Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (184)

Search Parameters:
Keywords = condensed polyphenols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2098 KiB  
Article
Influence of an Antioxidant Nanomaterial on Oral Tablet Formulation: Flow Properties and Critical Quality Attributes
by Andrea C. Ortiz, Javiera Carrasco-Rojas, Sofía Peñaloza, Mario J. Simirgiotis, Lorena Rubio-Quiroz, Diego Ruiz, Carlos F. Lagos, Javier Morales and Francisco Arriagada
Antioxidants 2025, 14(7), 829; https://doi.org/10.3390/antiox14070829 - 5 Jul 2025
Viewed by 434
Abstract
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid [...] Read more.
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid (MSN-CAF) on powder flow properties and their tableting performance. Aminated MSNs were synthesized via co-condensation and conjugated with caffeic acid using EDC/NHS chemistry. Antioxidant capacity was evaluated using DPPH, ABTS●+, ORAC, and FRAP assays. Powder blends with varying MSN-CAF concentrations (10–70%) were characterized for flow properties (angle of repose, Hausner ratio, Carr’s index), tablets were produced via direct compression, and critical quality attributes (weight uniformity, hardness, friability, disintegration, nanoparticle release) were assessed. MSN-CAF exhibited reduced antioxidant capacity compared with free caffeic acid due to pore entrapment but retained significant activity. Formulation F1 (10% MSN-CAF) showed excellent flowability (angle of repose: 12°, Hausner ratio: 1.16, Carr’s index: 14%), enabling robust tablet production with rapid disintegration, low friability, and complete nanoparticle release in 10 min. Additionally, the antioxidant nanomaterial demonstrated biocompatibility with the HepG2 cell line. MSN-CAF is a versatile nanoexcipient for direct compression tablets, offering potential as an active packaging agent and delivery system in the nutraceutical and food industries. Full article
Show Figures

Figure 1

29 pages, 8924 KiB  
Article
Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications
by Liliane Nga, Benoit Ndiwe, Achille Bernard Biwole, Jean Jalin Eyinga Biwole, Mewoli Armel, Joseph Zobo Mfomo, Anélie Petrissans, Antonio Pizzi and Antonios N. Papadopoulos
Polymers 2025, 17(13), 1837; https://doi.org/10.3390/polym17131837 - 30 Jun 2025
Viewed by 217
Abstract
The use of renewable plant resources for the formulation of adhesives is increasingly promising, thanks to their availability at an affordable price and their high content of biomolecules such as polyphenols. The study of tannins therefore remains an active and ongoing area of [...] Read more.
The use of renewable plant resources for the formulation of adhesives is increasingly promising, thanks to their availability at an affordable price and their high content of biomolecules such as polyphenols. The study of tannins therefore remains an active and ongoing area of research. This article presents a recent characterization of tannins extracted from the barks of four types of tropical trees (Entandophragma candolei, Entandophragma cylindricum, Afzelia africana and Dacryodes klaineana) and their application in the development of bioresins. Tannin extraction with hot water yielded between 25% and 40%. Tannin from Entandophragma candolei produced the highest yield. Chemical analysis confirmed the high presence of condensed tannins, with the identification of several new monomers in each tannin type, underlining their uniqueness. The most chemically stable tannins, Dacryodes klaineana and Afzelia africana, demonstrated their ability to withstand temperatures of 525 °C and 375 °C, respectively, with carbon residues of 45.05% and 43.18%. As for the resins, Entandophragma candolei tannin resin stood out for its thermal properties, notably a degradation temperature of 500 °C and a carbon residue rate of 36.72%. As for E. cylindricum resin, it boasted the highest modulus of elasticity (5268 MPa). Characterized tannins can be exploited in the technological sector. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 1108 KiB  
Article
Kinetic Modeling, Comparative Investigations, and a New Approach to Quantifying the Global Extraction Yield of Algerian Pomegranate Peel Phenolic Compounds
by Dehbiya Gherdaoui, Fatma Bouazza, Samira Ihadadene, Madiha Melha Yahoum, Sonia Lefnaoui, Abdeltif Amrane and Lotfi Mouni
AppliedChem 2025, 5(2), 11; https://doi.org/10.3390/appliedchem5020011 - 28 May 2025
Viewed by 657
Abstract
The aim of this study was to quantify the total extraction yield (GEY) of polyphenols from pomegranate peels using a solid–liquid extraction process without evaporation but with UV-Vis spectrophotometry. Extraction kinetics models were tested to evaluate the extract yield (GEY), total phenolic compounds [...] Read more.
The aim of this study was to quantify the total extraction yield (GEY) of polyphenols from pomegranate peels using a solid–liquid extraction process without evaporation but with UV-Vis spectrophotometry. Extraction kinetics models were tested to evaluate the extract yield (GEY), total phenolic compounds (TPCs), total flavonoids (TFCs), and condensed tannins (CTCs). The results showed maximum values of 45% for GEY, 97.560 mg EAG/g db for TPC, 4.416 mg EQ/g db for TFC, and 0.412 mg EC/g db for CTC, obtained with a methanol/water mixture (75/25, v/v) for 24 h. Spectrophotometry proved to be a reliable method for quantifying the total extraction yield, with a correlation of 99.79% compared to the conventional method. The second-order kinetic model accurately described the mass transfer mechanisms of the bioactive compounds studied. This study provides important insights into the mass transfer mechanisms during the extraction of bioactive compounds, facilitating the design, optimization, and control of large-scale processes for the recovery of pomegranate waste. Full article
Show Figures

