
Citation: Wu, J.; Xi, R.; Liang, R.;

Zong, M.; Wu, W. One-Dimensional

Nonlinear Consolidation for Soft

Clays with Continuous Drainage

Boundary Considering Non-Darcy

Flow. Appl. Sci. 2023, 13, 3724.

https://doi.org/10.3390/

app13063724

Academic Editor: Tiago Miranda

Received: 25 February 2023

Revised: 12 March 2023

Accepted: 13 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Communication

One-Dimensional Nonlinear Consolidation for Soft Clays
with Continuous Drainage Boundary Considering
Non-Darcy Flow
Jin Wu 1,2,3, Ruichen Xi 1, Rongzhu Liang 1,*, Mengfan Zong 1,4 and Wenbing Wu 1,5,*

1 Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China
2 Wuhan Shuchuang Technology Co., Ltd., Wuhan 430063, China
3 Wuhan Metro Group Co., Ltd., Wuhan 430000, China
4 School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
5 Research Center of Coastal Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
* Correspondence: liangcug@163.com (R.L.); wuwb@cug.edu.cn (W.W.)

Abstract: Adopting the non-Darcy flow presented by Hansbo and considering the nonlinear compres-
sion and permeability characteristics of soils, the one-dimensional nonlinear consolidation problem
of soft clays is investigated by means of a continuous drainage boundary. The numerical solutions of
average consolidation degrees defined by settlement and excess pore water pressure are derived by
using the finite difference method, and the correctness of these solutions is verified by comparing
them with existing analytical and numerical solutions. Based on the proposed solutions, a parametric
study is conducted to study the influence of interface parameter, non-Darcy flow parameter and soil
nonlinearity on the consolidation behavior of soft clays. The results show that the solutions based
on the continuous drainage boundary can be degenerated into the solutions based on the Terzaghi
drainage boundary if the interface parameter is taken as a reasonable value. The soil consolidation
behavior considering both non-Darcy seepage and nonlinear characteristics of soil is very complex.

Keywords: one-dimensional consolidation; continuous drainage boundary; non-Darcy flow; nonlinear
consolidation; average consolidation degree

1. Introduction

With the increase of engineering construction in coastal areas, the long-term settlement
caused by nonlinear consolidation of soil has attracted more and more attention all over
the world [1–5]. Scholars have found that the seepage form in soil and the compressibility
of soil have a great effect on the nonlinear consolidation characteristics of soil. Therefore,
since the 1960s, many scholars have investigated the influence of non-Darcy seepage
and nonlinear compression and permeability characteristics of soil on the consolidation
process of soil [6,7]. Among the existing non-Darcy flow models, the non-Darcy flow of
Hansbo is widely utilized [8]. Schmidt and Westmann applied Hansbo’s flow to obtain
an analytical solution to the 1D consolidation problem of soil with a small time factor [9].
Hansbo further investigated the 1D consolidation problem of saturated soil with Hansbo’s
flow [10]. Subsequently, Liu et al. solved the 1D consolidation and rheological consolidation
problems of saturated clay under instantaneous load by using Hansbo’s flow [11,12].
Jiu et al. investigated the influence of self-weight stress on the 1D consolidation of soil
with Hansbo’s flow [13]. In addition, Li et al. [14,15] and Cui et al. [16] studied the 1D
consolidation of elastic and fractional viscoelastic saturated soils by using the exponential
seepage form in Hansbo’s flow model.

