Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Chemical Materials
2.1.2. Ecological Hardening Agents
2.1.3. Tannin Extraction
2.2. Tannin Characterization
2.2.1. 13C NMR Analysis
2.2.2. MALDI-TOF Analysis
2.2.3. Thermogravimetric Analysis of Tannin
2.3. Resin Characterization
2.3.1. Resin Formulation
2.3.2. Physical Characterization of Resins: Gel Time
2.3.3. Thermogravimetric Analysis of Resins
2.3.4. Thermomechanical Analysis of the Resins
3. Results and Discussion
3.1. Tannin Extraction Yield from Different Woods
3.2. Chemical Structures of Molecules Identified in the Samples
3.3. Structural of Molecules from Different Tannin Samples
3.4. Thermogravimetric Analysis of Tannins and Resins
3.5. Resin Gel Time
3.6. Thermomechanical Analysis of the Resins
3.7. Comparative Study of Characterized Tannins with Those from the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero, R.; Gonzalez, T.; Urbano, B.F.; Segura, C.; Pellis, A.; Vera, M. Exploring tannin structures to enhance enzymatic polymerization. Front. Chem. 2025, 13, 1555202. [Google Scholar] [CrossRef]
- Mneimneh, F.; Haddad, N.; Ramakrishna, S. Recycle and Reuse to Reduce Plastic Waste-A Perspective Study Comparing Petro-and Bioplastics. Circ. Econ. Sustain. 2024, 4, 1983–2010. [Google Scholar] [CrossRef]
- Mir, R.; Jallu, S.; Singh, T.P. The shikimate pathway: Review of amino acid sequence, function and three-dimensional structures of the enzymes. Crit. Rev. Microbiol. 2015, 41, 172–189. [Google Scholar] [CrossRef]
- Ucar, M.B.; Ucar, G.; Pizzi, A.; Gonultas, O. Characterization of Pinus brutia bark tannin by MALDI-TOF MS and 13C NMR. Ind. Crop. Prod. 2013, 49, 697–704. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, N.; Faruk, O.; Ashaduzzaman, M.; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Cano, A.; Contreras, C.; Chiralt, A.; González-Martínez, C. Using tannins as active compounds to develop antioxidant and antimicrobial chitosan and cellulose based films. Carbohydr. Polym. Technol. Appl. 2021, 2, 100156. [Google Scholar] [CrossRef]
- Vera, M.; Fodor, C.; Garcia, Y.; Pereira, E.; Loos, K.; Rivas, B.L. Multienzymatic immobilization of laccases on polymeric microspheres: A strategy to expand the maximum catalytic efficiency. J. Appl. Polym. Sci. 2020, 137, 49562. [Google Scholar] [CrossRef]
- Wedaïna, A.G.; Pizzi, A.P.; Nzié, W.; Danwe, R. Performance of unidirectional biocomposite developed with Piptadeniastrum Africanum tannin resin and Urena Lobata fibers as reinforcement. J. Renew. Mater. 2021, 9, 477–493. [Google Scholar]
- Valenzuela, J.; Von Leyser, E.; Pizzi, A.; Westermeyer, C.; Gorrini, B. Industrial production of pine tannin-bonded particleboard and MDF. Eur. J. Wood Wood Prod. 2012, 70, 735–740. [Google Scholar] [CrossRef]
- Konai, N.; Pizzi, A.; Raidandi, D.; Lagel, M.; L’hOstis, C.; Saidou, C.; Hamido, A.; Abdalla, S.; Bahabri, F.; Ganash, A. Aningre (Aningeria spp.) tannin extract characterization and performance as an adhesive resin. Ind. Crop. Prod. 2015, 77, 225–231. [Google Scholar] [CrossRef]
- Konai, N.; Raidandi, D.; Pizzi, A.; Meva’a, L. Characterization of Ficus sycomorus tannin using ATR-FT MIR, MALDI-TOF MS and 13C NMR methods. Eur. J. Wood Wood Prod. 2017, 75, 807–815. [Google Scholar] [CrossRef]
- Ntenga, R.; Pagore, F.D.; Pizzi, A.; Mfoumou, E.; Ohandja, L.-M.A. Characterization of tannin-based resins from the barks of Ficus platyphylla and of Vitellaria paradoxa: Composites’ performances and applications. Mater. Sci. Appl. 2017, 8, 899–917. [Google Scholar]