Figure 1

17 pages, 5980 KiB  
Article
Phytochemical Characterization and Antifungal Potential of Opuntia ficus-indica Cladode Extracts Against Tomato Pathogens
by Slimane Mokrani, Nasir A. Ibrahim, Boumediene Benaricha, Karim Houali, Cristina Cruz, Karima Boungab, Fatma Bousedra, Zakia Bensekrane, Mohammed Saad Aleissa, Nosiba S. Basher, Assia Derguini and El-hafid Nabti
Processes 2025, 13(5), 1412; https://doi.org/10.3390/pr13051412 - 6 May 2025
Cited by 1 | Viewed by 647
Abstract
In the realm of sustainable and eco-friendly agriculture, current scientific research emphasizes the development of plant-based bioproducts to mitigate the agricultural footprint resulting from excessive fertilizer and pesticide use. This study investigates the cladodes of Opuntia ficus-indica to screen for bioactive compounds and [...] Read more.
In the realm of sustainable and eco-friendly agriculture, current scientific research emphasizes the development of plant-based bioproducts to mitigate the agricultural footprint resulting from excessive fertilizer and pesticide use. This study investigates the cladodes of Opuntia ficus-indica to screen for bioactive compounds and assess their efficacy against fungal pathogens isolated from infected tomato fruits. Quantitative analysis of the methanolic extract revealed substantial concentrations of bioactive compounds: total polyphenols (86.6 mg GAEs/100 g FW), flavonoids (13.4 mg QEs/100 g FW), condensed tannins (8.9 mg TAEs/100 g FW), and carotenoids (0.9 mg β-CEs/100 g FW). Notably, the DPPH assay indicated that the cladode extract exhibited significant antioxidant potential at a concentration of 0.6 mg/mL. Seven fungal pathogens were isolated from infected tomato fruits and identified as belonging to the following genera: Rhizoctonia (EC2), Fusarium (EC1 and EC3), Alternaria (EC4), Mucor (EC5), Aspergillus (EC6), and Penicillium (EC7). At a concentration of 0.02% of the cladode hydroethanolic extract, the antifungal activity results demonstrated mycelial growth inhibition for Alternaria sp. (70.91%), Rhizoctonia solani EC2 (58.49%), Fusarium oxysporum EC3 (57.63%), and Fusarium solani EC1 (53.13%). Conversely, lower inhibitory activities were observed for Mucor sp. EC5 (31.08%), Aspergillus sp. EC6 (35.14%), and Penicillium sp. EC7 (28.38%). At a concentration of 0.04%, all cladode hydroethanolic extracts inhibited mycelial growth by more than 50%. Furthermore, the highest spore inhibition was attained with the 0.04% cladode hydroethanolic extract (exceeding 50%). Inhibition percentages of 83.02%, 85.96%, 87.76%, and 90.20% were recorded for Fusarium oxysporum EC3, Fusarium solani EC1, Rhizoctonia solani EC2, and Alternaria sp. EC4, respectively. Collectively, these findings suggest that Opuntia ficus-indica extract holds significant promise for application as a biopesticide against fungal pathogens affecting tomato fruits. Full article
Show Figures

