Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = concrete sleeper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5197 KiB  
Article
Evaluation of Ballasted Railway Track Response in Potentially Critical Areas Using Vibration Measurements
by Mojmir Uranjek and Andrej Štrukelj
Sensors 2025, 25(14), 4363; https://doi.org/10.3390/s25144363 - 12 Jul 2025
Viewed by 294
Abstract
In railway infrastructure, particularly where concrete sleepers are employed, certain critical zones exhibit pronounced degradation of the ballast layer. Previous studies have identified several contributing factors, including the presence of welds, heterogeneity in the substructure beneath the sleepers, and variations in the track’s [...] Read more.
In railway infrastructure, particularly where concrete sleepers are employed, certain critical zones exhibit pronounced degradation of the ballast layer. Previous studies have identified several contributing factors, including the presence of welds, heterogeneity in the substructure beneath the sleepers, and variations in the track’s geometric parameters. Of these factors, the presence of welds seems to have the most significant influence. This article aims to determine whether differences in the ballast railway track’s response to traffic loads at weld locations can be identified in the initial phase, before obvious damage appears. Vibration responses in terms of displacement, velocity, and acceleration were measured on upgraded concrete sleepers equipped with rubber under-sleeper pads. The results indicate that velocities and accelerations at rail weld locations differ significantly from those in adjacent track sections, when the railway track is in an intact, undamaged condition. These results suggest a high likelihood of damage formation in these critical locations, indicating the necessity of preventive measures to mitigate damage. Possible mitigation measures that could help reduce the formation of damage are proposed. Full article
Show Figures

Figure 1

23 pages, 17087 KiB  
Article
Assessment of Premature Failures in Concrete Railway Ties: A Case Study from Brazil
by Eliane Betânia Carvalho Costa, Maria Eduarda Guedes Coutinho, Rondinele Alberto Dos Reis Ferreira, Antonio Carlos Dos Santos and Luciano Oliveira
Materials 2025, 18(13), 2994; https://doi.org/10.3390/ma18132994 - 24 Jun 2025
Viewed by 381
Abstract
Prestressed concrete railroad ties are the global standard for railway infrastructure due to their structural stability, durability, and cost-effective maintenance. However, their long-term performance is often compromised by premature deterioration. This study investigates the degradation of prestressed concrete railways ties from a Brazilian [...] Read more.
Prestressed concrete railroad ties are the global standard for railway infrastructure due to their structural stability, durability, and cost-effective maintenance. However, their long-term performance is often compromised by premature deterioration. This study investigates the degradation of prestressed concrete railways ties from a Brazilian rail line after ten years of natural exposure, emphasizing critical implications for infrastructure maintenance. Two groups of ties, separated by 30 km, were analyzed through physical property assessments, petrography, X-ray diffraction (XRD), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The results reveal that deterioration was driven by the combined effects of alkali–silica reaction (ASR) and sulfate attack, confirmed by the presence of (N, C)ASH gels, ettringite crystallization, and cryptocrystalline materials within cracks and voids. Prestressing-induced stresses and environmental moisture further accelerated degradation, leading to a 66% reduction in mechanical strength in the T1 group. These findings demonstrate that internal swelling reactions and moisture exposure synergistically accelerate deterioration in prestressed concrete ties, particularly in low-prestress, poorly drained zones. Full article
(This article belongs to the Special Issue Performance and Durability of Reinforced Concrete Structures)
Show Figures

