Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = compression and seepage of soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6753 KiB  
Article
Deformation Analysis of 50 m-Deep Cylindrical Retaining Shaft in Composite Strata
by Peng Tang, Xiaofeng Fan, Wenyong Chai, Yu Liang and Xiaoming Yan
Sustainability 2025, 17(13), 6223; https://doi.org/10.3390/su17136223 - 7 Jul 2025
Viewed by 299
Abstract
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions [...] Read more.
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions but also directly and clearly indicate the safety and stability status of structure. Therefore, based on two geometrically similar cylindrical shield tunnel shafts in Shenzhen, the surface deformation, structure deformation, and changes in groundwater outside the shafts during excavation were analyzed, and the deformation characteristics under the soil–rock composite stratum were summarized. Results indicate that the uneven distribution of surface surcharge and groundwater level are key factors causing differential deformations. The maximum horizontal deformation of the shafts wall is less than 0.05% of the current excavation depth (H), occurring primarily in two zones: from H − 20 m to H + 20 m and in the shallow 0–10 m range. Vertical deformations at the wall top are mostly within ±0.2% H. Localized groundwater leakage in joints may lead to groundwater redistribution and seepage-induced fine particle migration, exacerbating uneven deformations. Timely grouting when leakage occurs and selecting joints with superior waterproof sealing performance are essential measures to ensure effective sealing. Compared with general polygonal foundation pits, cylindrical retaining structures can achieve low environmental disturbances while possessing high structural stability. Full article
(This article belongs to the Special Issue Sustainable Development and Analysis of Tunnels and Underground Works)
Show Figures

Figure 1

24 pages, 9917 KiB  
Article
Experimental Investigation of Soil Settlement Mechanisms Induced by Staged Dewatering and Excavation in Alternating Multi-Aquifer–Aquitard Systems
by Cheng Zhao, Yimei Cheng, Guohong Zeng, Guoyun Lu and Yuwen Ju
Buildings 2025, 15(9), 1534; https://doi.org/10.3390/buildings15091534 - 2 May 2025
Viewed by 416
Abstract
Dewatering and excavation are fundamental processes influencing soil deformation in deep foundation pit construction. Excavation causes stress redistribution through unloading, while dewatering lowers the groundwater level, increases effective stress, and generates seepage forces and compressive deformation in the surrounding soil. To systematically investigate [...] Read more.
Dewatering and excavation are fundamental processes influencing soil deformation in deep foundation pit construction. Excavation causes stress redistribution through unloading, while dewatering lowers the groundwater level, increases effective stress, and generates seepage forces and compressive deformation in the surrounding soil. To systematically investigate their combined influence, this study conducted a scaled physical model test under staged excavation and dewatering conditions within a layered multi-aquifer–aquitard system. Throughout the experiment, soil settlement, groundwater head, and pore water pressure were continuously monitored. Two dimensionless parameters were introduced to quantify the contributions of dewatering and excavation: the total dewatering settlement rate ηdw and the cyclic dewatering settlement rate ηdw,i. Under different experimental conditions, ηdw ranges from 0.35 to 0.63, while ηdw,i varies between 0.32 and 0.82. Both settlement rates decrease with increasing diaphragm wall insertion depth and increase with greater dewatering depth inside the pit and higher soil permeability. An analytical formula for dewatering-induced soil settlement was developed using a modified layered summation method that accounts for deformation coordination between soil layers and includes correction factors for unsaturated zones. Although this approach is limited by scale effects and simplified boundary conditions, the findings offer valuable insights into soil deformation mechanisms under the combined influence of excavation and dewatering. These results provide practical guidance for improving deformation control strategies in complex hydrogeological environments. Full article
(This article belongs to the Special Issue Advances in Foundation Engineering for Building Structures)
Show Figures