- Mewoli, A.E.; Segovia, C.; Njom, A.E.; Ebanda, F.B.; Biwôlé, J.J.E.; Xinyi, C.; Ateba, A.; Girods, P.; Pizzi, A.; Brosse, N. Characterization of tannin extracted from Aningeria altissima bark and formulation of bioresins for the manufacture of Triumfetta cordifolia needle-punched nonwovens fiberboards: Novel green composite panels for sustainability. Ind. Crop. Prod. 2023, 206, 117734. [Google Scholar] [CrossRef]
- Njom, A.E.; Voufo, J.; Segovia, C.; Konai, N.; Mewoli, A.; Tapsia, L.K.; Lucien, J.R.; Pizzi, A. Characterization of a composite based on Cissus dinklagei tannin resin. Heliyon 2024, 10, e25582. [Google Scholar] [CrossRef]
- Nga, L.; Ndiwe, B.; Biwolé, A.B.; Pizzi, A.; Biwole, J.J.E.; Mfomo, J.Z. Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF)-Mass Spectrometry and 13C-NMR-Identified New Compounds in Paraberlinia bifoliolata (Ekop-Beli) Bark Tannins. J. Renew. Mater. 2024, 12, 553–568. [Google Scholar] [CrossRef]
- Borah, N.; Karak, N. Tannic acid based bio-based epoxy thermosets: Evaluation of thermal, mechanical, and biodegradable behaviors. J. Appl. Polym. Sci. 2021, 139, 51792. [Google Scholar] [CrossRef]
- de Hoyos Martinez, P.L.; Merle, J.; Labidi, J.; Charrier-El Bouhtoury, F. Tannins extraction: A key point for their valorization and cleaner production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Osman, Z.; Pizzi, A.; Elbadawi, M.E.; Mehats, J.; Mohammed, W.; Charrier, B. Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species. Polymers 2024, 16, 1550. [Google Scholar] [CrossRef]
- Saad, H.; Khoukh, A.; Ayed, N.; Charrier, B.; Bouhtoury, F.C.-E. Characterization of Tunisian Aleppo pine tannins for a potential use in wood adhesive formulation. Ind. Crop. Prod. 2014, 61, 517–525. [Google Scholar] [CrossRef]
- Mahdi, H.; Palmina, K.; Gurshi, A.; Covington, D. Potential of vegetable tanning materials and basic aluminum sulphate in Sudanese leather industry. J. Eng. Sci. Technol. 2009, 4, 20–31. [Google Scholar]
- Tomak, E.; Gonultas, O. The wood preservative potentials of valonia, chestnut, tara and sulphited oak tannins. J. Wood Chem. Technol. 2018, 38, 183–197. [Google Scholar] [CrossRef]
- Ghahri, S.; Chen, X.; Pizzi, A.; Hajihassani, R.; Papadopoulos, A.N. Natural tannins as new cross-linking materials for soy-based adhesives. Polymers 2021, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Dong, M.; Cui, J.; Gan, L.; Han, S. Exploring the formaldehyde reactivity of tannins with different molecular weight distributions: Bayberry tannins and larch tannins. Holzforschung 2020, 74, 673–682. [Google Scholar] [CrossRef]
- Jorda, J.; Cesprini, E.; Barbu, M.-C.; Tondi, G.; Zanetti, M.; Král, P. Quebracho Tannin Bio-Based Adhesives for Plywood. Polymers 2022, 14, 2257. [Google Scholar] [CrossRef]
- Hafiz, N.L.M.; Tahir, P.M.; Hua, L.S.; Abidin, Z.Z.; Sabaruddin, F.A.; Yunus, N.M.; Abdullah, U.H.; Khalil, H.A. Curing and thermal properties of co-polymerized tannin phenol–formaldehyde resin for bonding wood veneers. J. Mater. Res. Technol. 2020, 9, 6994–7001. [Google Scholar] [CrossRef]
- Nardeli, J.V.; Fugivara, C.S.; Taryba, M.; Pinto, E.R.; Montemor, M.; Benedetti, A.V. Tannin: A natural corrosion inhibitor for aluminum alloys. Prog. Org. Coat. 2019, 135, 368–381. [Google Scholar] [CrossRef]