Figure 1

22 pages, 31042 KiB  
Article
Qualitative Analysis of Sleeper Supporting Condition for Railway Ballasted Tracks Using Modal Test
by Jung-Youl Choi, Tae Jung Yoon and Sun-Hee Kim
Appl. Sci. 2025, 15(7), 3425; https://doi.org/10.3390/app15073425 - 21 Mar 2025
Viewed by 420
Abstract
During railway operations, changes in the support conditions of sleepers, owing to various internal and external factors, can damage rails and concrete sleepers and alter the structural characteristics of gravel-ballasted tracks. However, current methods for evaluating gravel ballast conditions primarily rely on visual [...] Read more.
During railway operations, changes in the support conditions of sleepers, owing to various internal and external factors, can damage rails and concrete sleepers and alter the structural characteristics of gravel-ballasted tracks. However, current methods for evaluating gravel ballast conditions primarily rely on visual inspection. This study proposes a quantitative approach using modal testing to assess ballast conditions. This is achieved by analyzing and experimentally verifying the relationship between track ballast loosening (caused by subgrade deformation) and track support performance. Finite element analysis results and field experimental values were compared using spring stiffness as a parameter. The results showed that natural frequencies and mode shapes changed in response to variations in the vertical spring stiffness of the gravel-ballasted track. Therefore, the sleeper support condition of a gravel-ballasted track can be readily identified by analyzing the natural frequency corresponding to different sleeper support conditions. Full article
Show Figures

Figure 1

18 pages, 5217 KiB  
Article
Effect of the Particle Size Distribution of the Ballast on the Lateral Resistance of Continuously Welded Rail Tracks
by Jafar Chalabii, Morteza Esmaeili, Dániel Gosztola, Szabolcs Fischer and Majid Movahedi Rad
Infrastructures 2024, 9(8), 129; https://doi.org/10.3390/infrastructures9080129 - 6 Aug 2024
Cited by 5 | Viewed by 1985
Abstract
While the effect of ballast degradation on lateral resistance is noteworthy, limited research has delved into the specific aspect of ballast breakage in this context. This study is dedicated to assessing the influence of breakage on sleeper lateral resistance. For simplicity, it is [...] Read more.
While the effect of ballast degradation on lateral resistance is noteworthy, limited research has delved into the specific aspect of ballast breakage in this context. This study is dedicated to assessing the influence of breakage on sleeper lateral resistance. For simplicity, it is assumed that ballast breakage has already occurred. Accordingly, nine granularity variations finer than No. 24 were chosen for simulation, with No. 24 as the assumed initial particle size distribution. Initially, a DEM model was validated for this purpose using experimental outcomes. Subsequently, employing this model, the lateral resistance of different particle size distributions was examined for a 3.5 mm displacement. The track was replaced by a reinforced concrete sleeper in the models, and no rails or rail fasteners were considered. The sleeper had a simplified model with clumps, the type of which was the so-called B70 and was applied in Western Europe. The sleeper was taken into consideration as a rigid body. The crushed stone ballast was considered as spherical grains with the addition that they were divided into fractions (sieves) in weight proportions (based on the particle distribution curve) and randomly generated in the 3D model. The complete 3D model was a 4.84 × 0.6 × 0.57 m trapezoidal prism with the sleeper at the longitudinal axis centered and at the top of the model. Compaction was performed with gravity and slope walls, with the latter being deleted before running the simulation. During the simulation, the sleeper was moved horizontally parallel to its longitudinal axis and laterally up to 3.5 mm in static load in the compacted ballast. The study successfully established a relationship between lateral resistance and ballast breakage. The current study’s findings indicate that lateral resistance decreases as ballast breakage increases. Moreover, it was observed that the rate of lateral resistance decrease becomes zero when the ballast breakage index reaches 0.6. Full article
Show Figures

