Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use
Abstract
1. Introduction
2. Results and Discussion
2.1. Chañar Seed Flour Nutritional Characterization
2.2. Phytochemical Composition
2.3. Identification of Phenolic Compounds
2.4. Inhibition of Digestive Enzymes (α-Glucosidase, α-Amylase, and Lipase) by Polyphenolic Extracts Obtained from Seed Flour
2.5. Inhibition of Pro-Inflammatory Enzymes
2.6. The Antioxidant Activity of Polyphenolic Extracts Obtained from Seed Flour
2.7. Toxicity
2.8. Microbiological Control
3. Materials and Methods
3.1. Chemicals, Reagents, and Materials
3.2. Plant Material
3.3. Determination of Granulometry and Colour of Flour
3.4. Determination of Chemical Composition
3.4.1. Sugars, Proteins, and Fats
3.4.2. Dietary Fiber
3.4.3. Fatty Acid Analysis
3.4.4. Polyphenolic Extract Preparation and Total Polyphenols and Flavonoids Determination
3.4.5. Condensed and Hydrolysable Tannins
3.4.6. Identification of Phenolic Compounds
3.4.7. Carotenoid
3.5. Measurement of Antioxidant Capacity
3.5.1. ABTS•+ Free Radical Scavenging Activity
3.5.2. Hydroxyl Radical Scavenging
3.5.3. Protection of Lipids Against Oxidative Damage: β-Carotene Bleaching Test
3.5.4. H2O2 Scavenging Assay
3.5.5. Protection Against Oxidative Hemolysis
3.6. Inhibitory Activity of Enzymes Related to Metabolic Syndrome
3.6.1. α-Glucosidase Inhibition
3.6.2. α-Amylase Inhibition
3.6.3. Lipase Inhibition
3.7. Inhibition of Pro-Inflammatory Enzymes
Lipoxygenase
3.8. Microbiological Stability of Chañar Flour
3.9. Acute Toxicity Using an Artemia Salina Test
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burkart, A. Las Leguminosas Argentinas, Silvestres y Cultivadas; Acme Agency SRI: Buenos Aires, Argentina, 1952; p. 569. [Google Scholar]
- Saur Pa Figueroa, G.G.; Dantas, M. Recolección, procesamiento y consumo de frutos silvestres en el noroeste semiárido argentino. Casos actuales con implicancias arqueológicas. Zaranda Ideas 2006, 2, 35–50. [Google Scholar]
- Saur Palmieri, V.; Trillo, C.; López, M.L. Rasgos diagnósticos en frutos y residuos secos de la cocción de chañar (Geoffroea decorticans, Fabaceae) para identificar prácticas poscolecta. Intersecc. Antropol. 2019, 20, 167–180. [Google Scholar]
- Deng, G.-F.; Shen, C.; Xu, X.-R.; Kuang, R.-D.; Guo, Y.-J.; Zeng, L.-S.; Gao, L.-L.; Lin, X.; Xie, J.-F.; Xia, E.-Q.; et al. Potential of fruit wastes as natural resources of bioactive compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef] [PubMed]
- Costamagna, M.S.; Ordoñez, R.M.; Zampini, I.C.; Sayago, J.E.; Isla, M.I. Nutritional and antioxidant properties of Geoffroea decorticans, an Argentinean fruit, and derived products (flour, arrope, decoction and hydroalcoholic beverage). Food Res. Int. 2013, 54, 160–168. [Google Scholar] [CrossRef]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, A.S.; Torres, S.; Pérez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef]
- Somaini, G.C.; Aybar, M.J.; Vera, N.R.; Tríbulo, C. Geoffroea decorticans fruit extracts inhibit the wnt/β-catenin pathway, a therapeutic target in cancer. Biochem. Biophys. Res. Commun. 2021, 546, 118–123. [Google Scholar] [CrossRef]