Figure 1

17 pages, 3615 KiB  
Article
A Strength–Permeability Study of Steel Slag–Cement–Bentonite Barrier Walls Effect of Slag Substitution Rate and Bentonite Dosage
by Haoran Li, Haoqing Xu, Wenyang Zhang, Linhong Gao and Aizhao Zhou
Appl. Sci. 2025, 15(8), 4544; https://doi.org/10.3390/app15084544 - 20 Apr 2025
Viewed by 270
Abstract
A barrier wall is a vertical engineered layer designed to block contaminated soil, thereby controlling pollution sources, preventing pollutant migration to groundwater, and limiting pollution spread. Cement–bentonite barrier walls, widely adopted for their seepage control capability, structural strength, and cost-effectiveness, face sustainability challenges [...] Read more.
A barrier wall is a vertical engineered layer designed to block contaminated soil, thereby controlling pollution sources, preventing pollutant migration to groundwater, and limiting pollution spread. Cement–bentonite barrier walls, widely adopted for their seepage control capability, structural strength, and cost-effectiveness, face sustainability challenges due to high cement consumption. This study systematically investigates the coupled effects of steel slag substitution rate and bentonite dosage on the mechanical–permeability of barrier materials for the first time and proposes steel slag (containing dicalcium silicate (C2S) and tricalcium silicate (C3S) phases similar to cement clinker) as a partial cement substitute in steel slag–cement–bentonite barrier materials, aiming to reduce cement usage and utilize industrial waste. Through unconfined compressive strength tests, direct shear tests, and variable head permeability tests, the effects of steel slag substitution rates (0~50%) and bentonite dosages (46~54%) on material performance were systematically investigated. Key findings include (1) unconfined compressive strength decreases linearly with increasing steel slag substitution but grows exponentially with bentonite dosage; (2) cohesion exhibits a negative exponential relationship with steel slag substitution and a linear positive correlation with bentonite content—the unconfined compressive strength of the materials with bentonite dosage of 50% and 54% were 1.51 and 2.84 times higher than those with bentonite dosage of 46%, respectively; (3) cohesion and unconfined compressive strength conform to c = (0.23~0.39)qu; (4) permeability decreases with higher steel slag substitution and bentonite dosage, achieving controlled low permeability (<1 × 10−7 cm/s). This research provides a sustainable solution for barrier wall construction by integrating waste recycling and performance optimization. Full article
(This article belongs to the Special Issue Advanced Technologies in Landfills)
Show Figures

Figure 1

16 pages, 10413 KiB  
Article
Microstructural Analysis of Sand Reinforced by EICP Combined with Glutinous Rice Slurry Based on CT Scanning
by Jianye Wang, Xiao Li, Liyun Peng, Jin Zhang, Shuang Lu and Xintao Du
Materials 2025, 18(7), 1563; https://doi.org/10.3390/ma18071563 - 30 Mar 2025
Viewed by 481
Abstract
Sandy soils are prone to engineering issues due to their high permeability and low cohesion in the natural environment. Therefore, eco-friendly reinforcement techniques are required for projects such as subgrade filling and soft soil foundation reinforcement to enhance their performance. This study proposes [...] Read more.
Sandy soils are prone to engineering issues due to their high permeability and low cohesion in the natural environment. Therefore, eco-friendly reinforcement techniques are required for projects such as subgrade filling and soft soil foundation reinforcement to enhance their performance. This study proposes a synergistic reinforcement method that combines Enzyme-Induced Calcium Carbonate Precipitation with Glutinous rice slurry (G-EICP). The macroscopic mechanical properties and pore structure evolution of reinforced sand were systematically investigated through triaxial permeability tests, unconfined compressive strength (UCS) tests, and microstructural characterization based on Scanning Electron Microscope (SEM) and Micro- Computed Tomography (CT) tests. The results indicate that when the glutinous rice slurry volume ratio (VG) reaches 10%, the UCS of G-EICP-reinforced soil peaks at 449.2 kPa. The permeability coefficient decreases significantly with increasing relative density (Dr), VG, confining pressure (σ3), and seepage pressure (p). Microstructural analysis reveals that glutinous rice slurry may promote calcium carbonate crystal growth, potentially by providing nucleation sites, establishing a dual mechanism of skeleton enhancement and pore-throat clogging. The increased incorporation of glutinous rice slurry reduces the number of connected pores, lowers the coordination number, and elevates tortuosity, thereby inducing marked enhancements in both the strength and permeability of the treated soil compared to plain soil. Full article
Show Figures