Figure 1

25 pages, 6284 KiB  
Article
Encapsulation of Polyphenolic Preparation in Gelatin Fruit Jellies Slows the Digestive Release of Cholinesterase Inhibitors In Vitro
by Dominik Szwajgier, Ewa Baranowska-Wójcik, Wirginia Kukula-Koch and Katarzyna Krzos
Antioxidants 2025, 14(5), 535; https://doi.org/10.3390/antiox14050535 - 29 Apr 2025
Viewed by 512
Abstract
Peach, apricot, chokeberry, blueberry, cranberry, raspberry, and wild strawberry fruits were used to create a polyphenolic preparation (PP) after enzyme-assisted extraction, ultrafiltration, and concentration. The composition of PP was determined using LC-MS. Gelatin jellies produced with PP, as well as liquid PP, were [...] Read more.
Peach, apricot, chokeberry, blueberry, cranberry, raspberry, and wild strawberry fruits were used to create a polyphenolic preparation (PP) after enzyme-assisted extraction, ultrafiltration, and concentration. The composition of PP was determined using LC-MS. Gelatin jellies produced with PP, as well as liquid PP, were “digested” in an in vitro model. The entrapment of PP in the gelatin matrix delayed the release of total polyphenolics, flavonoids, flavanols, condensed tannins, and anthocyanins (predominantly during the “small intestinal” phase). PP entrapped in the jelly more effectively (p < 0.05) decreased the activity of acetylcholinesterase, butyrylcholinesterase, cyclooxygenase-2 and catalase (during the “small intestinal” phase). However, no significant (p < 0.05) effects on superoxide dismutase, glutathione peroxidase, and glutathione reductase activities were observed. FRAP, CUPRAC, HORAC, oxidation of linoleic acid, and ABTS-reducing activities were higher during the “intestinal” phase; however, the DPPH test and β-carotene bleaching tests did not confirm these results. The presented findings may be useful for designing nutraceuticals with programmed release of bioactive compounds during digestion. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

23 pages, 4612 KiB  
Article
Evaluation of Achillea millefolium var. Paprika Extract with Antioxidant, Antimicrobial, and Skin Protection Potential in Topical Application
by Monika Michalak, Martyna Zagórska-Dziok, Paulina Żarnowiec, Anita Bocho-Janiszewska, Małgorzata Stryjecka, Dorota Kostrzewa, Natalia Dobros and Katarzyna Paradowska
Appl. Sci. 2025, 15(9), 4631; https://doi.org/10.3390/app15094631 - 22 Apr 2025
Viewed by 986
Abstract
Yarrow has long been known as a medicinal plant and has recently been gaining in importance as a cosmetic plant. The purpose of the study was to perform a phytochemical evaluation of extracts from yarrow herb of the Paprika cultivar, which has not [...] Read more.
Yarrow has long been known as a medicinal plant and has recently been gaining in importance as a cosmetic plant. The purpose of the study was to perform a phytochemical evaluation of extracts from yarrow herb of the Paprika cultivar, which has not previously been studied in this regard, and to determine its protective, antioxidant, and antimicrobial properties. Comparative analysis of two types of extracts, obtained by ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), showed that the former had higher content of bioactive compounds, including polyphenols, flavonoids, phenolic acids, and condensed tannins, as well as better antioxidant properties, as determined by spectrophotometric methods (DPPH and FRAP). The biological properties of the water–ethanol yarrow herb extract obtained by UAE was tested in vitro on 15 microbial strains (14 bacterial strains and one fungal strain), as well as on two lines of skin cells: HaCaT keratinocytes and HDF fibroblasts. In addition, the sun protection factor and rheological characteristics of a model cosmetic cream based on the extract were determined. Yarrow extract was shown to exhibit a number of important activities for cosmetic ingredients, including antimicrobial, antioxidant, photoprotective, and anti-ageing activity. The results of the study indicate that this material has potential applications in cosmetics, e.g., in products for mature skin with signs of ageing such as wrinkles or hyperpigmentation. Full article
Show Figures