The aforementioned works have deepened the understanding of the influence of non-
Darcy characteristics on the consolidation process of soil. However, the compressibility
and permeability of soil will change during the consolidation process, so the nonlinear
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consolidation of soil should also be paid more attention [3,5]. In view of this, assuming
that the permeability coefficient and the compression coefficient change synchronously
during the consolidation process and the self-weight stress remains unchanged along the
depth, Davis and Raymond first derived an analytical for the 1D nonlinear consolidation
of saturated soil under instantaneous loading [17]. Based on the currently recognized
e-lgσ’ and e-lgkv relations, Mesri and Rokhsar obtained a solution for the 1D nonlinear
consolidation of saturated soil by using the finite difference method [18]. Soon after, many
scholars investigated the nonlinear consolidation problems of soil by considering variable
load [19,20] and layered characteristics of soils [21,22]. In order to consider the influence of
both soil nonlinear characteristics and non-Darcy seepage on the soil consolidation process,
Liu et al. solved the 1D nonlinear consolidation problem of saturated clay under non-Darcy
seepage [23]. Li et al. investigated the influence of variable load on the 1D nonlinear
consolidation of soil with non-Darcy flow [24]. Soon after, Li et al. further investigated
the 1D nonlinear consolidation of soil with non-Darcy flow by considering the influence
of variable load, large deformation and so on [25,26]. Due to the complexity of the soil
consolidation problem considering both soil nonlinearity and non-Darcy seepage, the
drainage boundary especially may change with time, and further in-depth study on this
topic is still needed.

The classic Terzaghi consolidation theory assumes that the drainage boundary condi-
tions are fully pervious and impervious, but in engineering practice, the drainage capacity
of a soil boundary always changes between fully permeable and fully impermeable. To
simulate the soil drainage boundary more realistically, Gray [27] originally proposed the
impeded drainage boundary, which was introduced by Schiffman and Stein [28] to investi-
gate the 1D consolidation problem of layered saturated soil with variable coefficients of
permeability and compressibility. Subsequently, many scholars have introduced Gray’s
impeded drainage boundary to study the 1D problems of single-layered [29–32], bilay-
ered [33–35] and multilayered soils [15,36]. Nevertheless, owing to the complexity of the
impeded drainage boundary, it is not easy to obtain explicit solutions for most consolida-
tion problems. Further, the above two models do not consider the relationship between
drainage boundary and time, so they cannot reflect the fact that the drainage capacity of a
boundary changes with the consolidation process [37]. In order to consider the time effect of
a drainage boundary, Mei et al. [38] originally developed a continuous drainage boundary
(CBD) expressed as an exponential function over time, which can reflect the dissipation of
excess pore water pressure (EPWP) at the boundary over time during the consolidation
process. The greatest advantage of the CDB is that it can reflect the boundary drainage
capacity between fully permeable and impervious, and its expression is very simple. After
the work of Mei et al. [38], investigations on consolidation theory with the CDB have been
carried out for saturated soils with a single layer [39] and multiple layers [40] undergoing
instantaneous load, and unsaturated soil with a single layer [41]. Recently, Zong et al.
introduced the CDB to separately study the 1D consolidation characteristics of soil with
nonlinear compressibility [42] and non-Darcy flow [43]. Although the research on consol-
idation theory based on the CDB is relatively rich, the existing work is still insufficient
because of the complexity of consolidation problems.

This paper aims to study the 1D consolidation of soft clays with Hansbo’s flow based
on the CDB. The finite difference method is utilized to derive the solutions of the 1D
nonlinear consolidation problem of soft clays with Hansbo’s flow. Comparing with the
existing analytical and numerical solutions, the rationality of the present solutions is
verified. Furthermore, a parametric study is carried out to study the influence of soil
characteristics on the consolidation characteristics of soft clays.