Figure 1

20 pages, 4143 KiB  
Article
A Strain-Controlled Finite Strain Model for CRD Consolidation of Saturated Clays Considering Non-Linear Compression and Permeability Relationships
by Weiyu Wang, Lijun Ke and Yaotian Gu
Water 2024, 16(19), 2858; https://doi.org/10.3390/w16192858 - 9 Oct 2024
Cited by 1 | Viewed by 1128
Abstract
Consolidation is the combined phenomenon of the compression and groundwater seepage of clay. Accurate evaluation of the consolidation characteristic is essential for the design, construction, and long-term stability of geotechnical structures. In this study, a strain-controlled non-linear finite strain model for constant rate-of-deformation [...] Read more.
Consolidation is the combined phenomenon of the compression and groundwater seepage of clay. Accurate evaluation of the consolidation characteristic is essential for the design, construction, and long-term stability of geotechnical structures. In this study, a strain-controlled non-linear finite strain model for constant rate-of-deformation (CRD) consolidation was developed for quickly and reliably predicting the consolidation behavior of clay soils. The model can account for any form of non-linear compression and permeability relationships, thus considering variations in the coefficient of consolidation. Being strain-controlled, it overcomes the limitations of stress-controlled models which require complex numerical iteration. The validity and accuracy of this model were verified through rigorous comparisons with both numerical simulations and experimental data. For normally consolidated soils, a non-linear e-lgσ′compression model was used instead of a linear compression model. For overconsolidated soils, the Harris function compression model was determined to be recommended to overcome the discontinuities in total stress and pore pressure caused by the traditional piecewise e-lgσ′ model. It was also found that determining the steady state of consolidation for normally consolidated soils should use the non-linear method, while the linear method is suggested to be adopted for overconsolidated soils. Full article
(This article belongs to the Special Issue Recent Advances in Groundwater Control in Geotechnical Engineering)
Show Figures

Figure 1

15 pages, 1517 KiB  
Review
Research Progress in Methods for the Analysis of the Internal Stability of Landslide Dam Soils
by Qianjin Zhang, Qun Chen, Li Wan, Xing Li, Yaming Zhou and Qizhuo Cheng
Appl. Sci. 2024, 14(15), 6702; https://doi.org/10.3390/app14156702 - 1 Aug 2024
Viewed by 1188
Abstract
In this paper, the research progress made in the methods used for assessing the internal stability of landslide dam soils was reviewed. Influence factors such as the gradation of soil and the stress state in the soil in different analysis methods were discussed, [...] Read more.
In this paper, the research progress made in the methods used for assessing the internal stability of landslide dam soils was reviewed. Influence factors such as the gradation of soil and the stress state in the soil in different analysis methods were discussed, as these can provide a reference for the development of more accurate methods to analyze the internal stability of landslide dam soils. It focuses on the evaluation of internal stability based on the characteristic particle size and fine particle content, hydraulic conditions such as the critical hydraulic gradient and critical seepage velocity, and the stress state such as lateral confinement, isotropic compression, and triaxial compression. The characteristic particle size and fine particle content are parameters commonly used to distinguish the types of seepage failure. The critical hydraulic gradient or seepage failure velocity are necessary for a further assessment of the occurrence of seepage failure. The stress state in the soil is a significant influence factor for the internal stability of natural deposited soils. Although various analysis methods are available, the applicability of each method is limited and an analysis method for complex stress states is lacking. Therefore, the further validation and development of existing methods are necessary for landslide dam soils. Full article
(This article belongs to the Special Issue Novel Technology in Landslide Monitoring and Risk Assessment)
Show Figures

Figure 1

14 pages, 2931 KiB  
Article
Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP)
by Lujing Yuan, Gang Li, Jia Liu, Pengzhou Wang, Cong Liu and Jinli Zhang
Buildings 2024, 14(7), 1977; https://doi.org/10.3390/buildings14071977 - 30 Jun 2024
Cited by 2 | Viewed by 1341
Abstract
Earth–rock dams are widely distributed in China and play an important role in flood control, water storage, water-level regulation, and water quality improvement. As an emerging seepage control and reinforcement technology in the past few years, enzyme (urease)-induced calcium carbonate precipitation (EICP) has [...] Read more.
Earth–rock dams are widely distributed in China and play an important role in flood control, water storage, water-level regulation, and water quality improvement. As an emerging seepage control and reinforcement technology in the past few years, enzyme (urease)-induced calcium carbonate precipitation (EICP) has the qualities of durability, environmental friendliness, and great economic efficiency. For EICP-solidified standard sand, this study analyzes the effect of dry density, amount of cementation, standing time, perfusion method, and other factors on the permeability and strength characteristics of solidified sandy soil by conducting a permeability test and an unconfined compression test and then working out the optimal solidification conditions of EICP. Furthermore, a quantitative relationship is established between the permeability coefficient (PC), unconfined compressive strength (UCS), and CaCO3 generation (CG). The test findings indicate that the PC of the solidified sandy soil decreases and the UCS rises as the starting dry density, amount of cementation, and standing time rise. With the increase of CG, the PC of the solidified sandy soil decreases while the UCS increases, indicating a good correlation among PC, UCS, and CG. The optimal condition of solidification by EICP is achieved by the two-stage grouting method with an initial dry density of 1.65 g/cm3, cementation time of 6 d, and standing time of 5 d. Under such conditions, the permeability of the solidified sandy soil is 6.25 × 10−4 cm/s, and the UCS is 1646.94 kPa. The findings of this study are of great theoretical value and scientific significance for guiding the reinforcement of earth–rock dams. Full article
Show Figures