- Reynoso, M.A.; Vera, N.; Aristimuño, M.E.; Daud, A.; Sánchez Riera, A. Antinociceptive activity of fruits extracts and “arrope” of Geoffroea decorticans (Chañar). J. Ethnopharm. 2013, 145, 355–362. [Google Scholar] [CrossRef]
- Lamarque, A.L.; Maestri, D.M.; Zygadlo, J.A.; Guzmán, C.A. Chemical evaluation of Geoffroea decorticans seeds as source of oil and protein. Grasas y Aceites 2000, 51, 241–243. [Google Scholar] [CrossRef]
- Maestri, D.M.; Fortunato, R.H.; Greppi, J.A.; Lamarque, A.L. Compositional Studies of seeds and fruits from two varieties of Geoffroea decorticans. J. Food Compos. Anal. 2001, 14, 585–590. [Google Scholar] [CrossRef]
- Orrabalis, C. Geoffroea Decorticans (Chañar), de la Región Fitogeográfica de la Provincia de Formosa. Ph.D. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2014. [Google Scholar]
- Masson Salaue, L. Semillas de Frutos Nativos y Cultivados en Chile: Su Aceite Como Fuente de Compuestos Nacionales. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2012. [Google Scholar]
- Cotabarren, J.; Broitman, D.J.; Quiroga, E.; Obregón, W.D. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int. J. Biol. Macromol. 2020, 148, 869–879. [Google Scholar] [CrossRef]
- Silva, A.P.; Cordeiro, M.L.d.S.; Aquino-Martins, V.G.d.Q.; Melo, L.F.d.M.; Paiva, W.d.S.; Naliato, G.F.d.S.; Theodoro, R.C.; Meneses, C.H.S.G.; Rocha, H.A.O.; Scortecci, K.C. Prospecting of the Antioxidant Activity from Extracts Obtained from Chañar (Geoffroea decorticans) Seeds Evaluated In Vitro and In Vivo Using the Tenebrio molitor Model. Nutrients 2024, 16, 2813. [Google Scholar] [CrossRef] [PubMed]
- Santibáñez, C.; Vargas, M. Geoffroea decorticans for Biofuels: A promising feedstock. J. Renew. Energy 2017, 2017, 4216175. [Google Scholar] [CrossRef]
- Cazar Villacís, I.M. Análisis Físico-Químico Para la Determinación de la Calidad de las Frutas. Thesis, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador, 2016. [Google Scholar]
- Argentine Food Code. Cap. IX. Article 694 (Res 794 del 13/12/1994). Available online: http://www.conal.gob.ar/CAA.php (accessed on 1 March 2025).
- Orqueda, M.E.; Zampini, I.C.; Torres, S.; Alberto, M.R.; Pino Ramos, L.L.; Schmeda-Hirschmann, G.; Isla, M.I. Chemical and functional characterization of skin, pulp and seed flour from the Argentine native fruit mistol (Ziziphus mistol). Effects of phenolic fractions on key enzymes involved in metabolic syndrome and oxidative stress. J. Funct. Foods 2017, 37, 531–540. [Google Scholar] [CrossRef]
- Naranjo, P. Importantes alimentos aborígenes. Archipielago. Rev. Cult. Nuestra América 2010, 16, 58. [Google Scholar]
- Zhang, J.; Wang, X.; Lu, Y.; Bhusal, S.J.; Song, Q.; Cregan, P.B.; Yen, Y.; Brown, M.; Jiang, G.-L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol. Plant 2018, 11, 460–472. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Kang, Y.-J.; Che, L. Composition and thermal characteristics of seed oil obtained from Chinese Amaranth. LWT Food Sci. Technol. 2019, 111, 39–45. [Google Scholar] [CrossRef]
