Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CSV
2.3. Preparation of EP Composites
2.4. Instrumental Characterization
3. Results
3.1. Structural Characterization of CSV
3.2. Thermal Performance Analysis of the EP Composites
3.3. Combustion Performance of EP Composites
3.4. Analysis of Char Residue
3.5. Flame-Retardance Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.M.; Hou, G.X.; Xie, J.Q.; Zhang, Z.P.; Zhang, X.K.; Cai, J.J. Degradable bio-based fluorinated epoxy resin with excellent flame-retardant, dielectric, hydrophobic, and mechanical properties. Adv. Compos. Hybrid. Mater. 2023, 6, 128. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, B.; Yu, M.; Han, J.; Wang, J.; Tan, Z.J.; Yan, Y.S. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC. Food Chem. 2016, 210, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, Y.F.; Li, Y.; Gao, C.; Tian, X.J.; Wu, N.; Geng, Z.S.; Che, S.; Yang, F.; Li, Y.F. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B 2021, 224, 109168. [Google Scholar] [CrossRef]
- Chen, Y.S.; Duan, H.J.; Ji, S.; Ma, H.R. Novel phosphorus/nitrogen/boron-containing carboxylic acid as co-curing agent for fire safety of epoxy resin with enhanced mechanical properties. J. Hazard. Mater. 2020, 402, 123769. [Google Scholar] [CrossRef]
- Wang, P.J.; Liao, D.J.; Hu, X.P.; Pan, N.; Li, W.X.; Wang, D.Y.; Yao, Y. Facile fabrication of biobased P N C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy. Polym. Degrad. Stab. 2019, 159, 153–162. [Google Scholar] [CrossRef]
- Dai, P.; Liang, M.K.; Ma, X.F.; Luo, Y.L.; He, M.; Gu, X.L.; Gu, Q.; Hussain, L.; Luo, Z.Y. Highly Efficient, Environmentally Friendly Lignin-Based Flame Retardant Used in Epoxy Resin. ACS Omega 2020, 5, 32084–32093. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Dai, J.Y.; Wang, S.P.; Peng, Y.Y.; Cao, L.J.; Liu, X.Q. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin. Compos. Part B 2020, 190, 107926. [Google Scholar] [CrossRef]
- Lu, X.; Gu, X. Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin. Int. J. Biol. Macromol. 2022, 205, 539–552. [Google Scholar] [CrossRef]
- Gao, C.C.; Guo, L.H.; Yuan, P.C.; Qiao, Y.J.; Xing, A.; Li, X.Y. Flame retardant, strong and tough, low dielectric epoxy thermoset enabled by a novel bi-DOPO type epoxy with aggregation-induced emission. Chem. Eng. J. 2023, 475, 146241. [Google Scholar] [CrossRef]
- Jiang, G.Y.; Xiao, Y.L.; Qian, Z.Y.; Yang, Y.T.; Jia, P.F.; Song, L.; Hu, Y.; Ma, C.; Gui, Z. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites. Chem. Eng. J. 2022, 451, 137823. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, T.; Li, J.; Tan, J.; Zhu, X. Enhancing toughness, flame retardant, hydrophobic and dielectric properties of epoxy resin by incorporating multifunctional additive containing phosphorus/silicon. Mater. Des. 2022, 225, 111529. [Google Scholar] [CrossRef]
- Yin, L.; Gong, K.L.; Zhou, K.Q.; Qian, X.D.; Shi, C.L.; Gui, Z.; Qian, L.J. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin. J. Colloid. Interface Sci. 2021, 608, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.F.; Duan, H.J.; Zou, J.H.; Zhang, J.J.; Ma, H.R. A bio-based phosphorus-containing co-curing agent towards excellent flame retardance and mechanical properties of epoxy resin. Polym. Degrad. Stab. 2021, 187, 109548. [Google Scholar] [CrossRef]