Figure 1

16 pages, 5492 KiB  
Article
The Effects of Hydroxypropyl Methyl Cellulose and Metakaolin on the Properties of Self-Compacting Solidified Soil Based on Abandoned Slurry
by Liang Tang, Kaijian Huang, Gong Shen, Yixin Miao and Jiansheng Wu
Materials 2024, 17(12), 2960; https://doi.org/10.3390/ma17122960 - 17 Jun 2024
Viewed by 1305
Abstract
As a new type of backfill material, Self-compacting solidified soil (SCSS) takes the abandoned slurry of cast-in-place piles after dewatering and reduction as the main raw material, which brings a problem of coordinating the working performance with the mechanical property under the condition [...] Read more.
As a new type of backfill material, Self-compacting solidified soil (SCSS) takes the abandoned slurry of cast-in-place piles after dewatering and reduction as the main raw material, which brings a problem of coordinating the working performance with the mechanical property under the condition of high mobility. In this paper, hydroxypropyl methyl cellulose (HPMC) and metakaolin were introduced as additives to solve this problem. First, the workability and mechanical properties of SCSS were regulated and optimized by means of the water seepage rate test, the flowability test, and the unconfined compressive strength test. Second, this study also used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to investigate the effects of HPMC and metakaolin on the physical phase and microstructure of SCSS. In this way, the results showed that there was a significant impact on the flowability of SCSS, that is, when the dosage reached 0.3%, the water seepage rate of SCSS was reduced to less than 1%, and the compressive strength at 7 days reached its peak. At the same time, HPMC weakened the strength growth of SCSS in the age period of 7 days to 14 days. However, the addition of metakaolin promoted its compressive strength. XRD analysis showed that the additives had no significant effects on the physical phases. And, from the SEM results, it can be seen that although the water-retaining effect of HPMC makes hydration of cement more exhaustive, more ettringite (AFt) can be observed in the microstructure. In addition, it can be observed that the addition of metakaolin can generate more hydrated calcium silicate (C-S-H) due to the strong surface energy possessed by metakaolin. As a result of the above factors, SCSS filled the voids between particles and improved the interface structure between particles, thus enhanced the compressive strength. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials II)
Show Figures