Figure 1

22 pages, 4177 KiB  
Article
Aspects of Modeling Prestressed Concrete Sleepers Subjected to Positive Moment Test at Midspan
by Ricardo P. Randi, Leandro M. Trautwein and Antônio C. dos Santos
Buildings 2024, 14(8), 2387; https://doi.org/10.3390/buildings14082387 - 2 Aug 2024
Cited by 1 | Viewed by 1100
Abstract
This paper aims to discuss aspects of modeling prestressed concrete sleepers based on experimental results. Midspan Positive Moment tests were performed on four prestressed sleepers. Using the ATENA 3D software, based on the Finite Element Method, numerical models were simulated through nonlinear analysis [...] Read more.
This paper aims to discuss aspects of modeling prestressed concrete sleepers based on experimental results. Midspan Positive Moment tests were performed on four prestressed sleepers. Using the ATENA 3D software, based on the Finite Element Method, numerical models were simulated through nonlinear analysis to adequately represent the behavior of the sleepers. To evaluate the influence of the crack model, the Young’s modulus, and the fracture energy, a parametric numerical analysis was performed, varying these parameters in stages to achieve a more realistic model. The crack model was evaluated by modifying the “fixed crack model” to a “rotated crack model” while the Young’s modulus and fracture energy were penalized by 0.00%, 5.00%, 10.00%, and 15.00% in relation to the value calculated according to the CEB FIP Model Code (2010). The numerical model with the “rotated crack model” and penalties of 0.00% and 5.00% for the Young’s modulus and fracture energy, respectively, presented a better approximation to the results presented in the experimental tests. Finally, from this calibrated model, an experimental versus numerical comparative analysis was performed, comparing the load versus displacement curves, failure loads, maximum displacements, and crack pattern behavior. In the future, constitutive models of bond slip and expansive reactions will be applied to the calibrated model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

52 pages, 11496 KiB  
Article
Laboratory and Numerical Investigation of Pre-Tensioned Reinforced Concrete Railway Sleepers Combined with Plastic Fiber Reinforcement
by Attila Németh, Sarah Khaleel Ibrahim, Majid Movahedi Rad, Szabolcs Szalai, Zoltán Major, Szabolcs Kocsis Szürke, Vivien Jóvér, Mykola Sysyn, Dmytro Kurhan, Dániel Harrach, Gusztáv Baranyai, Imre Fekete, Richárd Nagy, Hanna Csótár, Klaudia Madarász, András Pollák, Bálint Molnár, Bence Hermán, Miklós Kuczmann, László Gáspár and Szabolcs Fischeradd Show full author list remove Hide full author list
Polymers 2024, 16(11), 1498; https://doi.org/10.3390/polym16111498 - 24 May 2024
Cited by 11 | Viewed by 2055
Abstract
This research investigates the application of plastic fiber reinforcement in pre-tensioned reinforced concrete railway sleepers, conducting an in-depth examination in both experimental and computational aspects. Utilizing 3-point bending tests and the GOM ARAMIS system for Digital Image Correlation, this study meticulously evaluates the [...] Read more.
This research investigates the application of plastic fiber reinforcement in pre-tensioned reinforced concrete railway sleepers, conducting an in-depth examination in both experimental and computational aspects. Utilizing 3-point bending tests and the GOM ARAMIS system for Digital Image Correlation, this study meticulously evaluates the structural responses and crack development in conventional and plastic fiber-reinforced sleepers under varying bending moments. Complementing these tests, the investigation employs ABAQUS’ advanced finite element modeling to enhance the analysis, ensuring precise calibration and validation of the numerical models. This dual approach comprehensively explains the mechanical behavior differences and stresses within the examined structures. The incorporation of plastic fibers not only demonstrates a significant improvement in mechanical strength and crack resistance but paves the way for advancements in railway sleeper technology. By shedding light on the enhanced durability and performance of reinforced concrete structures, this study makes a significant contribution to civil engineering materials science, highlighting the potential for innovative material applications in the construction industry. Full article
Show Figures