- Zhu, W.X.; Chai, H.Y.; Lu, Y.; Zhan, W.; Kong, Q.H. Synthesis of Three Ternary NiPP@PDA@DTA by Bridging. Polydopamine and Its Flame Retardancy in Epoxy Resin. Batteries 2024, 10, 428. [Google Scholar] [CrossRef]
- Chu, F.K.; Ma, C.; Zhang, T.; Xu, Z.M.; Mu, X.W.; Cai, W.; Zhou, X.; Ma, S.C.; Zhou, Y.F.; Hu, W.Z.; et al. Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset. Compos. Part B 2020, 190, 107925. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, S.Y.; Luo, Q.Q.; Yu, B.; Song, J.L.; Tan, D.X. A vanillin-derived flame retardant based on 2-aminopyrimidine for enhanced flame retardancy and mechanical properties of epoxy resin. Polym. Adv. Technol. 2022, 34, 166–180. [Google Scholar] [CrossRef]
- Wang, P.; Xiao, H.; Duan, C.; Wen, B.; Li, Z. Sulfathiazole derivative with phosphaphenanthrene group: Synthesis, characterization and its high flame-retardant activity on epoxy resin. Polym. Degrad. Stab. 2020, 173, 109078. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Mu, X.W.; Chen, S.Q.; Jiang, G.Y.; Xu, Z.M.; Ma, C.; Song, L.; Hu, Y. Biomass-derived polyphosphazene towards simultaneously enhancing the flame retardancy and mechanical properties of epoxy resins. Chemosphere 2022, 311, 137058. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.D.; Tang, G.; Chen, J.M.; Huang, Z.Q.; Hu, Y. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin. J. Hazard. Mater. 2017, 342, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.F.; Chen, J.X.; Liu, J.; Sun, J.; Gu, X.Y.; Jiang, S.L.; Zhang, S. Fabrication of a transparent, flame retardant, and antimicrobial epoxy resin by a novel phosphorus-containing Schiff base molecule. Polym. Degrad. Stab. 2023, 209, 110274. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Riaz, T.; Yasmin, I.; Leghari, A.A.; Amin, S.; Bilal, M.; Qi, X.H. Chitosan-Based Materials as Edible Coating of Cheese: A Review. Starch-Starke 2021, 73, 11–12. [Google Scholar] [CrossRef]
- Wang, J.J.; Yu, X.J.; Dai, S.S.; Wang, X.Y.; Pan, Z.Q.; Zhou, H. Synergistic effect of chitosan derivative and DOPO for simul taneous improvement of flame retardancy and mechanical property of epoxy resin. Cellulose 2021, 29, 907–925. [Google Scholar] [CrossRef]
- Chen, R.; Luo, Z.J.; Yu, X.J.; Tang, H.; Zhou, Y.; Zhou, H. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin. Carbohydr. Polym. 2020, 245, 116530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.N.; Bai, T.; Zhou, P.C.; Yan, J.; Yu, B.; Huo, S.Q.; Wang, J.J. Non-phosphorus Glucosyl Schiff bases for smoke inhibition and mechanical enhancement of epoxy resin composites. Polym. Degrad. Stab. 2024, 223, 110715. [Google Scholar] [CrossRef]
- Zhu, H.J.; Chen, Y.M.; Huang, S.; Wang, Y.; Yang, R.; Chai, H.Y.; Zhu, F.; Kong, Q.H.; Zhang, Y.L.; Zhang, J.H. Suppressing fire hazard of poly(vinyl alcohol) based on (NH4)2[VO(HPO4)]2(C2O4)·5H2O with layered structure. J. Appl. Polym. Sci. 2021, 138, 51345. [Google Scholar] [CrossRef]
- Xie, W.Q.; Huang, S.W.; Tang, D.L.; Liu, S.M.; Zhao, J.Q. Biomass-Derived Schiff Base Compound Enabled Fire-Safe Epoxy Thermoset with Excellent Mechanical Properties and High Glass Transition Temperature. Chem. Eng. J. 2019, 394, 123667. [Google Scholar] [CrossRef]
- Liu, M.R.; Gong, Z.D.; Wang, G.D.; Liu, X.Y.; Yanbei Hou, Y.B.; Tang, G. Melamine resin coordinated cobalt@piperazine pyrophosphate microcapsule: An innovative strategy for imparting long-lasting fire safety to rigid polyurethane foams. Polym. Degrad. Stabil. 2024, 219, 110605. [Google Scholar] [CrossRef]