Figure 1

19 pages, 7161 KiB  
Article
Large-Strain Nonlinear Consolidation of Sand-Drained Foundations Considering Vacuum Preloading and the Variation in Radial Permeability Coefficient
by Zan Xu, Penglu Cui, Wengui Cao, Xingyi Zhang and Jiachao Zhang
Buildings 2023, 13(11), 2843; https://doi.org/10.3390/buildings13112843 - 14 Nov 2023
Cited by 2 | Viewed by 1286
Abstract
The vacuum preloading method effectively strengthens soft soil foundations with vertical drainage, which produces a smear effect when laying sand drains. Meanwhile, the seepage of pore water and soil deformation during consolidation exhibit nonlinear characteristics. Therefore, based on Gibson’s 1D large-strain consolidation theory, [...] Read more.
The vacuum preloading method effectively strengthens soft soil foundations with vertical drainage, which produces a smear effect when laying sand drains. Meanwhile, the seepage of pore water and soil deformation during consolidation exhibit nonlinear characteristics. Therefore, based on Gibson’s 1D large-strain consolidation theory, this paper developed a more generalized large-strain radical consolidation model of sand-drained soft foundations under free-strain assumptions. In this system, the double logarithmic compression permeability relationships for soft soils with large-strain properties, the variation in the radical permeability coefficient in the smear zone, and the effect of the non-Darcy flow were all included. Then, the partial differential control equations were numerically solved by the finite difference method and validated with existing radical consolidation test results and derived analytical solutions. Finally, the influences of relevant model parameters on consolidation are discussed. The analysis shows that the greater the maximum dimensionless vacuum negative pressure P0, the faster the consolidation rate of sand-drained foundations. Meanwhile, the decrease in the negative pressure transfer coefficient k1 will result in a decreasing final settlement amount. Moreover, the consolidation rate of sand-drained foundations is slower considering the non-Darcy flow, but the final settlement is unaffected. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 7674 KiB  
Article
Research and Application of High-Pressure Rotary Jet Method in the Seepage Treatment of Heavy Metal Tailing Ponds of Southwest China
by Mengjia Liang, Chunzheng Jin, Jiwu Hou, Mengyuan Wang, Yanping Shi, Zichao Dong, Xianyu Yang, Jianwei Zhou and Jihua Cai
Materials 2023, 16(9), 3450; https://doi.org/10.3390/ma16093450 - 28 Apr 2023
Cited by 3 | Viewed by 2266
Abstract
The developed karst caves may become the seepage channels of heavy metal to the soil and underground water in Southwest China. Therefore, it is necessary to apply effective seepage treatments to the base of heavy metal tailing reservoirs. This paper addressed the high-pressure [...] Read more.
The developed karst caves may become the seepage channels of heavy metal to the soil and underground water in Southwest China. Therefore, it is necessary to apply effective seepage treatments to the base of heavy metal tailing reservoirs. This paper addressed the high-pressure rotary jet technology and slurry systems used in the seepage treatment of the deep tailing sand of the Shenxiandong tailing pond located in Southwest China. In this study, the factors of fluidity, initial and final setting times, compressive strength, and permeability coefficient of the slurry were conducted. The mechanism analysis was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and inductively coupled plasma-mass spectrometry (ICP-MS). Three different types of slurry systems were proposed, and the permeability coefficients of the solidification body following 28 days of curing were less than 1 × 10−7 cm/s. The concentrations of Pb and Zn in the slurry system containing bentonite were reduced by 26.2% and 45.7%, respectively. In the presence of slaked lime and fly ash, the concentrations of Pb and Zn could be reduced by 26.8% and 30%, respectively. A total of 2142 high-pressure rotary jet piles were completed by the high-pressure rotary jet method in the field trial. The diffusion radius of these piles was over 1 m. Following 28 days of curing, the solidification body’s compressive strength was 7.45 MPa and the permeability coefficient was 6.27 × 10−8 cm/s. Both the laboratory and on-site trials showed that this method produced a good pollution barrier effect, which could prevent the diffusion of heavy metal into the adjacent underground water through the karst caves. It is also an effective way of engineering technology concerning heavy metal pollution control that occurs in tailing ponds. Full article
Show Figures

Figure 1

16 pages, 4918 KiB  
Article
Electrochemical Accelerating Leaching Behavior of Plastic Concrete for Cut-Off Walls
by Lina Zhou, Cailong Ma, Zhenhao Zhang, Shuangxin Sun, Xuanchi Liu and Jinjing Liao
Buildings 2023, 13(4), 937; https://doi.org/10.3390/buildings13040937 - 1 Apr 2023
Cited by 1 | Viewed by 2248
Abstract
Plastic concrete is a ductile material with a low elastic modulus (1000–3000 MPa), good flexibility, a and strong ability to adapt to the surrounding soil deformation. Hydraulic concrete mainly serves in a watery environment, so the leaching behavior of plastic concrete is crucial [...] Read more.
Plastic concrete is a ductile material with a low elastic modulus (1000–3000 MPa), good flexibility, a and strong ability to adapt to the surrounding soil deformation. Hydraulic concrete mainly serves in a watery environment, so the leaching behavior of plastic concrete is crucial and cannot be neglected. Meanwhile, improving the crack resistance and effect of anti-seepage is also a primary task for cut-off walls. In this paper, in order to investigate the mechanical performance and leaching behavior of plastic concrete, a uniaxial compressive strength test was performed on plastic concrete specimens of a specific age (28 days) and different percentages of replacement cement by single bentonite (40%, 50%, and 60%) and bentonite (30%) together with clay (10%, 20%, and 30%), and the compressive strength, elastic modulus, pH value of the leaching solution, ultrasonic transmit time, electrical resistivity, and calcium ion dissolution concentration of plastic concrete have been evaluated. Moreover, the quantitative relationship between pH value and calcium ion concentration change was built through the electrochemical accelerating leaching method. According to the results, adding 40–60% soil materials can entirely meet the compressive strength (2–7 MPa), elastic modulus (below 3000 MPa), and relative permeability coefficient (below 1 × 10−7 cm/s) of plastic concrete used for cut-off walls while the compressive strength and elastic modulus of plastic concrete with 30% replacement cement by bentonite would be higher than 7 MPa and 3000 MPa, respectively. The leaching resistance of plastic concrete can be improved by more than 30% by adding bentonite coupled with clay, and three representative zones were observed through SEM and energy spectrum analysis, and Ca/Si molar ratio decreased by 30% after leaching. Full article
Show Figures