- Beloshapka, A.N.; Buff, P.R.; Fahey, G.C.; Swanson, K.S. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition. Foods 2016, 5, 23. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.A.-M.; Serna, L.A. Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Sci. Technol. 2011, 31, 225–230. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Cao, X.; Wang, J. Preparation and modification of high dietary fiber flour: A review. Food Res. Int. 2018, 113, 24–35. [Google Scholar] [CrossRef]
- Cattaneo, F.; Costamagna, M.; Zampini, I.; Sayago, J.; Alberto, M.; Chamorro, V.; Pazos, A.; Thomas-Valdés, S.; Schmeda-Hirschmann, G.; Isla, M. Flour from Prosopis alba cotyledons: A natural source of nutrient and bioactive phytochemicals. Food Chem. 2016, 208, 89–96. [Google Scholar] [CrossRef]
- Awika, J.M.; Duodu, K.G. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. J. Funct. Foods 2017, 38, 686–697. [Google Scholar] [CrossRef]
- Patanè, G.T.; Putaggio, S.; Tellone, E.; Barreca, D.; Ficarra, S.; Maffei, C.; Calderaro, A.; Laganà, G. Catechins and proanthocyanidins involvement in metabolic syndrome. Int. J. Mol. Sci. 2023, 24, 9228. [Google Scholar] [CrossRef] [PubMed]
- Kliebenstein, D.J. Is specialized metabolite regulation specialized? J. Exp. Bot. 2023, 74, 4942–4948. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, L.; Wang, K.; Renard, C.M.G.C.; Le Bourvellec, C.; Hu, Z.; Liu, X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13352. [Google Scholar] [CrossRef]
- Lin, L.-C.; Kuo, Y.-C.; Chou, C.-J. Immunomodulatory Proanthocyanidins from Ecdysanthera utilis. J. Nat. Prod. 2002, 65, 505–508. [Google Scholar] [CrossRef]
- Lu, Z.; Jia, Q.; Wang, R.; Wu, X.; Wu, Y.; Huang, C.; Li, Y. Hypoglycemic activities of A- and B-type procyanidin oligomer-rich extracts from different cinnamon barks. Phytomedicine 2010, 18, 298–302. [Google Scholar] [CrossRef]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef]
- Anderson, R.A.; Broadhurst, C.L.; Polansky, M.M.; Schmidt, W.F.; Khan, A.; Flanagan, V.P.; Scgoene, N.W.; Graves, D.F. Isolation and characterization of polyphenol type-a polymers from cinnamon with insulin-like biological Activity. J. Agric. Food Chem. 2003, 52, 65–70. [Google Scholar] [CrossRef]
- Appeldoorn, M.M.; Sanders, M.; Vincken, J.-P.; Cheynier, V.; Le Guernevé, C.; Hollman, P.C.; Gruppen, H. Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chem. 2009, 117, 713–720. [Google Scholar] [CrossRef]
- Tarascou, I.; Mazauric, J.-P.; Meudec, E.; Souquet, J.-M.; Cunningham, D.; Nojeim, S.; Cheynier, V.; Fulcrand, H. Characterisation of genuine and derived cranberry proanthocyanidins by LC–ESI-MS. Food Chem. 2011, 128, 802–810. [Google Scholar] [CrossRef]
- Cattaneo, F.; Rodríguez, I.F.; Zampini, I.C.; Burgos-Edwards, A.; Schmeda-Hirschmann, G.; Isla, M.I. Neltuma nigracotyledon and seed flour: Nutritional, phytochemical, and techno-functional characterization and nutraceutic potential of polyphenolic enriched extract. Food Funct. 2024, 15, 9446–9456. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Zampini, I.C.; Alberto, M.R.; Isla, M.I. Prosopis nigra Mesocarp Fine Flour, A Source of Phytochemicals with Potential Effect on Enzymes Linked to Metabolic Syndrome, Oxidative Stress, and Inflammatory Process. J. Food Sci. 2018, 83, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Courts, F.L.; Williamson, G. The occurrence, fate and biological activities ofc-glycosyl flavonoids in the human diet. Crit. Rev. Food Sci. Nutr. 2015, 55, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Min, J.-W.; Kong, W.-L.; He, X.-H.; Li, J.-X.; Peng, B.-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the FlavonoidC-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, 29–45. [Google Scholar] [CrossRef]
- Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: A Systematic Review. Curr. Diabetes Rep. 2018, 18, 72. [Google Scholar] [CrossRef]
- Santhakumar, A.B.; Battino, M.; Alvarez-Suarez, J.M. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food Chem. Toxicol. 2018, 113, 49–65. [Google Scholar] [CrossRef]
- Silva, C.; Sampaio, G.; Freitas, R.; Torres, E. Polyphenols from guaraná after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem. 2018, 267, 405–409. [Google Scholar] [CrossRef]
- Spínola, V.; Castilho, P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (In Vitro). Phytochemistry 2017, 143, 29–35. [Google Scholar] [CrossRef]
- Li, X.; Wu, Q.; Sui, Y.; Li, S.; Xie, B.; Sun, Z. Dietary supplementation of A-type procyanidins from litchi pericarp improves glucose homeostasis by modulating mTOR signaling and oxidative stress in diabetic ICR mice. J. Funct. Foods 2018, 44, 155–165. [Google Scholar] [CrossRef]
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Caruso, E.; Tsoukalas, D.; Margina, D.; Dardiotis, E.; Kouretas, D.; et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; Mohamed, G.A.; Alshali, K.Z.; Al Haidari, R.A.; El-Kholy, A.A.; Zayed, M.F. Lipoxygenase inhibitors flavonoids from Cyperus rotundus aerial parts. Rev. Bras. Farm. 2018, 28, 320–324. [Google Scholar] [CrossRef]
- de Ávila, R.I.; Valadares, M.C. Brazil moves toward the replacement of animal experimentation. ATLA-Altern Lab Anim. 2019, 47, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Kwan, Y.P.; Latha, L.Y.; Rajeh, M.A.B.; Zakaria, Z.; Jothy, S.L. Acute toxicity impacts of Euphorbia hirta L extract on behavior, organs body weight index and histopathology of organs of the mice and Artemia salina. Pharmacogn. Res. 2012, 4, 170–177. [Google Scholar] [CrossRef]
- Parra, A.L.; Yhebra, R.S.; Sardiñas, I.G.; Buela, L.I. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001, 8, 395–400. [Google Scholar] [CrossRef]
- OECD. Guideline for Testing of Chemicals: Acute Oral Toxicity-Fixed Dose Procedure, No. 420. 2001. Available online: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl420.pdf (accessed on 1 December 2024).
- Rodriguez, I.F.; Pérez, M.J.; Cattaneo, F.; Zampini, I.C.; Cuello, A.S.; Mercado, M.I.; Ponessa, G.; Isla, M.I. Morphological, histological, chemical and functional characterization of Prosopis alba flours of different particle sizes. Food Chem. 2018, 274, 583–591. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC: Method 969.33. Fatty Acids in Oils and Fats. Preparation of Methyl Esters. Boron Trifluoride Method/AOAC IUPAC Method, 13th ed.; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- AOAC. Association of official analytical chemists. In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 1990. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC: Method 991.43. Total Soluble, and Insoluble Dietary Fiber in Foods. Enzymatic-Gravimetric Method, MES-TRIS Buffer; Official Methods of Analysis Association: Arlington, TX, USA, 1992. [Google Scholar]