Figure 1

16 pages, 1130 KiB  
Article
A Comparison of Methods for Assessing the Antioxidant Expression in Posidonia oceanica (L.) Delile
by Debora Fontanini, Fabio Bulleri, Chiara Ravaglioli and Antonella Capocchi
Molecules 2025, 30(8), 1828; https://doi.org/10.3390/molecules30081828 - 18 Apr 2025
Viewed by 363
Abstract
Non-enzymatic antioxidants, such as polyphenols, can counteract free radicals and other potentially toxic oxidants produced by marine plants exposed to stress. In this study, we assessed different methods for measuring antioxidant capacities and condensed tannins in the seagrass Posidonia oceanica (L.) Delile. Two [...] Read more.
Non-enzymatic antioxidants, such as polyphenols, can counteract free radicals and other potentially toxic oxidants produced by marine plants exposed to stress. In this study, we assessed different methods for measuring antioxidant capacities and condensed tannins in the seagrass Posidonia oceanica (L.) Delile. Two polyphenol extraction methods, direct and sequential, were compared to determine their efficiencies. Condensed tannins were assayed directly on leaf flour using a modified HCl-butanol-acetone-iron reagent method. Total antioxidant capacities were assayed with the ABTS, CUPRAC, and ORAC methods, both on extracts and on powdered samples (QUENCHER). The direct assays showed higher sensitivity compared to their in-solution counterparts. Our results indicate that in-depth measurement of antioxidant compounds and capacities can be achieved by direct assays on P. oceanica powder samples, and these data can be used to assess changes in the plant biochemistry due to the exposure to varying biotic and abiotic conditions. Full article
Show Figures

Figure 1

12 pages, 1720 KiB  
Article
Valorization of Black Beans (Phaseolus vulgaris L.) for the Extraction of Bioactive Compounds Using Solid-State Fermentation
by Dulce W. González-Martínez, Alma D. Casas-Rodríguez, Sergio A. Coronado-Contreras, Adriana C. Flores-Gallegos, Claudia M. López-Badillo, Juan A. Ascacio-Valdés, Antonio Flores-Naveda and Leonardo Sepúlveda
Waste 2025, 3(2), 13; https://doi.org/10.3390/waste3020013 - 11 Apr 2025
Viewed by 1098
Abstract
Black beans (Phaseolus vulgaris L.) are one of the most consumed legumes worldwide. Black beans are rich in proteins, vitamins, minerals, and polyphenolic compounds. The present study aims to valorize black beans for the extraction of polyphenolic compounds using solid-state fermentation (SSF) [...] Read more.
Black beans (Phaseolus vulgaris L.) are one of the most consumed legumes worldwide. Black beans are rich in proteins, vitamins, minerals, and polyphenolic compounds. The present study aims to valorize black beans for the extraction of polyphenolic compounds using solid-state fermentation (SSF) from Aspergillus niger GH1. A physicochemical analysis of black beans was performed. Fermentation kinetics was performed to establish the best accumulation time of condensed polyphenols. A two-level Plackett–Burman experimental design was used to evaluate the culture conditions (temperature, humidity, inoculum, particle size, pH and salt concentration) for the accumulation of condensed polyphenols. The results of the physicochemical analysis showed that black beans can be used as a substrate in the SSF process. In addition, the best time for the accumulation of condensed polyphenols was 48 h. Treatment 5 achieved an accumulation of 21.04 mg/g of condensed polyphenols. While the factors of particle size, humidity, and temperature had a significant effect on the accumulation of condensed polyphenols. It is concluded that the SSF process is an efficient and eco-friendly extraction method for obtaining bioactive molecules with potential applications in the pharmaceutical, food, and cosmetic industries. Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