Figure 1

15 pages, 3227 KiB  
Communication
One-Dimensional Nonlinear Consolidation for Soft Clays with Continuous Drainage Boundary Considering Non-Darcy Flow
by Jin Wu, Ruichen Xi, Rongzhu Liang, Mengfan Zong and Wenbing Wu
Appl. Sci. 2023, 13(6), 3724; https://doi.org/10.3390/app13063724 - 15 Mar 2023
Cited by 7 | Viewed by 1772
Abstract
Adopting the non-Darcy flow presented by Hansbo and considering the nonlinear compression and permeability characteristics of soils, the one-dimensional nonlinear consolidation problem of soft clays is investigated by means of a continuous drainage boundary. The numerical solutions of average consolidation degrees defined by [...] Read more.
Adopting the non-Darcy flow presented by Hansbo and considering the nonlinear compression and permeability characteristics of soils, the one-dimensional nonlinear consolidation problem of soft clays is investigated by means of a continuous drainage boundary. The numerical solutions of average consolidation degrees defined by settlement and excess pore water pressure are derived by using the finite difference method, and the correctness of these solutions is verified by comparing them with existing analytical and numerical solutions. Based on the proposed solutions, a parametric study is conducted to study the influence of interface parameter, non-Darcy flow parameter and soil nonlinearity on the consolidation behavior of soft clays. The results show that the solutions based on the continuous drainage boundary can be degenerated into the solutions based on the Terzaghi drainage boundary if the interface parameter is taken as a reasonable value. The soil consolidation behavior considering both non-Darcy seepage and nonlinear characteristics of soil is very complex. Full article
Show Figures

Figure 1

16 pages, 5496 KiB  
Article
Dewatering-Induced Stratified Settlement around Deep Excavation: Physical Model Study
by Xiaotian Liu, Jianxiu Wang, Tianliang Yang, Lujun Wang, Na Xu, Yanxia Long and Xinlei Huang
Appl. Sci. 2022, 12(18), 8929; https://doi.org/10.3390/app12188929 - 6 Sep 2022
Cited by 8 | Viewed by 3282
Abstract
The multi-aquifer and multi-aquitard system (MAMA) is a typical geological structure in deltas. Thus, the risks and challenges to settlement control and environmental protection are increased when demand for underground space extends to deeper strata. In this study, dewatering-induced stratified settlement in MAMA [...] Read more.
The multi-aquifer and multi-aquitard system (MAMA) is a typical geological structure in deltas. Thus, the risks and challenges to settlement control and environmental protection are increased when demand for underground space extends to deeper strata. In this study, dewatering-induced stratified settlement in MAMA is divided into three stages according to whether the overlying aquitard is coupled with groundwater seepage. Subsequently, large physical model tests were carried out. Seepage and compression in the overlying strata come after the compression in the confined aquifer and the coordinated deformation in the overlying strata. The soil is compressed under the seepage drive within the hydraulic gradient range, while the soil above it is still affected by coordinated deformation and shows expansion. Dewatering-induced uneven settlement will cause damage to existing foundations and underground structures. Large-scale and uninterrupted excavation and dewatering are the main reasons for the continuous development of land subsidence. Although artificial groundwater recharging can reduce the settlement of the existing building, underground structure, and surrounding strata, a reasonable space arrangement is needed. Full article
(This article belongs to the Special Issue Engineering Groundwater and Groundwater Engineering)
Show Figures