- Byrne, C.; Selmi, G.J.; D’Alessandro, O.; Deyá, C. Study of the anticorrosive properties of “quebracho colorado” extract and its use in a primer for aluminum1050. Prog. Org. Coat. 2020, 148, 105827. [Google Scholar] [CrossRef]
- Bello, A.; Virtanen, V.; Salminen, J.-P.; Leiviskä, T. Aminomethylation of spruce tannins and their application as coagulants for water clarification. Sep. Purif. Technol. 2020, 242, 116765. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; Xu, G.; Pei, Y. Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Int. J. Biol. Macromol. 2019, 129, 198–206. [Google Scholar] [CrossRef]
- Kouam, S.F.; Kusari, S.; Lamshöft, M.; Tatuedom, O.K.; Spiteller, M. Sapelenins G–J, acyclic triterpenoids with strong anti-inflammatory activities from the bark of the Cameroonian medicinal plant Entandrophragma cylindricum. Phytochemistry 2012, 83, 79–86. [Google Scholar] [CrossRef]
- Ndiwe, B.; Pizzi, A.; Tibi, B.; Danwe, R.; Konai, N.; Amirou, S. African tree bark exudate extracts as biohardeners of fully biosourced thermoset tannin adhesives for wood panels. Ind. Crop. Prod. 2019, 132, 253–268. [Google Scholar] [CrossRef]
- Ping, L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Condensed tannins extraction from grape pomace: Characterization and utilization as wood adhesives for wood particleboard. Ind. Crop. Prod. 2011, 34, 907–914. [Google Scholar] [CrossRef]
- Konai, N.; Pizzi, A.; Danwe, R.; Lucien, M.; Lionel, K.T. Thermomechanical analysis of African tannins resins and biocomposite characterization. J. Adhes. Sci. Technol. 2021, 35, 1492–1499. [Google Scholar] [CrossRef]
- Athomo, A.B.B.; Anris, S.P.E.; Tchiama, R.S.; Leroyer, L.; Pizzi, A.; Charrier, B. Chemical analysis and thermal stability of African mahogany (Khaya ivorensis A. Chev) condensed tannins. Holzforschung 2020, 74, 683–701. [Google Scholar] [CrossRef]
- Aristri, M.A.; Lubis, M.A.R.; Iswanto, A.H.; Fatriasari, W.; Sari, R.K.; Antov, P.; Gajtanska, M.; Papadopoulos, A.N.; Pizzi, A. Bio-Based Polyurethane Resins Derived from Tannin: Source, Synthesis, Characterisation, and Application. Forests 2021, 12, 1516. [Google Scholar] [CrossRef]
- Osman, Z. Thermomechanical analysis of the tannins of Acacia Nilotica spp. Nilotica as a rapid tool for the evaluation of wood–based adhesives. J. Therm. Anal. Calorim. 2011, 107, 709–716. [Google Scholar] [CrossRef]
- Quentin, M.; Carl, M.; Jean-Louis, D. Les Arbres Utiles du Gabon; Presses Agronomiques de Gembloux: Gembloux, Belgium, 2015. [Google Scholar]
- Amari, M.; Khimeche, K.; Hima, A.; Chebout, R.; Mezroua, A. Synthesis of Green Adhesive with Tannin Extracted from Eucalyptus Bark for Potential Use in Wood Composites. J. Renew. Mater. 2021, 9, 463–475. [Google Scholar] [CrossRef]
- Ping, L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive. Ind. Crop. Prod. 2012, 40, 13–20. [Google Scholar] [CrossRef]
- Fu, C.; Loo, A.E.K.; Chia, F.P.P.; Huang, D. Oligomeric Proanthocyanidins from Mangosteen Pericarps. J. Agric. Food Chem. 2007, 55, 7689–7694. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Lin, Y.-M.; Zhou, H.-C.; Wei, S.-D.; Chen, J.-H. Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules 2010, 15, 420–431. [Google Scholar] [CrossRef]
- Luo, C.; Grigsby, W.; Edmonds, N.; Easteal, A.; Al-Hakkak, J. Synthesis, characterization, and thermal behaviors of tannin stearates prepared from quebracho and pine bark extracts. J. Appl. Polym. Sci. 2010, 117, 352–360. [Google Scholar] [CrossRef]