- Yang, W.J.; Ding, H.; Liu, T.X.; Ou, R.X.; Lin, J.Y.; Puglia, D.; Xu, P.W.; Wang, Q.W.; Dong, W.F.; Du, M.L.; et al. Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. ACS Appl. Mater. Interfaces 2021, 13, 59341–59351. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Lu, J.H.; Pu, X.L.; Chen, L.; Wang, Y.Z. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere 2022, 294, 133738. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.J.; Li, Y.; Liu, C.T.; Kang, J.; Zhang, J.; Gao, Y.; Chen, Y.; Liu, W.P. Well-designed flame retardants for epoxy resin composites that simultaneously improve heat resistance, mechanical properties and fire safety. Mater. Today Commun. 2024, 39, 109421. [Google Scholar] [CrossRef]
- Wu, J.N.; Chen, L.; Fu, T.; Zhao, H.B.; Guo, D.M.; Wang, X.L.; Wang, Y.Z. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chem. Eng. J. 2017, 336, 622–632. [Google Scholar] [CrossRef]
- Yan, H.Q.; Li, N.N.; Cheng, J.; Song, P.A.; Fang, Z.P.; Wang, H. Fabrication of flame retardant benzoxazine semi-biocomposites reinforced by ramie fabrics with bio-based flame retardant coating. Polym. Compos. 2017, 39, E480–E488. [Google Scholar] [CrossRef]
- Niu, H.X.; Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Phosphorus-Free Vanillin-Derived Intrinsically Flame-Retardant Epoxy Thermoset with Extremely Low Heat Release Rate and Smoke Emission. ACS Sustain. Chem. Eng. 2021, 9, 5268–5277. [Google Scholar] [CrossRef]
Composites | Components | P Content | ||
---|---|---|---|---|
EP + DDM (%) | CSV−DOPO (%) | DOPO (%) | (wt%) | |
EP | 100 | 0 | 0 | 0 |
EP/2 wt% CSV−DOPO | 98 | 2 | 0 | 0.19 |
EP/3 wt% CSV−DOPO | 97 | 3 | 0 | 0.29 |
EP/4 wt% CSV−DOPO | 96 | 4 | 0 | 0.38 |
EP/2 wt% DOPO | 98 | 0 | 2 | 0.29 |
EP/3 wt% DOPO | 97 | 0 | 3 | 0.43 |
EP/4 wt% DOPO | 96 | 0 | 4 | 0.57 |
Composite | T5% (°C) | Tmax (°C) | Mass Loss Rate at Tmax (wt%/min) | Residues at 700 °C (%) |
---|---|---|---|---|
EP | 370.1 | 390.5 | 14.8 | 17.0 |
EP/3 wt% CSV−DOPO | 351.7 | 381.5 | 12.3 | 26.5 |
EP/4 wt% CSV−DOPO | 351.0 | 378.4 | 13.8 | 27.1 |
EP/3 wt% DOPO | 350.8 | 377.2 | 13.9 | 20.8 |
Composites | Flame Retardant | ||||
---|---|---|---|---|---|
UL-94 | LOI (vol%) | ||||
T1 (s) | T2 (s) | T1 + T2 (s) | Rating | ||
EP | 69.3 | 32.2 | >50.0 | NR | 24.3 |
EP/2 wt% CSV−DOPO | 17.7 | 12.2 | 29.9 | V1 | 29.0 |
EP/3 wt% CSV−DOPO | 6.0 | 3.9 | 9.9 | V0 | 30.5 |
EP/4 wt% CSV−DOPO | 3.8 | 3.6 | 7.4 | V0 | 31.1 |
EP/2 wt% DOPO | 14.7 | 7.6 | 22.3 | V1 | 28.8 |
EP/3 wt% DOPO | 9.6 | 4.9 | 14.5 | V1 | 30.2 |
EP/4 wt% DOPO | 5.1 | 3.7 | 8.8 | V0 | 30.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Lu, Y.; Zhan, W.; Kong, Q. Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin. Macromol 2025, 5, 9. https://doi.org/10.3390/macromol5010009
Yang Y, Lu Y, Zhan W, Kong Q. Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin. Macromol. 2025; 5(1):9. https://doi.org/10.3390/macromol5010009
Chicago/Turabian StyleYang, Yicheng, Yue Lu, Wang Zhan, and Qinghong Kong. 2025. "Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin" Macromol 5, no. 1: 9. https://doi.org/10.3390/macromol5010009
APA StyleYang, Y., Lu, Y., Zhan, W., & Kong, Q. (2025). Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin. Macromol, 5(1), 9. https://doi.org/10.3390/macromol5010009