Figure 1

19 pages, 16898 KiB  
Article
Safety Risk Analysis of a New Design of Basalt Fiber Gabion Slope Based on Improved 3D Discrete Element Method and Monitoring Data
by Jianjian Dai, Xiangyang Xu, Hao Yang, Chao Su and Nan Ye
Sensors 2022, 22(10), 3645; https://doi.org/10.3390/s22103645 - 10 May 2022
Cited by 4 | Viewed by 3282
Abstract
Gabion has been extensively used in retaining walls and slope protection. This study carries out a safety risk analysis of a new structure combining basalt fiber reinforcement (BFR) and the traditional gabion structure. The micro-parameters of BFR and soil were calibrated by using [...] Read more.
Gabion has been extensively used in retaining walls and slope protection. This study carries out a safety risk analysis of a new structure combining basalt fiber reinforcement (BFR) and the traditional gabion structure. The micro-parameters of BFR and soil were calibrated by using the 3D discrete element method after the tensile test of BFR was completed. The mechanical property of the gabion unit was investigated by using a refined model and a numerical test of uniaxial compression. This work developed a simplified method to simulate the seepage effect. The stress condition and sliding displacement between gabions were also investigated. Deformation, stress, and porosity were all used to evaluate the stability of the new type of gabion slope. According to this study, BFR has a tensile strength of 68.22 MPa, and the safety factor increased by 25.68% after using these BFR gabions. The damage is mainly manifested by bending the BFRs and the dislocation of the gabion units, as the slope does not slip. It is indicated this novel gabion structure has a lower safety risk compared to traditional ones, and thus can be popularized and used in retaining walls and slope protection. Full article
(This article belongs to the Special Issue Intelligent Sensing Technologies in Structural Health Monitoring)
Show Figures

Figure 1

12 pages, 3399 KiB  
Article
Mechanical Characteristics and Micro-Mechanism of Modified Dredged Sludge Based on Calcium-Containing Solid Waste Used as Landfill Cover Materials
by Kejian Shang
Processes 2022, 10(3), 451; https://doi.org/10.3390/pr10030451 - 24 Feb 2022
Cited by 4 | Viewed by 1958
Abstract
In order to prepare a new type of landfill covering material for closure, we used industrial calcium-containing waste (construction rubbish, slag, desulfurized gypsum and fly ash) to modify the dredged urban sludge. Shrink, unconfined compression, shear and infiltration tests were performed to obtain [...] Read more.
In order to prepare a new type of landfill covering material for closure, we used industrial calcium-containing waste (construction rubbish, slag, desulfurized gypsum and fly ash) to modify the dredged urban sludge. Shrink, unconfined compression, shear and infiltration tests were performed to obtain the volume shrinkage, compressive strength, shear strength and permeability coefficient of the modified sludge, as well as the permeability coefficient under the action of wet and dry cycles. Comprehensive characterization of the modified sludge using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy with energy dispersive spectroscopy detection methods, resulted in the hydration products, molecular groups and microstructure characteristics of the modified sludge and revealed the modification mechanism of calcium-containing waste to sludge. After natural curing for 28 d, the volume shrinkage rate of the modified sludge sample was 2.6~8.3%, the unconfined compressive strength was 7.9~14.5 MPa, the cohesion force c was 179~329 kPa, and the internal friction angle φ was 42.59~53.60°. After six wet and dry cycles, there were no cracks in the modified sludge; the permeability coefficient of the modified sludge reached stability at 0.84–11.1 × 10−7 cm/s; and the permeability coefficient of MS7 sample was less than 1 × 10−7 cm/s, which met the engineering anti-seepage requirements of the landfill closure cover. The industrial calcium-containing waste by alkali formed C–S–H and C–A–S–H gelled geopolymer, which filled the gaps between soil particles to form a strong soil cement skeleton. Therefore, the mix ratio of sludge:construction waste:slag:fly ash:desulfurized gypsum was 50:22:15:8:5. Calcium-containing solid waste modified sludge can be used as a cover material for landfill closure. Full article
(This article belongs to the Special Issue Activated Sludge Treatment Processes)
Show Figures

Figure 1

Back to TopTop