2. Problem Description and Governing Equations

Figure 1 illustrates the schematic diagram of a soft clay foundation. H is the thickness
of the clay layer; q0 is the instantaneous uniformly distributed load applied on the top
surface of the clay layer; v depicts the seepage velocity; z and z0 represent the downward
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vertical coordinate originated from the top boundary and the depth of soil unit, respectively.
In Hansbo’s flow, the relationship between seepage velocity and the hydraulic gradient
of soil is composed of the exponential segment for the conditions of the small hydraulic
gradient, and the linear segment for the cases of the large hydraulic gradient. Therefore,
the seepage law in soil can be expressed as [9]:

v =

{
kvim/(mim−1

1 ), i < i1
kv(i− i0), i ≥ i1

, (1)

where kv denotes the permeability coefficient in the linear section, i, i0 and i1 represent the
hydraulic gradient, initial hydraulic gradient of seepage calculation in linear section and
initial hydraulic gradient of linear seepage, respectively, and m is a constant determined by
test. The expression of i0 can be written as:

i0 =
i1(m− 1)

m
. (2)
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Introducing the relationship between soil compression and seepage proposed by Mesri
and Rokhsar [18], the nonlinear characteristics of soil can be obtained as:

e− e0 = cclg
(

σ′0
σ′

)
, (3)

e− e0 = cklg
(

kv

kv0

)
, (4)

where e and e0 represent the void ratio and initial void ratio, respectively. σ′ and σ′0
denote the effective stress and initial effective stress, respectively. kv and kv0 are the
permeability coefficient and initial permeability coefficient, respectively. cc and ck represent
the compression index and permeability index, respectively.

Combining Equation (3) with Equation (4) yields:

kv = kv0(
σ′0
σ′
)

cc
ck

, (5)

mv = − 1
1 + e0

∂e
∂σ′

=
mv0σ′0

σ′
, (6)
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where mv and mv0 denote the compressibility and initial compressibility coefficients, re-
spectively. The expression of mv0 can be written as:

mv0 = − 1
1 + e0

∂e
∂σ′

∣∣∣∣
σ′=σ′0

=
cc

(1 + e0)σ′0 ln 10
. (7)

Then, the consolidation coefficient of soil can be obtained as:

cv =
kv

γwmv
= cv0

(
σ′0
σ′

) cc
ck
−1

, (8)

where γw denotes the unit weight of water. cv0 represents the initial consolidation coeffi-
cient of soil and can be written as:

cv0 =
kv0(1 + e0)σ

′
0 ln 10

γwcc
. (9)

According to the continuous condition of seepage in soil, the following equation can
be obtained:

∂v
∂z

= − 1
1 + e0

∂e
∂t

, (10)

where t is time.
Assuming that the instantaneous uniformly distributed load and the initial effective

stress are uniformly distributed along the depth, and introducing the effective stress
principle, the following equation can be gained:

σ′ = q0 + σ′0 − u, (11)

where u represents the excess pore water pressure.
Combining Equations (1), (3), (5), (6) and (10) with Equation (11), the governing

equations for the 1D nonlinear consolidation problem of soil with Hansbo’s flow can be
obtained as [24]:

cv0
σ′0+q0−u

σ′0

∂
∂z

[
1

mim−1
1

(
σ′0

σ′0+q0−u

) cc
ck
(

1
γw

∂u
∂z

)m−1
∂u
∂z

]
= ∂u

∂t , 1
γw

∂u
∂z < i1

cv0
σ′0+q0−u

σ′0

∂
∂z

[(
σ′0

σ′0+q0−u

) cc
ck
(

1− i0/( 1
γw

∂u
∂z )
)

∂u
∂z

]
= ∂u

∂t , 1
γw

∂u
∂z ≥ i1

(12)

According to the CDB, the continuous conditions of soil can be obtained as follows.
The initial condition:

u(z, 0) = q0. (13)

The boundary condition:

u(0, t) = q0e−α cvt
H2

∂u
∂z

∣∣∣
z=H

= 0

, (14)

where α denotes the interface parameter of the soil top surface, which can be obtained by
model test or field test data inversion.