- Carabajal, M.P.; Isla, M.I.; Borsarelli, C.D.; Zampini, I.C. Influence of In Vitro gastro-duodenal digestion on the antioxidant activity of single and mixed three “Jarilla” species infusions. J. Herb. Med. 2020, 19, 100296. [Google Scholar] [CrossRef]
- Chobot, V. Simultaneous detection of pro- and antioxidative effects in the variants of the deoxyribose degradation assay. J. Agric. Food Chem. 2010, 58, 2088–2094. [Google Scholar] [CrossRef]
- Ordoñez, A.A.L.; Gomez, J.D.; Vattuone, M.A.; Lsla, M.I. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Mendes, L.; de Freitas, V.; Baptista, P.; Carvalho, M. Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food Chem. Toxicol. 2011, 49, 2285–2291. [Google Scholar] [CrossRef]
- Torres-Carro, R.; Isla, M.I.; Thomas-Valdes, S.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; Alberto, M.R. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna). J. Ethnopharmacol. 2017, 205, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Uriburu, F.M.C.; Zampini, I.C.; Maldonado, L.M.; Mattson, M.G.; Salvatori, D.; Isla, M.I. Chemical Characterization and Biological Activities of a Beverage of Zuccagnia punctata, an Endemic Plant of Argentina with Blueberry Juice and Lemon Honey. Plants 2024, 13, 3143. [Google Scholar] [CrossRef] [PubMed]
- Svensson, B.-M.; Mathiasson, L.; Mårtensson, L.; Bergström, S. Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environ. Monit. Assess. 2005, 102, 309–321. [Google Scholar] [CrossRef]
- Salay, G.; Lucarelli, N.; Gascón, T.M.; de Carvalho, S.S.; da Veiga, G.R.L.; Reis, B.d.C.A.A.; Fonseca, F.L.A. Acute toxicity assays with the Artemia salina model: Assessment of variables. ATLA-Altern. Lab. Anim. 2024, 52, 142–148. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzales, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdova, Argentina. Available online: http://www.infostat.com.ar (accessed on 3 February 2025).
Phytochemical Content | Chañar Seed Flour | |
---|---|---|
Fernández | Colalao del Valle | |
Yield (g powder/100 g fruits) | 30.00 ± 0.21 a | 35.00 ± 0.24 a |
Total phenolics (mg GAE/100 g) | 400.60 ± 15.00 a | 587.34 ± 51.00 b |
Flavonoids (mg QE/100 g) | 830.55 ± 21.00 a | 575.00 ± 32.00 b |
Carotenoids (g β-CE/100 g) | ND | ND |
Condensed tannins (mg PB2E/100 g) | 191.73 ± 13.00 a | 127.78 ± 10.00 b |
Hydrolyzable tannins (mg GAE/100 g) | ND | ND |
Glucose (g/100 g) | 0.50 ± 0.01 a | 0.51 ± 0.01 a |
Fructose (g/100 g) | 1.42 ± 0.02 a | 1.34 ± 0.01 a |
Sucrose (g/100 g) | 0.26 ± 0.01 a | 0.36 ± 0.01 a |
Total soluble sugar (g/100 g) | 9.63 ± 1.10 a | 8.46 ± 0.50 a |
Reducing sugar (g/100 g) | 2.67 ± 0.80 a | 1.25 ± 0.02 b |
Total protein (g/100 g) | 9.17 ± 1.20 a | 8.80 ± 0.80 a |
Fat (g/100 g) | 14.00 ± 2.30 a | 10.95 ± 1.20 b |
Crude fiber (g/100 g) | 51.65 ± 2.50 a | 57.41 ± 1.50 b |
Dietary fiber (g/100 g) | ||
Soluble dietary fiber (SDF) | 8.20 ± 0.06 a | 9.50 ± 0.05 b |
Insoluble dietary fiber (IDF) | 19.80 ± 0.05 b | 19.50 ± 0.08 a |
Saturated fatty acids (SFA) (g/100 g) | ||
Palmitic acid (C16:0) | 8.26 ± 0.16 a | 8.71 ± 0.19 b |