Figure 1

15 pages, 7843 KiB  
Article
Experimental Study on Dynamic Characteristics of Damaged Post-Tensioning Concrete Sleepers Using Impact Hammer
by Jung-Youl Choi, Tae-Hyung Shin, Sun-Hee Kim and Jee-Seung Chung
Materials 2024, 17(7), 1581; https://doi.org/10.3390/ma17071581 - 29 Mar 2024
Cited by 1 | Viewed by 1085
Abstract
Concrete sleepers in operation are commonly damaged by various internal and external factors, such as poor materials, manufacturing defects, poor construction, environmental factors, and repeated loads and driving characteristics of trains; these factors affect the vibration response, mode shape, and natural frequency of [...] Read more.
Concrete sleepers in operation are commonly damaged by various internal and external factors, such as poor materials, manufacturing defects, poor construction, environmental factors, and repeated loads and driving characteristics of trains; these factors affect the vibration response, mode shape, and natural frequency of damaged concrete sleepers. However, current standards in South Korea require only a subjective visual inspection of concrete sleepers to determine the damage degree and necessity of repair or replacement. In this study, an impact hammer test was performed on concrete sleepers installed on the operating lines of urban railroads to assess the field applicability of the modal test method, with the results indicating that the natural frequency due to concrete sleeper damage was lower than that of the undamaged state. Furthermore, the discrepancy between the simulated and measured natural frequencies of the undamaged concrete sleeper was approximately 1.87%, validating the numerical analysis result. The natural frequency of the damaged concrete sleepers was lower than that of the undamaged concrete sleeper, and cracks in both the concrete sleeper core and the rail seat had the lowest natural frequency among all the damage categories. Therefore, the damage degrees of concrete sleepers can be quantitatively estimated using measured natural-frequency values. Full article
Show Figures

Figure 1

20 pages, 13181 KiB  
Article
Self-Healing of Cracks in Cementitious Materials as a Method of Improving the Durability of Pre-Stressed Concrete Railway Sleepers
by Marta Dudek and Teresa Stryszewska
Materials 2024, 17(3), 760; https://doi.org/10.3390/ma17030760 - 5 Feb 2024
Viewed by 1546
Abstract
The article presents research results regarding the possibility of modifying pre-stressed concrete railway sleepers to improve their durability. The cracks that appear in these elements are one of the reasons for shortening the period of safe use. They do not have a significant [...] Read more.
The article presents research results regarding the possibility of modifying pre-stressed concrete railway sleepers to improve their durability. The cracks that appear in these elements are one of the reasons for shortening the period of safe use. They do not have a significant impact on the load-bearing capacity of these elements, but on their durability. The resulting scratches become an easy way for the external environment to migrate inside the element, including the reinforcement area. Despite efforts to eliminate the possibility of cracking, this phenomenon still occurs in railway sleepers. In order to reduce the negative effects of cracking the cement matrix, a technology for modifying a prefabricated concrete element with resin-filled tubes towards its autonomous self-healing was developed and tested. The tests were divided into three stages, including laboratory tests carried out on cement mortar beams, semi-technical tests carried out on reinforced concrete beams, and industrial tests carried out on pre-stressed concrete and prefabricated railway sleepers. All research conducted on a laboratory and semi-technical scale, preceding the target stage, was intended to ultimately enable the development of tube application technology on an industrial scale while verifying the effectiveness of self-healing at the laboratory level. The use of self-healing cementitious materials potentially reduces the negative effects of cracking railway sleepers, as shown by observations conducted during the research. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1063 KiB  
Article
Vision-Based Concrete-Crack Detection on Railway Sleepers Using Dense U-Net Model
by Md. Al-Masrur Khan, Seong-Hoon Kee and Abdullah-Al Nahid
Algorithms 2023, 16(12), 568; https://doi.org/10.3390/a16120568 - 15 Dec 2023
Cited by 8 | Viewed by 2996
Abstract
Crack inspection in railway sleepers is crucial for ensuring rail safety and avoiding deadly accidents. Traditional methods for detecting cracks on railway sleepers are very time-consuming and lack efficiency. Therefore, nowadays, researchers are paying attention to vision-based algorithms, especially Deep Learning algorithms. In [...] Read more.
Crack inspection in railway sleepers is crucial for ensuring rail safety and avoiding deadly accidents. Traditional methods for detecting cracks on railway sleepers are very time-consuming and lack efficiency. Therefore, nowadays, researchers are paying attention to vision-based algorithms, especially Deep Learning algorithms. In this work, we adopted the U-net for the first time for detecting cracks on a railway sleeper and proposed a modified U-net architecture named Dense U-net for segmenting the cracks. In the Dense U-net structure, we established several short connections between the encoder and decoder blocks, which enabled the architecture to obtain better pixel information flow. Thus, the model extracted the necessary information in more detail to predict the cracks. We collected images from railway sleepers, processed them in a dataset, and finally trained the model with the images. The model achieved an overall F1-score, precision, Recall, and IoU of 86.5%, 88.53%, 84.63%, and 76.31%, respectively. We compared our suggested model with the original U-net, and the results demonstrate that our model performed better than the U-net in both quantitative and qualitative results. Moreover, we considered the necessity of crack severity analysis and measured a few parameters of the cracks. The engineers must know the severity of the cracks to have an idea about the most severe locations and take the necessary steps to repair the badly affected sleepers. Full article
(This article belongs to the Topic Lightweight Deep Neural Networks for Video Analytics)
Show Figures