3. Solutions to Governing Equations

In order to simplify the solution process, the following dimensionless parameters
are given: U = u

σ′0
, Z = z

H , Tv = cv0t
H2 , c = cc/ck, b = (q0 + σ′0)/σ′0, I = (iγwH)/σ′0
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and I1 = (i1γwH)/σ′0. Substituting these dimensionless parameters into the governing
equations and continuous conditions, the corresponding equations can be given as: (b−U) ∂

∂Z

[
(b−U)−c

mIm−1
1

(
∂U
∂Z

)m−1
∂U
∂Z

]
= ∂U

∂Tv
, I ≤ I1

(b−U) ∂
∂Z

[
(b−U)−c ∂U

∂Z

]
= ∂U

∂Tv
, I ≥ I1

, (15)

U(0, Tv) = (b− 1)e−αTv , (16)

∂U
∂Z

∣∣∣∣
Z=1

= 0, (17)

U(Z, 0) = b− 1. (18)

The soil layer is discretized in space and time, and i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . , N
represent the space and time notes, respectively. The 0th space note means the top surface
of the soil layer, and the 0th time note mean the initial moment. The time and space steps
are denoted as τ and h, respectively. Setting λ = τ

h2 and using the implicit scheme of a
quasilinear diffusion equation, the following difference equation can be obtained:

U j+1
i = U j

i + λ(b−U j
i )
[
α

j+1
i+1/2

(
U j+1

i+1 −U j+1
i

)
,−α

j+1
i−1/2

(
U j+1

i −U j+1
i−1

)]
, (19)

where

α
j+1
i+1/2 =


1

mIm−1
1

[b− U j+1
i+1+U j+1

i
2 ]

−c(
U j+1

i+1−U j+1
i

h

)m−1

, I j+1
i ≤ I1

[b− U j+1
i+1+U j+1

i
2 ]

−c

, I j+1
i > I1

, (20)

α
j+1
i−1/2 =


[b− U j+1

i +U j+1
i−1

2 ]
−c(

U j+1
i −U j+1

i−1
h

)m−1

, I j+1
i ≤ I1

[b− U j+1
i +U j+1

i−1
2 ]

−c

, I j+1
i > I1

, (21)

I j+1
i =

∣∣∣U j+1
i+1 −U j+1

i−1

∣∣∣
2h

. (22)

Substituting Equation (19) into Equation (15) yields:

− λ(b−U j
i )α

j+1
i+1/2U j+1

i+1 + [1 + λ(b−U j
i )α

j+1
i+1/2 + λ(b−U j

i )α
j+1
i−1/2]U

j+1
i − λ(b−U j

i )α
j+1
i−1/2U j+1

i−1 = U j
i (23)

The continuous conditions are rewritten as:

U j
0 = (b− 1)e−α∆Tv j, (24)

U j
n+1 = U j

n−1, (25)

U0
i = b− 1. (26)

Then, Equation (23) can be obtained by using matrix as:

Aj−1Vj = Bj−1, (27)

where

A =



A11 A12
A21 A22 A23

A32 A33 A34
...

...
...

...
...

...
...

A(n−1)(n−2) A(n−1)(n−1) A(n−1)n
An(n−1) Ann


, (28)
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V =



U1
U2
U3
...

Un−1
Un


, (29)

B =



B1
B2
B3
...

Bn−1
Bn


, (30)

Aii = 1 + λ(b−U j
i )α

j+1
i+1/2 + λ(b−U j

i )α
j+1
i−1/2, (31)

Ai(i−1) = −λ(b−U j
i )α

j+1
i−1/2, (32)

Ai(i+1) = −λ(b−U j
i )α

j+1
i+1/2, (33)

Ann = 1 + λ(b−U j
n)α

j+1
n+1/2 + λ(b−U j

n)α
j+1
n−1/2, (34)

An(n−1) = −λ(b−U j
n)α

j+1
n−1/2 − λ(b−U j

n)α
j+1
n+1/2, (35)

Bi = Ui, (36)

B1 = U j−1
1 + λ(b−U j

1)α
j+1
1−1/2U j

0, (37)

α
j−1
n+1/2 =

(
b−

U j−1
n−1 + U j−1

n

2

)−c

, (38)

α
j−1
n−1/2 =

(
b−

U j−1
n + U j−1

n−1
2

)−c

. (39)

It can be seen that the unknowns of Equation (23) are linear, and the tridiagonal matrix
can be solved by the catch-up method with Matlab. In order to speed up the solving process
of the difference equation, h is set as 0.01. When Tv < 0.2, τ is set as 0.000001; when
Tv > 0.2, τ is set as 0.0001. Therefore, when Tv < 0.2, λ is set as 0.01; when Tv > 0.2, λ is
set as 1. With these values, the solution of EPWP can be obtained.