- Zhou, X.; Segovia, C.; Abdullah, U.H.; Pizzi, A.; Du, G. A novel fiber–veneer-laminated composite based on tannin resin. J. Adhes. 2017, 93, 461–467. [Google Scholar] [CrossRef]
- Janceva, S.; Andersone, A.; Spulle, U.; Tupciauskas, R.; Papadopoulou, E.; Bikovens, O.; Andzs, M.; Zaharova, N.; Rieksts, G.; Telysheva, G. Eco-Friendly Adhesives Based on the Oligomeric Condensed Tannins-Rich Extract from Alder Bark for Particleboard and Plywood Production. Materials 2022, 15, 3894. [Google Scholar] [CrossRef] [PubMed]
- Pantoja-Castro, M.A.; González-Rodríguez, H. Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev. Latinoam. QuíMica 2011, 39, 107–112. [Google Scholar]
- Kitin, P.; Espinoza, E.; Beeckman, H.; Abe, H.; McClure, P.J. Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia. Ann. For. Sci. 2021, 78, 31. [Google Scholar] [CrossRef]
- Anris, S.P.E.; Athomo, A.B.B.; Safou-Tchiama, R.; Leroyer, L.; Vidal, M.; Charrier, B. Development of green adhesives for fiberboard manufacturing, using okoume bark tannins and hexamine—Characterization by1 H NMR, TMA, TGA and DSC analysis. J. Adhes. Sci. Technol. 2021, 35, 436–449. [Google Scholar] [CrossRef]
- Navarrete, P.; Pizzi, A.; Pasch, H.; Rode, K.; Delmotte, L. MALDI-TOF and 13C NMR characterization of maritime pine industrial tannin extract. Ind. Crop. Prod. 2010, 32, 105–110. [Google Scholar] [CrossRef]
Tannin Barks of | Yield (%) | References |
---|---|---|
SPL | 35 ± 0.27 | 35 [12] |
KSP | 40 ± 2 | 35 [12] |
DSS | 33 ± 0.27 | 29 [12] |
ADB | 25 ± 1 | 40 [12] |
Species of Bark | New Compounds Identified by MALDI-TOF/MS | |
---|---|---|
Afzelia africana (DSS) | ||
(a) | (b) | |
(c) | (d) | |
(e) | (f) | |
Dacryodes klaineana (ADB) | ||
(g) | ||
(h) | (i) | |
(j) | (k) | |
Entandophragma cylindricum (SPL) | ||
1 2 | ||
(l) | (m) | |
(n) | (o) | |
Entandophragma candolei (KSP) | ||
(p) | (q) | |
(r) (s) | (t) | |
(u) | (v) | |
(w) | (x) |
Material | Maximum Degradation Temperature (°C) | Final Residue (%) | Thermal Stability |
---|---|---|---|
ADB | 525 | 45.05 | Very stable |
DSS | 374.96 | 43.18 | Very stable |
KSPN | 500 | 36.72 | Stable |
ADBN | 600 | 32.41 | Less stable |
DSSN | 371.19 | 31.77 | Less stable |
KSP | 500 | 30.80 | Unstable |
SPL | 500 | 30.80 | Unstable |
SPLN | 500 | 21.84 | Very unstable |
Trials | 1 | 2 | 3 | Mean Time | Standard Deviation | pH |
---|---|---|---|---|---|---|
Species | Time in Second(s) | |||||
Entandophragma candolei | 1787 | 2188 | 1686 | 1887 | 216.77 | 6.5 |
Afzelia africana | 1810 | 1985 | 1755 | 1850 | 98.03 | 6.7 |
Dacryodes klaineana | 1692 | 1746 | 1802 | 1746.33 | 44.55 | 6.4 |
Entandophragma cylindrycum | 1929 | 1756 | 1750 | 1811.67 | 83.36 | 6.6 |
Trials | 1 | 2 | 3 | Mean Time | Standard Deviation | pH |
---|---|---|---|---|---|---|
Wood Species | Time in Second (s) | |||||
Entandophragma candolei | 440 | 435 | 468 | 447.67 | 14.49 | 11.2 |
Afzelia africana | 430 | 425 | 435 | 430 | 4.08 | 11.6 |
Dacryodes klaineana | 432 | 426 | 422 | 426.67 | 4.11 | 11.3 |
Entandophragma cylindrycum | 429 | 436 | 430 | 431.67 | 3.06 | 11.8 |
Species | Part of the Tree Used | Nature of Tannin | Extraction Yield (%) | Extraction Method | Maximum Temperature (Tmax, °C) | Thermomechanical Analysis of the Resin (MPa) | Gel Time | Applications | References |
---|---|---|---|---|---|---|---|---|---|
Tannins from Tropical Woods | |||||||||
Paraberlinia bifoliolata | Bark | Condensed | 35% | Hot extraction in aqueous solution | - | 4840 | - | Adhesives for panels and corrosion inhibitors | [15] |