27 pages, 7256 KiB  
Article
Determination of the Phytochemical Profile and Antioxidant Activity of Some Alcoholic Extracts of Levisticum officinale with Pharmaceutical and Cosmetic Applications
by Alaa Sahlabgi, Dumitru Lupuliasa, Iuliana Stoicescu, Lavinia Lia Vlaia, Monica Licu, Antoanela Popescu, Alexandru Scafa-Udriște, Răzvan Ene, Lucian Hîncu, Carmen Elena Lupu and Magdalena Mititelu
Separations 2025, 12(4), 79; https://doi.org/10.3390/separations12040079 - 28 Mar 2025
Cited by 1 | Viewed by 1093
Abstract
Levisticum officinale (lovage) is an aromatic and medicinal plant traditionally used for its antioxidant, anti-inflammatory and antimicrobial properties. The aim of this study was to evaluate the phytochemical composition and antioxidant activity of hydroalcoholic extracts obtained from leaves, roots and the whole plant, [...] Read more.
Levisticum officinale (lovage) is an aromatic and medicinal plant traditionally used for its antioxidant, anti-inflammatory and antimicrobial properties. The aim of this study was to evaluate the phytochemical composition and antioxidant activity of hydroalcoholic extracts obtained from leaves, roots and the whole plant, as well as to develop hydrogels with pharmaceutical potential. The hydroalcoholic extracts (70% ethanol) were characterized by spectrophotometric and HPLC-DAD methods to determine the total content of phenolic compounds, phenolic acids, flavonoids and condensed tannins. The antioxidant activity was evaluated by DPPH and ABTS methods. The extracts were included in 2% carbopol-based hydrogels and tested for stability and antioxidant efficacy. The hydroalcoholic extract of the leaves showed the highest content of total phenolic compounds (20.84 ± 2.18 mg GAE/g), total flavones (11.39 ± 2.48 mg QE/g) and condensed tannins (1.98 ± 1.55 mg CE/g), and was also the richest in quercetin (3.32 ± 1.25 mg/g), kaempferol (1.84 ± 1.63 mg/g), luteolin (2.12 ± 1.19 mg/g), rutin (4.38 ± 1.84 mg/g) and apigenin (1.91 ± 1.44 mg/g). The root extract had the highest content of phenolic acids, including ferulic acid (3.86 ± 1.37 mg/g), vanillic acid (2.53 ± 1.76 mg/g) and caffeic acid (3.28 ± 1.28 mg/g). The antioxidant activity was highest in the leaves extract, with values of 276.2 ± 3.4 µmol TE/g (ABTS) and 246.4 ± 3.6 µmol TE/g (DPPH). The whole-plant extracts showed intermediate values, offering a balance between flavonoids and phenolic acids. Hydrogels formulated with 5% extracts demonstrated stability and sustained antioxidant activity over time. Leaf extracts, due to their high flavonoid content, are recommended for formulations with antioxidant and photoprotective effects, while root extracts are suitable for anti-inflammatory and antimicrobial applications. Hydrogels obtained based on 2% carbopol represent a promising delivery system for dermato-cosmetic and pharmaceutical applications because they exhibited significant antioxidant action. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
Show Figures

Figure 1

18 pages, 1777 KiB  
Article
Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use
by Marisa Ayelen Rivas, Enzo Agustin Matteucci, Ivana Fabiola Rodriguez, María Alejandra Moreno, Iris Catiana Zampini, Adriana Ramon and María Inés Isla
Plants 2025, 14(7), 1047; https://doi.org/10.3390/plants14071047 - 27 Mar 2025
Viewed by 532
Abstract
Geoffroea decorticans (Gill. ex Hook. & Arn) Burk. is a native tree of the dry areas of Northwestern and Central Argentina. Its seeds are considered waste material. The flour of seeds was analyzed as a source of nutritional and bioactive compounds. It has [...] Read more.
Geoffroea decorticans (Gill. ex Hook. & Arn) Burk. is a native tree of the dry areas of Northwestern and Central Argentina. Its seeds are considered waste material. The flour of seeds was analyzed as a source of nutritional and bioactive compounds. It has a low carbohydrate content, containing about 9% protein and between 10 and 14% fat. Approximately 82–84% of the fatty acids were unsaturated (oleic and linoleic acids). A high polyphenol and dietary fiber content was detected. Flavonoids and condensed tannins were the dominant phenolics. Polyphenol-enriched extracts were obtained from seed flour. The HPLC–ESI-MS/MS analysis of these concentrated extracts allowed for the identification of six compounds including C-glycosyl flavones (vitexin and isovitexin), type A procyanidins (dimer and trimer), and epicatequin gallate. Polyphenolic extracts showed antioxidant capacity and were able to inhibit enzymes (α-glucosidase and α-amylase) related to carbohydrate metabolism and (lipoxygenase) pro-inflammatory enzymes and were not toxic. Flour and polyphenolic extract from chañar seeds could be considered as new alternative ingredients for the formulation of functional foods, nutraceuticals, or food supplements. The use of the seed flour in addition to the pulp of the fruit along with the rest of the plant would encourage the propagation of this species resistant to extreme arid environments for commercial and conservation purposes to boost the regional economies of vulnerable areas of South America. Full article
Show Figures