Furthermore, the average consolidation degree defined by settlement (ACDS) can be
derived as:

Us =

∫ H
0 (e0 − e)dz∫ H
0 (e0 − ef)dz

=

n
∑

i=1
lg
(

b− ui−1+ui
2

)
nlgb

. (40)

The average consolidation degree defined by excess pore water pressure (ACDEPWP)
can be derived as:

Up =

∫ 1
0 (b− 1−U)dZ∫ 1

0 (b− 1)dZ
= 1−

n
∑

i=1
(U j

i−1 + U j
i )

2n(b− 1)
. (41)

It can be seen from Equations (40) and (41) that after considering the nonlinear charac-
teristics of soil, the expressions of the ACDS and ACDEPWP are no longer the same.
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4. Verification of the Present Solutions

First, the derived solutions are compared with the existing solutions and models. The
comparison of analytical and numerical solutions is depicted in Figure 2, in which m = 1
and c = 1, thus Davis’s solution [17] and Zong’s solution [44] are degenerated into 1D
nonlinear analytical solutions under the Terzaghi drainage boundary (TDB) and the CDB,
respectively. As shown in Figure 2, when α = 8, the derived solution of ACD obtained by
the finite difference method is consistent with Zong’s analytical solution [44] and when
α = 106, the present solution of ACD derived by the finite difference method is consistent
with Davis’s analytical solution [17]; thus, the correctness of the present solution obtained
by the finite difference method is preliminarily verified. In addition, in Davis’s solution [17],
the value of b has no effect on the ACDS, while in the present solution, Us increases with the
increase of the value of b. When the interface parameter α is large enough (i.e., α = 106 in
this case), the present solution with the CDB is consistent with Davis’s solution [17], which
indicates that the CDB can be degenerated into the TDB. In other words, the consolidation
solution based on the TDB is a special case of the consolidation solution based on the CDB.
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The comparison of ACDs obtained from different drainage boundaries is illustrated in
Figure 3. When α = 106, the consolidation solutions based on the CDB are consistent with
Liu’s solution [23] based on the TDB, which again verifies the rationality of the derived
solutions. Furthermore, Figure 3 also illustrates the influence of I1 on Us and Up, and
the value of I1 depends on the ratio of soil thickness to external load. It is found that
both Us and Up decrease as the value of I1 increases, which indicates that the smaller the
ratio of soil thickness to external load, the faster the soil consolidation process. According
to Equation (11), with the increase of I1, the coefficient on the left side of Equation (11)
will decrease, so the soil consolidation rate will decrease. In addition, it can also be
found that when the values of model parameters are the same, Us is greater that Up,
indicating that the soil settlement rate is greater than the dissipation rate of EPWP during
the consolidation process.
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5. Analysis of Consolidation Degree