Figure 1

16 pages, 8594 KiB  
Article
Structural Integrity Assessment of Concrete Sleepers by Modal Test Technique
by Jung-Youl Choi, Tae-Hyung Shin, Sun-Hee Kim and Jee-Seung Chung
Materials 2023, 16(16), 5614; https://doi.org/10.3390/ma16165614 - 14 Aug 2023
Cited by 2 | Viewed by 1365
Abstract
Concrete sleepers used in railway engineering are subject to damage, such as cracks and breakage. Damaged concrete sleepers undergo changes to their material and structural properties, including response, mode shape, and natural frequency. Therefore, we have proposed modal testing in this study to [...] Read more.
Concrete sleepers used in railway engineering are subject to damage, such as cracks and breakage. Damaged concrete sleepers undergo changes to their material and structural properties, including response, mode shape, and natural frequency. Therefore, we have proposed modal testing in this study to quantitatively evaluate the structural integrity of concrete sleepers. The results of modal testing were compared with those of numerical analysis and visual inspection. In addition, an impact hammer test was conducted to evaluate the structural performance of damaged concrete sleepers. The results show that natural-frequency analysis using the modal-testing technique can usefully complement visual inspection for structural performance evaluation in the field. Full article
Show Figures

Figure 1

29 pages, 6132 KiB  
Article
Investigation of the Causes of Railway Track Gauge Narrowing
by Péter Bocz, Nándor Liegner, Ákos Vinkó and Szabolcs Fischer
Vehicles 2023, 5(3), 949-977; https://doi.org/10.3390/vehicles5030052 - 10 Aug 2023
Cited by 8 | Viewed by 4203
Abstract
On behalf of MÁV Hungarian State Railways Ltd., the authors carried out a research and development (R&D) project on behalf of the Budapest University of Technology and Economics, Department of Highway and Railway Engineering, on the subject of “Research and investigation of the [...] Read more.
On behalf of MÁV Hungarian State Railways Ltd., the authors carried out a research and development (R&D) project on behalf of the Budapest University of Technology and Economics, Department of Highway and Railway Engineering, on the subject of “Research and investigation of the causes of gauge narrowing by finite-element modeling in running track and turnout, and under operational and laboratory conditions”. The main objective of the research was to investigate the causes of localized defects of gauge narrowing in railway tracks based on machine and manual track measurements, laboratory measurements, and theoretical considerations. The measures proposed as a consequence of identifying the causes could significantly contribute to reducing the number and extent of local defects in the future. Furthermore, the research aims to develop new theories in less scientifically mature areas and provide procedures and instructions that professional engineers and practitioners can easily apply. The main areas of research, which are not exhaustive, are as follows: (i) the evaluation of the measurement results provided by track geometry measuring and recording cars; (ii) on-site investigations in the railway track in terms of gauge and rail profile measurements; and, based on these, (iii) the selection of concrete sleepers, which were removed from the track and subjected to more detailed geometrical investigations in the laboratory, together with the components of the rail reinforcement; (iv) the track–vehicle connection, tight running in straight and curved track sections under track confinement; (v) modeling of the stability and deflection of the rail when the rail fastenings lose part of their supporting function; and (vi) finite element modeling of the concrete sleepers under operating conditions such as slow deformation of the concrete, temperature variation effects, and lateral support on the ballast. In the already-narrowed track section, the tight vehicle running is not the cause of the track gauge narrowing but a consequence, so it is not investigated in this paper. Full article
(This article belongs to the Special Issue Railway Vehicles and Infrastructure)
Show Figures