Figure 1

25 pages, 9588 KiB  
Article
Metabolic Dynamics and Sensory Impacts of Aging on Peony Mead: Insights into Nonenzymatic Reactions
by Yuqian Ban, Yanli Zhang, Yongrui Ti, Ruiwen Lu, Jiaoling Wang and Zihan Song
Foods 2025, 14(6), 1021; https://doi.org/10.3390/foods14061021 - 17 Mar 2025
Viewed by 466
Abstract
Peony mead, an emerging fermented beverage, has attracted attention because of its unique flavor and health benefits. The dynamic changes in sensory quality and the molecular mechanisms involved during post-fermentation are still unclear, limiting its industrial production. In this study, GC-IMS (gas chromatography-ion [...] Read more.
Peony mead, an emerging fermented beverage, has attracted attention because of its unique flavor and health benefits. The dynamic changes in sensory quality and the molecular mechanisms involved during post-fermentation are still unclear, limiting its industrial production. In this study, GC-IMS (gas chromatography-ion mobility spectrometry) and UHPLC-MS/MS (ultrahigh-performance liquid chromatography–tandem mass spectrometry) were employed to systematically analyze the variations in aroma and quality of peony mead across aging stages. During the aging process, titratable acid content increased significantly, while soluble solids and reducing sugars decreased. Total phenol content initially rose but subsequently declined. Sensory analysis demonstrated that the sweet–acid balance and polyphenol content were critical in shaping the sensory characteristics of the product. Seventeen key volatile metabolites were identified via GC-IMS, with the 2-methyl-1-propanol dimer/polymer and 3-methyl-1-butanol dimer/polymer serving as potential characteristic markers. These key volatile metabolites underwent physicochemical reactions, yielding complex and coordinated aroma characteristics. UHPLC–MS/MS analysis revealed that nonvolatile metabolites changed significantly, which were driven by nonenzymatic reactions such as redox reactions, hydrolysis, and condensation. In addition, correlation analysis identified mechanisms by which key metabolites potentially contributed to sensory properties such as floral aroma, fruit fragrance, sweetness, sourness, etc. This study provided insights into quality changes during aging and supported the development of high-quality fermented beverages. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

