rate, and total smoke production. The findings indicate that nearly all tested insulation samples, apart from the raw and SE water reed, demonstrated fire resistance comparable to commercial cellulose insulation, surpassing the fire performance of various synthetic foams and composite materials. Furthermore, the single-flame source fire tests indicated that the developed insulation materials achieved a fire classification E, except for the SE water reed sample. Thus, the fire performance results approve the suitability of developed plant-based insulation materials for competing materials in building constructions. Full article
Show Figures

Figure 1

13 pages, 4279 KiB  
Article
Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin
by Yicheng Yang, Yue Lu, Wang Zhan and Qinghong Kong
Macromol 2025, 5(1), 9; https://doi.org/10.3390/macromol5010009 - 20 Feb 2025
Cited by 2 | Viewed by 951
Abstract
To expand the utilization of bio-based materials as flame retardants in epoxy resin (EP), a green Schiff base structural material (CSV) was synthesized via a one-pot approach employing chitosan and vanillin as the raw materials. Then, the CSV combined with 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) (the [...] Read more.
To expand the utilization of bio-based materials as flame retardants in epoxy resin (EP), a green Schiff base structural material (CSV) was synthesized via a one-pot approach employing chitosan and vanillin as the raw materials. Then, the CSV combined with 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) (the mass ratio between CSV and DOPO was 1:2, written as CSV-DOPO) improved the flame retardancy of the EP. When the amount of CSV−DOPO in the EP was only 3 wt%, the thermogravimetric analysis (TGA) results indicated that the residue of the EP composites was 50.6% higher than that of the EP. The combustion class of the EP/3 wt% CSV−DOPO composites achieved a UL-94 V0 rating and the limit oxygen index (LOI) reached 34.0%. The cone calorimeter test (CCT) showed that the peak heat release rate (PHHR), total heat release (THR), total smoke release (TSP), and peak carbon dioxide production (PCO2P) of the EP/3 wt% CSV−DOPO composites decreased by 32.3%, 22.0%, 4.6%, and 51.0%, respectively, compared to the EP. The flame-retardancy mechanism was studied by scanning electron microscopy (SEM) and Raman spectra. The quenching effect of phosphorus-containing radicals, the dilution effect of noncombustible gases, and the impeding effect of the carbon layer in the condensed phase contributed collectively to the excellent flame retardancy of the EP/CSV−DOPO composites. Considering the facile preparation method and small addition amount of the flame retardant, the present work provides a convenient solution for the preparation of modified EP with good flame retardancy and heat stability, which is expected to be widely used in industries. Full article
Show Figures

Figure 1

15 pages, 11769 KiB  
Article
Improving Combustion Analysis of Extruded Polystyrene via Custom Isolation Methodology
by Yanan Hou, Mei Wan, Jian Li, Fei Ren, Xiaodong Qian and Congling Shi
Fire 2025, 8(2), 43; https://doi.org/10.3390/fire8020043 - 24 Jan 2025
Viewed by 762
Abstract
This study is dedicated to an in−depth analysis of the combustion characteristics of extruded polystyrene (XPS) as a building insulation material with the aim of accurately assessing its fire risk in the built environment. Innovatively, this research employed a cone calorimeter equipped with [...] Read more.
This study is dedicated to an in−depth analysis of the combustion characteristics of extruded polystyrene (XPS) as a building insulation material with the aim of accurately assessing its fire risk in the built environment. Innovatively, this research employed a cone calorimeter equipped with a self−designed insulating sample holder to conduct a systematic experimental study. Additionally, it performed a comprehensive analysis of the ignition characteristics, heat release rate, fire hazard, smoke release, and toxic gas emission of XPS materials. The experimental results revealed that the combustion behavior of XPS is influenced by multiple factors, including the content of flame retardants and external heat flux, which significantly affect the fire hazard of XPS. When the thermal radiation intensity escalates from 25 kW/m2 to 55 kW/m2, the peak heat release rate of XPS−B1 rises from 428 kW/m2 to 535 kW/m2, marking an increase of 25.00%. Conversely, the peak heat release rate of XPS−B2 surges from 348 kW/m2 to 579 kW/m2, reflecting a substantial increase of 66.38%. This research not only provides a solid theoretical foundation and detailed experimental data for the fire behavior of XPS materials but also holds significant practical importance for enhancing the fire safety of buildings. Overall, this research contributes to the scientific understanding of XPS insulation materials and supports the development of more effective fire prevention measures in construction. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