Figure 1

13 pages, 7040 KiB  
Article
Investigation of Load Environment and Bending Load Capacities of Aged Prestressed Concrete Sleepers
by Tsutomu Watanabe, Keiichi Goto and Shintaro Minoura
Appl. Sci. 2023, 13(13), 7828; https://doi.org/10.3390/app13137828 - 3 Jul 2023
Cited by 2 | Viewed by 1790
Abstract
In this study, field measurements of the bending moments of prestressed concrete (PC) sleepers installed on commercial lines were obtained, and numerical analyses to identify the effects of different parameters on their bending moments were conducted. The bending load capacities of aged PC [...] Read more.
In this study, field measurements of the bending moments of prestressed concrete (PC) sleepers installed on commercial lines were obtained, and numerical analyses to identify the effects of different parameters on their bending moments were conducted. The bending load capacities of aged PC sleepers collected from commercial lines via bending tests were also determined. According to the field measurement results of the wheel loads and bending moments of the PC sleepers, the measured values were smaller than the design values. In addition, neither the wheel load nor the bending moment depended on train speed. The numerical analysis results indicate that the positive bending moment at the rail seat section is unlikely to exceed the design decompression moment (DDM). However, the negative bending moment at the center section may exceed the DDM if center support is provided with a reduced spring constant under the rail (the “hanging” rail seat section). In addition, the bending moment increased with the rail surface roughness, so the rail should be kept smooth. Moreover, the results of the JIS E 1201 bending tests on the aged PC sleepers showed that the crack generation load and ultimate load decreased gradually with increases in age and passing tonnage. However, all samples satisfied the JIS standard values. Furthermore, the bending moments generated in the PC sleepers during train passage were considerably smaller than the crack generation load and ultimate load during the bending test. Thus, Japanese PC sleepers aged more than 50 years currently satisfy the standard flexural fracture values specified by the JIS, and safety is not immediately compromised. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 11311 KiB  
Article
Optimal Shape Design of Concrete Sleepers under Lateral Loading Using DEM
by Jafar Chalabii, Majid Movahedi Rad and Seyedsaber Hosseini
Buildings 2023, 13(7), 1574; https://doi.org/10.3390/buildings13071574 - 21 Jun 2023
Cited by 4 | Viewed by 2259
Abstract
Despite the significant contribution of sleepers to the lateral resistance of ballasted tracks, limited research has focused on improving the shape of sleepers in this aspect. This study aims to evaluate proposed sleeper shapes based on the B70 form, utilizing a linear optimization [...] Read more.
Despite the significant contribution of sleepers to the lateral resistance of ballasted tracks, limited research has focused on improving the shape of sleepers in this aspect. This study aims to evaluate proposed sleeper shapes based on the B70 form, utilizing a linear optimization algorithm. First, a DEM model was verified for this purpose using the outcomes of the experiments. Then, using this model, the effect of the weight of the B70 sleeper was carried out on lateral resistance. Next, suggested shapes contacted with ballast materials were applied to lateral force while maintaining the mechanical ballast’s properties until a displacement of 3.5 mm was achieved. The current study’s results showed that the rate of lateral resistance increasing becomes lower for weights higher than 400 kg. Additionally, it was demonstrated that the sleeper’s weight will not always increase lateral resistance. The findings also indicated that although some proposal shapes had higher lateral resistance in comparison to other forms, these designs are not practical from an economic standpoint. Furthermore, despite the lower weight of some other suggested shapes in comparison with B70, the lateral resistances are 31.2% greater. As a result, it is possible to recommend employing a proposed sleeper rather than a B70 sleeper. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 18859 KiB  
Article
A Study on Development of New Type Rubber Boot for Sleeper Floating Track System (STEDEF): Materials and Shapes
by Jung-Youl Choi, Sun-Hee Kim, Hee Soo Park and Jee-Seung Chung
Appl. Sci. 2023, 13(5), 3068; https://doi.org/10.3390/app13053068 - 27 Feb 2023
Cited by 1 | Viewed by 2263
Abstract
Urban railway sleeper floating track (STEDEF) reduces the block vibration transmitted to the subgrade structure by structurally separating the sleeper and the concrete bed, using a rubber boot and a resilient pad. Recently, the replacement of rubber boot material (SBR) after long-term wear [...] Read more.
Urban railway sleeper floating track (STEDEF) reduces the block vibration transmitted to the subgrade structure by structurally separating the sleeper and the concrete bed, using a rubber boot and a resilient pad. Recently, the replacement of rubber boot material (SBR) after long-term wear and tear has become of utmost importance because of durability problems such as deformation, tearing, and abrasion. This study investigates rubber boots—a component of the urban railway sleeper floating track—to resolve these concerns and proposes the material and shape of a novel rubber boot. The proposed rubber boot reduces the maximum displacement and strain by more than 83% and 90%, respectively, compared with the existing rubber boots. In addition, the results of numerical analysis and indoor tests show that type 3 rubber boots can prevent displacement and stress generation in rubber boots. Full article
(This article belongs to the Special Issue Advances on Structural Engineering, Volume III)
Show Figures