26 pages, 2856 KiB  
Article
Potential Natural Antioxidant and Anti-Inflammatory Properties of Carthamus caeruleus L. Root Aqueous Extract: An In Vitro Evaluation
by Yousra Belounis, Idir Moualek, Hillal Sebbane, Hakima Ait Issad, Sarah Saci, Bilal Saoudi, El-hafid Nabti, Lamia Trabelsi, Karim Houali and Cristina Cruz
Processes 2025, 13(3), 878; https://doi.org/10.3390/pr13030878 - 17 Mar 2025
Cited by 2 | Viewed by 1082
Abstract
Carthamus caeruleus L. is traditionally used in Algerian medicine, particularly for burn treatment, but its therapeutic potential remains insufficiently studied. This study aimed to evaluate the antioxidant and anti-inflammatory properties of the root aqueous extract, and to perform phytochemical characterization to identify its [...] Read more.
Carthamus caeruleus L. is traditionally used in Algerian medicine, particularly for burn treatment, but its therapeutic potential remains insufficiently studied. This study aimed to evaluate the antioxidant and anti-inflammatory properties of the root aqueous extract, and to perform phytochemical characterization to identify its bioactive compounds. Phytochemical analysis was conducted using spectrophotometry and reverse-phase high-performance liquid chromatography (RP-HPLC). The antioxidant potential was assessed through various assays, including ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC), DPPH radical scavenging, hydroxyl radical scavenging, ferrous ion chelation, and hydrogen peroxide decomposition. Anti-inflammatory activity was evaluated using membrane stabilization, protein denaturation, and membrane peroxidation assays. The extract exhibited moderate levels of polyphenols, flavonoids, and condensed tannins, quantified as 21.19 ± 0.37 mg GAE/g, 0.72 ± 0.013 mg QE/g, and 27.28 ± 1.04 mg TAE/g of dry extract, respectively. RP-HPLC analysis identified 22 phytochemical compounds, primarily phenolic acids, flavonoids, and tannins, with orientin and vanillin as the major constituents. The extract demonstrated significant antioxidant activity, with moderate efficacy in TAC and FRAP assays (IC50 values of 5405.1 ± 4.42 and 1132.35 ± 4.97 µg/mL, respectively). Notable activities included DPPH and hydroxyl radical scavenging (34.43 ± 4.83 and 512.81 ± 9.46 µg/mL, respectively), ferrous ion chelation (2462.76 ± 1.38 µg/mL), lipid peroxidation inhibition (22.32 ± 3.31%), and hydrogen peroxide decomposition (263.93 ± 7.87 µg/mL). Additionally, the extract stabilized erythrocyte membranes under osmotic, thermal, and oxidative stress conditions (98.13 ± 0.15%, 70 ± 1.27%, and 89 ± 0.87%, respectively), inhibited ovalbumin denaturation (81.05 ± 2.2%), and protected against lipid peroxidation in brain homogenates (69.25 ± 0.89%). These findings support the traditional therapeutic applications of C. caeruleus and highlight its potential as a source of antioxidant and anti-inflammatory agents. Full article
Show Figures

Figure 1

23 pages, 1716 KiB  
Article
Food-Grade Microwave-Assisted Depolymerization of Grape Seed Condensed Tannins: Optimizing the Reaction Using Gallic Acid as a Nucleophile
by Carolina F. Morales and Fernando A. Osorio
Polymers 2025, 17(5), 682; https://doi.org/10.3390/polym17050682 - 4 Mar 2025
Viewed by 754
Abstract
Food waste has a significant social impact but can be revalued as a source of bioactive compounds, such as condensed tannins. This abundant biomass, corresponding to a polymeric antioxidant, must be depolymerized to become bioavailable. Previous studies have investigated polymer degradation into oligomers [...] Read more.
Food waste has a significant social impact but can be revalued as a source of bioactive compounds, such as condensed tannins. This abundant biomass, corresponding to a polymeric antioxidant, must be depolymerized to become bioavailable. Previous studies have investigated polymer degradation into oligomers using high temperatures and expensive nucleophiles, often under conditions unsuitable for food applications. In the present investigation, it is proposed that the depolymerization of condensed tannins can occur under food-grade conditions using a Generally Recognized as Safe (GRAS) solvent by optimizing the reaction’s heating method with microwave assistance and using gallic acid as a nucleophile. Thermal studies indicate that the degradation of total polyphenols content follows first-order kinetics and occurs above 80 °C in microwave. Depolymerization follows second-order kinetics, yielding epicatechin as the primary product with zero-order formation kinetics. The optimized factors were 80% v/v ethanol, 10 mg/mL polymeric tannins, and 5.88 mg/mL gallic acid. Under these conditions, the reaction efficiency was 99.9%, the mean particle diameter was 5.7 nm, the total polyphenols content was 297.3 ± 15.9 EAG mg/g, and the inhibition of ABTS●+ and DPPH● radicals was 93.5 ± 0.9% and 88.2 ± 1.5%, respectively. These results are promising for future scaling processes. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