Stearic acid (C18:0) | 5.09 ± 0.10 b | 3.48 ± 0.10 a |
Arachidic acid (C20:0) | 0.82 ± 0.12 a | 1.08 ± 0.15 a |
Monounsaturated fatty acids (MUFA) (g/100 g) | ||
Oleic acid (C18:1 ω-9) | 36.69 ± 0.30 a | 38.52 ± 0.14 b |
Eicosenoic acid (C20:1 ω-9) | 0.47 ± 0.05 a | 0.92 ± 0.10 b |
Eicosanoic acid (20:1 ω-11) | 0.82 ± 0.15 a | 1.08 ± 0.05 b |
Polyunsaturated fatty acids (PUFA) (g/100 g) | ||
Linoleic acid (C18:2 ω-6) | 43.47 ± 0.20 a | 43.31 ± 0.25 a |
Linolelaidic acid (trans C18:2 ω-6) | 3.13 ± 0.12 a | 4.00 ± 0.15 b |
Peak | Rt (min) | [M-H]-(m/z) | MS2 | UV Max | Tentative Identification |
---|---|---|---|---|---|
1 | 16.5 | 863.1744 | 863(50), 711 (27), 573 (21), 451 (41,5), 239 (100) | 277 | A-type procyanidin trimer |
2 | 20.3 | 575.1086 | 575 (60), 449 (71), 423 (51), 407 (21), 289 (77) | 276 | A-type procyanidin dimer 1 |
3 | 25.4 | 441.0794 | 289 (100), 245 (13), 169(17) | 245 | Epicatechin gallate |
4 | 25.9 | 575.1100 | 575 (75), 449 (78), 285 (100), 289 (77) | 276 | A-type procyanidin dimer 2 |
5 | 29.8 | 727.1182 | 727 (18), 575 (100), 423 (36), 303 (18) | 289 | A-type procyanidin gallate |
6 | 31.5 | 431.0932 | 431 (24), 341 (100), 311 (70), 195 (14) | 338, 295sh, 268 | Vitexin-Isovitexin |
Enzymes Related to Carbohydrate Metabolism and Inflammatory Processes and Antioxidant Activity of Polyphenol-Enriched Extract of Chañar Seed. | ||||||||
---|---|---|---|---|---|---|---|---|
Seed Collection Region | Enzymes of Metabolic Syndrome | Pro-Inflammatory Enzyme | Antioxidant Capacity | |||||
IC50 | IC50 | SC50 | IC50 | |||||
(μg DW/mL) | ||||||||
α-Glucosidase | α-Amylase | LOX | H2O2 | ABTS∙+ | HO∙ | AAPH | β-Carotene | |
Fernández | 175.24 ± 11.57 a | 1092.39 ± 21.85 b | 386.89 ± 14.70 b | 400.54 ± 14.82 b | 18.20 ± 0.23 b | 85.57 ± 8.56 b | 4.32 ± 0.23 a | 637.23 ± 31.86 b |
Colalao del Valle | 182.73 ± 18.27 a | 621.28 ± 6.08 a | 134.00 ± 13.40 a | 243.64 ± 24.36 a | 10.35 ± 0.12 a | 70.05 ± 2.80 a | 4.63 ± 0.12 a | 426.37 ± 33.26 a |
Reference IC50 (µg/mL) | Acarbose 25.0 ± 1.00 | Acarbose 1.25 ± 0.10 | Naproxen 14.0 ± 1.00 | Quercetin 12.0 ± 1.00 | Quercetin 1.40 ± 0.03 | Quercetin 30.0 ± 2.00 | BHT 0.65 ± 0.01 | Quercetin 9.80 ± 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, M.A.; Matteucci, E.A.; Rodriguez, I.F.; Moreno, M.A.; Zampini, I.C.; Ramon, A.; Isla, M.I. Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use. Plants 2025, 14, 1047. https://doi.org/10.3390/plants14071047
Rivas MA, Matteucci EA, Rodriguez IF, Moreno MA, Zampini IC, Ramon A, Isla MI. Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use. Plants. 2025; 14(7):1047. https://doi.org/10.3390/plants14071047
Chicago/Turabian StyleRivas, Marisa Ayelen, Enzo Agustin Matteucci, Ivana Fabiola Rodriguez, María Alejandra Moreno, Iris Catiana Zampini, Adriana Ramon, and María Inés Isla. 2025. "Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use" Plants 14, no. 7: 1047. https://doi.org/10.3390/plants14071047
APA StyleRivas, M. A., Matteucci, E. A., Rodriguez, I. F., Moreno, M. A., Zampini, I. C., Ramon, A., & Isla, M. I. (2025). Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use. Plants, 14(7), 1047. https://doi.org/10.3390/plants14071047