Aningre (Aningeria spp) | Bark | Condensed | 19% | Hot extraction in aqueous solution | - | 1191 | - | Resins for particleboard | [10] |
Piptadeniastrum africanum | Bark | Condensed | - | Hot extraction in aqueous solution | - | 3909 | 660 s | Adhesives for fiberboard | [7] |
Ficus sycomorus | Barks | Condensed | 46% | Hot extraction in aqueous solution | - | 7050 | 600 s | Adhesives for fiberboard | [33] |
Butyrospermum parkii | Barks | Condensed | 40% | Hot extraction in aqueous solution | - | 46,210 | 701 s | Adhesives for fiberboard | [33] |
Azadirachta indica | Barks | Condensed | 35%. | Hot extraction in aqueous solution | - | 2650 | 762 s | Adhesives for fiberboard | [33] |
Ficus platyphylla | Barks | Condensed | - | Hot extraction in aqueous solution | 2091 | - | Adhesives for particleboard | [12] | |
Vitellaria paradoxa | Barks | Condensed | - | Hot extraction in aqueous solution | 1989 | - | Adhesives for particleboard | [12] | |
Cissus dinklagei | Barks | Condensed | Hot extraction in aqueous zolution | 300 °C | 3825 | - | Adhesives for particleboard | [14] | |
Aningeria altissima | Barks | Condensed | 25.52% | Hot Extraction in Aqueous Solution | 325 °C | 5491.77 | 840–1201 s | Adhesives for Fiberboard | [13] |
Commercial tannins | |||||||||
Pinus maritimus | Bark | Polylavonoide tannin | - | Hot extraction in aqueous solution | - | 2770305032503500 | 39–585 s | Adhesives for particleboard | [35,36] |
Schinopsis balancae | Commercialized | Polylavonoide tannin | Industrial | - | - | 238 s | Adhesives for particleboard | [24] | |
Alnus incana | Barks | Butanol–HCl method | 132 °C | - | Adhesives for particleboard | [42] | |||
Alnus glutinosa | Barks | Butanol–HCl method | 133 °C | - | Adhesives for particleboard | [42] | |||
Studied tannins | |||||||||
Entandophragma candolei | Bark | Condensed | 40% | Hot extraction in aqueous solution | 500 °C | 3315 | 448 s | ||
Entandophragma cylindricum | Bark | Condensed | 35% | Hot extraction in aqueous solution | 500 °C | 5267 | 431 s | ||
Afzelia africana | Bark | Condensed | 33% | Hot extraction in aqueous solution | 374.96 °C | 2363 | 430 s | ||
Dacryodes klaineana | Bark | Condensed | 25% | Hot extraction in aqueous solution | 525 °C | 3907 | 427 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nga, L.; Ndiwe, B.; Biwole, A.B.; Biwole, J.J.E.; Armel, M.; Mfomo, J.Z.; Petrissans, A.; Pizzi, A.; Papadopoulos, A.N. Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications. Polymers 2025, 17, 1837. https://doi.org/10.3390/polym17131837
Nga L, Ndiwe B, Biwole AB, Biwole JJE, Armel M, Mfomo JZ, Petrissans A, Pizzi A, Papadopoulos AN. Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications. Polymers. 2025; 17(13):1837. https://doi.org/10.3390/polym17131837
Chicago/Turabian StyleNga, Liliane, Benoit Ndiwe, Achille Bernard Biwole, Jean Jalin Eyinga Biwole, Mewoli Armel, Joseph Zobo Mfomo, Anélie Petrissans, Antonio Pizzi, and Antonios N. Papadopoulos. 2025. "Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications" Polymers 17, no. 13: 1837. https://doi.org/10.3390/polym17131837
APA StyleNga, L., Ndiwe, B., Biwole, A. B., Biwole, J. J. E., Armel, M., Mfomo, J. Z., Petrissans, A., Pizzi, A., & Papadopoulos, A. N. (2025). Extraction and Characterization of Tannins from the Barks of Four Tropical Wood Species and Formulation of Bioresins for Potential Industrial Applications. Polymers, 17(13), 1837. https://doi.org/10.3390/polym17131837