22 pages, 7489 KiB  
Article
Review of Fire Tests on Seats for Passenger Coaches and the Materials Used in Them
by Dieter Hohenwarter
Fire 2025, 8(1), 32; https://doi.org/10.3390/fire8010032 - 17 Jan 2025
Viewed by 1217
Abstract
This study shows how the fire regulations for railway seats used in international traffic have changed over the last 30 years. In the past, a paper cushion was used as a flame source, and today, a 15 kW burner is used; consequently, the [...] Read more.
This study shows how the fire regulations for railway seats used in international traffic have changed over the last 30 years. In the past, a paper cushion was used as a flame source, and today, a 15 kW burner is used; consequently, the requirements have increased. In the paper cushion test, a foam with a density of between 60 and 95 kg/m3, a flame-retardant fleece, and a cover fabric was usually sufficient in terms of fire safety. Today, a high-quality flame-retardant foam is necessary to meet the requirements for flaming with the 15 kW burner. Two comparable seat structures show very different heat release and smoke formation in the paper cushion test due to different foam additives. If high-quality flame-retardant foams with a cover fabric are used for the 15 kW flame treatment, the results of the two test institutes show good agreement. If the seats that meet the requirements of the paper cushion test are flamed using the 15 kW treatment, they can catch fire and thus exhibit very different heat release rates, as the CERTIFER interlaboratory test with 12 participating test institutes shows. The heat release of old and new leather was examined, and it was found that the flame retardant applied to the leather surface appeared to have aged over the years and that the flame retardant was therefore no longer effective. The heat release of flame-retardant foams with a cover fabric was measured using irradiation with a cone calorimeter and flame treatment. Very different curves were observed, which means that it is not possible to draw simple conclusions about the heat release during flame treatment from the cone measurement. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

17 pages, 4760 KiB  
Article
Study on the Combustion Characteristics of Seven Common Broadleaf Plant Species in Southern China
by Yuanfan Ji, Rui Huang, Jiacheng Jia, Jiangjiang Yin and Yige Chen
Forests 2025, 16(1), 44; https://doi.org/10.3390/f16010044 - 30 Dec 2024
Viewed by 958
Abstract
Due to the frequent occurrence of forest fires worldwide, which cause severe economic losses and casualties, it is essential to explore the mechanisms of forest fires. In this study, seven common broadleaf plant species from southern China were selected to observe their microscopic [...] Read more.
Due to the frequent occurrence of forest fires worldwide, which cause severe economic losses and casualties, it is essential to explore the mechanisms of forest fires. In this study, seven common broadleaf plant species from southern China were selected to observe their microscopic structural parameters. The combustion performance parameters of the leaves of these seven species were measured using a cone calorimeter, and the relationship between the microscopic structure and combustion performance was analyzed. Additionally, factor analysis was used to study the combustion intensity factor (F1), fire resistance intensity factor (F2), and the comprehensive fire risk degree (F) of the leaves of the seven plant species. Finally, regression analysis was performed between the microscopic structural parameters and the comprehensive fire risk factor. The results show the following: (1) The ratio of spongy mesophyll to palisade cells (S/P) affects the combustion performance of plant leaves. (2) The ranking of the comprehensive fire risk factor for the leaves of the seven plant species is as follows: Osmanthus fragrans var. semperflorens (OFS) > Cinnamomum camphora (CC) > Loropetalum chinense (R. Br.) Oliv. (LC) > Pterocarya stenoptera C. DC. (PS) > Loropetalum chinense var. rubrum (LCVR) > Photinia beauverdiana C. K Schneid. (PB) > Styphnolobium japonicum (L.) Schott (SJ). (3) There is a strong exponential relationship between the comprehensive fire risk factor and the microscopic structural parameters. This study is beneficial for selecting fire-resistant tree species and monitoring species with higher comprehensive fire risk. Full article
(This article belongs to the Special Issue Forest Responses to Fires)
Show Figures