36 pages, 3012 KiB  
Article
Fumaria officinalis Dust as a Source of Bioactives for Potential Dermal Application: Optimization of Extraction Procedures, Phytochemical Profiling, and Effects Related to Skin Health Benefits
by Rabiea Ashowen Ahmoda, Andrea Pirković, Violeta Milutinović, Milena Milošević, Aleksandar Marinković and Aleksandra A. Jovanović
Plants 2025, 14(3), 352; https://doi.org/10.3390/plants14030352 - 24 Jan 2025
Cited by 2 | Viewed by 1383
Abstract
Fumaria officinalis (fumitory), in the form of dust, was employed as a source of bioactive extracts whose chemical profile and biological potential were investigated. According to the results of the optimization of the extraction protocol, the extract with the highest polyphenol yield was [...] Read more.
Fumaria officinalis (fumitory), in the form of dust, was employed as a source of bioactive extracts whose chemical profile and biological potential were investigated. According to the results of the optimization of the extraction protocol, the extract with the highest polyphenol yield was prepared using fumitory dust under the optimal conditions determined using the statistical tool, 23 full factorial design: 50% ethanol and a 30:1 mL/g ratio during 120 s of microwave extraction (22.56 mg gallic acid equivalent/g of plant material). LC-MS and spectrophotometric/gravimetric analyses quantified the polyphenol, flavonoid, tannin, alkaloid, and protein contents. Caffeoylmalic acid, quercetin dihexoside, quercetin pentoside hexoside, rutin, and methylquercetin dihexoside were the most dominant compounds. The highest total flavonoid, condensed tannin, alkaloid, and protein yields were determined in the extract prepared using microwaves. In addition to the proven antioxidant potential, in the present study, the anti-inflammatory activity of fumitory extracts is also proven in the keratinocyte model, as well as a significant reduction of H2O2-induced reactive oxygen species production in cells and the absence of keratinocyte cytotoxicity. Thus, detailed chemical profiles and investigated biological effects related to skin health benefits encourage the potential application of fumitory dust extracts in dermo-cosmetic and pharmaceutical preparations for dermatological circumstances. Full article
Show Figures

Figure 1

27 pages, 4212 KiB  
Article
Optimization of Polyphenol Extraction from Purple Corn Pericarp Using Glycerol/Lactic Acid-Based Deep Eutectic Solvent in Combination with Ultrasound-Assisted Extraction
by Ravinder Kumar, Sherry Flint-Garcia, Miriam Nancy Salazar Vidal, Lakshmikantha Channaiah, Bongkosh Vardhanabhuti, Stephan Sommer, Caixia Wan and Pavel Somavat
Antioxidants 2025, 14(1), 9; https://doi.org/10.3390/antiox14010009 - 25 Dec 2024
Cited by 2 | Viewed by 1191
Abstract
Purple corn pericarp, a processing waste stream, is an extremely rich source of phytochemicals. Optimal polyphenol extraction parameters were identified using response surface methodology (RSM) by combining a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) method. After DES characterization, Plackett–Burman design was [...] Read more.
Purple corn pericarp, a processing waste stream, is an extremely rich source of phytochemicals. Optimal polyphenol extraction parameters were identified using response surface methodology (RSM) by combining a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) method. After DES characterization, Plackett–Burman design was used to screen five explanatory variables, namely, time, Temp (temperature), water, Amp (amplitude), and S/L (solid-to-liquid ratio). The total anthocyanin concentration (TAC), total polyphenol concentration (TPC), and condensed tannin (CT) concentration were the response variables. After identifying significant factors, the Box–Behnken design was utilized to identify the optimal extraction parameters. The experimental yields under the optimized conditions of time (10 min), temperature (60 °C), water concentration (42.73%), and amplitude (40%) were 36.31 ± 1.54 g of cyanidin-3-glucoside (C3G), 103.16 ± 6.17 g of gallic acid (GA), and 237.54 ± 9.98 g of epicatechin (EE) per kg of pericarp, with a desirability index of 0.858. The relative standard error among the predicted and experimental yields was <10%, validating the robustness of the model. HPLC analysis identified seven phytochemicals, and significant antioxidant activities were observed through four distinct assays. Metabolomic profiling identified 57 unique phytochemicals. The UAE technique combined with DES can efficiently extract polyphenols from purple corn pericarp in a short time. Full article
(This article belongs to the Special Issue Valorization of Waste Through Antioxidant Extraction and Utilization)
Show Figures

Figure 1

Back to TopTop