Figure 1

37 pages, 19799 KiB  
Article
Numerical Investigation of Pre-Stressed Reinforced Concrete Railway Sleeper for High-Speed Application
by Zoltán Major, Sarah Khaleel Ibrahim, Majid Movahedi Rad, Attila Németh, Dániel Harrach, Géza Herczeg, Szabolcs Szalai, Szabolcs Kocsis Szürke, Dóra Harangozó, Mykola Sysyn, Dmytro Kurhan, Gusztáv Baranyai, László Gáspár and Szabolcs Fischer
Infrastructures 2023, 8(3), 41; https://doi.org/10.3390/infrastructures8030041 - 26 Feb 2023
Cited by 7 | Viewed by 3944
Abstract
The current paper deals with the numerical investigation of a unique designed pre-stressed reinforced concrete railway sleeper for the design speed of 300 km/h, as well as an axle load of 180 kN. The authors applied different methodologies in their research: traditional hand-made [...] Read more.
The current paper deals with the numerical investigation of a unique designed pre-stressed reinforced concrete railway sleeper for the design speed of 300 km/h, as well as an axle load of 180 kN. The authors applied different methodologies in their research: traditional hand-made calculations and two types of finite element software. The latter were AxisVM and ABAQUS, respectively. During the calculations, the prestressing loss was not considered. The results from the three methods were compared with each other. The hand-made calculations and the finite element modeling executed by AxisVM software are adequate for determining the mechanical inner forces of the sleeper; however, ABAQUS is appropriate for consideration of enhanced and sophisticated material models, as well as the stress-state of the elements, i.e., concrete, pre-stressed tendons, etc. The authors certified the applicability of these methodologies for performing the dimensioning and design of reinforced concrete railway sleepers with pre-stressing technology. The research team would like to continue their research in an improved manner, taking into consideration real laboratory tests and validating the results from FE modeling, special material models that allow calculation of crackings and their effects in the concrete, and so that the real pattern of the crackings can be measured by GOM Digital Image Correlation (DIC) technology, etc. Full article
(This article belongs to the Special Issue Land Transport, Vehicle and Railway Engineering)
Show Figures

Figure 1

Back to TopTop