Figure 1

19 pages, 10396 KiB  
Article
Synthesis of a Bimetallic-Doped Phytate-Melamine Composite as an Efficient Additive for Epoxy Resins with High Fire Safety
by Shunxiang Wang, Jianfeng Huang, An Wei, Yulian Chen, Xulan Lu, Yongjin Zou, Fen Xu, Lixian Sun, Yunhao Lu and Cuili Xiang
Polymers 2024, 16(24), 3586; https://doi.org/10.3390/polym16243586 - 21 Dec 2024
Cited by 2 | Viewed by 1318
Abstract
The issue of hazardous smoke and toxic gases released from epoxy resins (EP), which often causes casualties in real fires, has limited its application. Therefore, we have developed a novel flame retardant based on a bimetallic-doped phytate-melamine (BPM) structure with Zn2+ and [...] Read more.
The issue of hazardous smoke and toxic gases released from epoxy resins (EP), which often causes casualties in real fires, has limited its application. Therefore, we have developed a novel flame retardant based on a bimetallic-doped phytate-melamine (BPM) structure with Zn2+ and Fe2+ ions incorporated into the polymer matrix using a straightforward solution-based synthetic method. The combustion performance of the composite was evaluated using a cone calorimeter test, which showed that the peak heat release, total heat release, and total smoke production were reduced by 50%, 31.7%, and 29.2%, respectively, compared to those of EP. Additionally, the fire growth index was noticeably reduced by 60% owing to the synergistic catalytic effect of the bimetallic ions, and the high nitrogen and phosphorus content of the additives. Overall, this study provides new insights into the application of bimetallic doping for flame retardant polymer composites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 7316 KiB  
Article
Synthesis of Polyphosphate Flame Retardant Bisphenol AP Bis(Diphenyl Phosphate) and Its Application in Polycarbonate/Acrylonitrile-Butadiene-Styrene
by Yang Yang, Chunzhi Wang, Yong Guan, Dafu Wei and Xiang Xu
Materials 2024, 17(23), 5682; https://doi.org/10.3390/ma17235682 - 21 Nov 2024
Viewed by 1069
Abstract
The flame retardant bisphenol AP bis(diphenyl phosphate) (BAPDP) is synthesized from triphenyl phosphate and bisphenol AP via transesterification, producing a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with a high flame retardancy and thermal stability. In this study, flame-retardant PC/ABS blends with various BAPDP contents are prepared, and [...] Read more.
The flame retardant bisphenol AP bis(diphenyl phosphate) (BAPDP) is synthesized from triphenyl phosphate and bisphenol AP via transesterification, producing a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with a high flame retardancy and thermal stability. In this study, flame-retardant PC/ABS blends with various BAPDP contents are prepared, and their flame retardancy is studied using the limit oxygen index, vertical combustion, thermogravimetric analysis, and cone calorimeter testing. With a BAPDP content of 20 wt%, the product exhibits a limiting oxygen index of 25.4% and achieves the UL-94 V-0 grade, with a thermal deformation temperature of 72.6 °C. BAPDP improves the flame retardancy of the PC/ABS blends and exhibits fewer adverse effects on the thermal deformation temperature than other commercial flame retardants at the same concentration. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

19 pages, 7466 KiB  
Article
Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+
by Lingling Guo, Hongqin Lin, Zhenming Qi, Jiang Pan, Haiyan Mao, Chunmei Huang, Guoqiang Li and Chunxia Wang
Molecules 2024, 29(22), 5306; https://doi.org/10.3390/molecules29225306 - 10 Nov 2024
Cited by 1 | Viewed by 1480
Abstract
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, [...] Read more.
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, which further chelated barium ions (Ba2+) to achieve flame retardancy. The morphological and structural characterizations of the fabricated cotton fabrics (COT-SC-Ba) demonstrated that the cleavage of C2-C3 free hydroxy groups within the cellulose macromolecule was chemically modified for grafting a considerable number of sulfonic acid groups, and Ba2+ ions were effectively immobilized on the macromolecule of the cotton fabric through a chelation effect. Results from cone calorimeter tests (CCTs) revealed that COT-SC-Ba became nonflammable, displayed a delayed ignition time, and decreased the values of the heat release rate (HRR), total smoke release (TSR), effective heat of combustion (EHC), and CO/CO2 ratio. TG/DTG analysis demonstrated that COT-SC-Ba possessed greater thermal stability, fewer flammable volatiles, and more of a char layer during burning than that of the original cotton fabric. Its residual mass was increased from 0.02% to 26.9% in air and from 8.05% to 26.76% in N2, respectively. The COT-SC-Ba not only possessed a limiting oxygen index (LOI) of up to 34.4% but could also undergo vertical burning tests evidenced by results such as the non-afterflame, non-afterglow, and a mere 75 mm char length. Those results demonstrated that the combination of SO3 and Ba2+ promoted the formation of a char layer. Moreover, cotton fabric regained its superior flame retardancy after being washed and re-chelated with Ba2+. Additional characteristics of the cotton fabric, such as the rupture strength, white degree, and hygroscopicity, were maintained at an acceptable level. In conclusion, this research can offer a fresh perspective on the design and development of straightforward, efficient, eco-friendly, and recoverable fire-retardant fabrics. Full article
Show Figures

Figure 1

Back to TopTop