In this section, a parametric is conducted to study the 1D nonlinear consolidation
characteristics of soft clays with Hansbo’s flow. Figure 4 shows the influence of interface
parameter α on the ACDS. It is found that with the increase of the interface parameter, the
soil consolidation rate gradually increases, and the gap between the present solution and
Liu’s solution gradually decreases. When the value of α is relatively small, the increase of α
will greatly improve the ACDS. However, when the value of α is relatively large, the increase
of α has little effect on the ACDS. In the early stage of consolidation, the soil consolidation
rate of the present solution is slower than that of Liu’s solution [23]. In the middle and late
stages of consolidation, the soil consolidation rate of the present solution is significantly
faster than that of Liu’s solution [23]. The time required for complete consolidation of
soil calculated by the present solution and Liu’s solution [23] is roughly the same, which
shows that when the improvement of soil is designed according to the CDB in engineering
practice, although the soil consolidation rate is slow in the early stage of consolidation, the
soil is more fully consolidated in the middle and late stages of consolidation, and the soil
consolidation rate can be controlled by choosing the interface parameter.
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Figure 5 depicts the influence of the m value on the ACDS and ACDEPWP. According

to Equation (1), when i ≤ i1, v = Ki
m ( i

i1
)

m−1
, the seepage velocity decreases with the

increase of the m value; when i > i1, v = K(i− i1 m−1
m ), the seepage velocity also decreases

with the increase of the m value. During the consolidation process, the larger the m value,
the slower the seepage velocity in the soil. As shown in Figure 5, the ACDs decrease with
the increase of the m value, which shows that the calculated soil consolidation rate is faster
when the non-Darcy flow is not considered. In addition, it can be seen that Us is always
greater than Up, indicating that the soil settlement rate is greater than the dissipation rate
of EPWP during the consolidation process.
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Figure 6 illustrates the influence of the c value on the ACDS and ACDEPWP. It is found
that both Us and Up decrease with the increase of the c value. According to Equation (11),
with the increase of the c value, the value of (b−U)−c gradually decreases, thus the soil
consolidation rate will decrease. In addition, for any c value, the ACDS is greater than that
defined by settlement, indicating that the soil settlement rate is greater than the dissipation
rate of EPWP during the consolidation process.
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Setting I1 = 1 and c = 0.5, Figures 7 and 8 show the influence of the b value on the
ACDS when m = 1 and m = 1.5, in which m = 1 means Darcy seepage and m = 1.5 means
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non-Darcy flow, respectively. The value of b is the ratio of the final effective stress to the
initial effective stress, and the greater the external load, the greater the value of b. It is
found that in both the ACDs obtained by the present solution and Liu’s solution [23], Us
increases as the b value increases, which indicates that when the c value is relatively small
(i.e., c = 0.5 in this case), the soil settlement rate increases with the increase of external load.
In addition, the value of Us calculated by the present solution is always smaller than that of
Liu’s solution [23]. At the early stage of consolidation, the two solutions have a large gap.
With the increase of time, the two solutions gradually approach, and the time required for
complete consolidation of soil is roughly the same.
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Letting I1 = 1 and c = 1,Figures 9 and 10 illustrate the influence of the b value
on the ACDS when m = 1 and m = 1.5, respectively. As shown in Figure 9, the ACD
calculated by Liu’s solution [23] does not change with the variation of the b value, namely,
the external load has no effect on soil consolidation. However, the ACD calculated by the
present solution increases with the increase of the b value. The different consolidation
curves calculated by the present solution almost coincide in the late stage of consolidation,
indicating that the larger the external load, the faster the soil settlement in the early stage
of consolidation, but the impact of the external load on the late stage of consolidation is
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very small. These phenomena show that the boundary condition has a great influence on
the consolidation characteristics of soil. As shown in Figure 10, in both the ACDs obtained
by the present solution and Liu’s solution [23], Us increases as the b value increases, but the
b value of Liu’s solution [23] has little effect on the early stage of soil consolidation. The
m value in Figures 9 and 10 are different, and the influence of the b value on the ACD by
Liu’s solution [23] is also different, which reflects that the different seepage forms of soil
will lead to different consolidation laws. Meanwhile, the c value in Figure 9 is different
from that in Figure 7, and the influence of the b value on the ACD by Liu’s solution [23]
is different, which reflects that the different nonlinear characteristics of soil would lead to
different consolidation laws.
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Letting I1 = 1 and c = 1.5, Figures 11 and 12 depict the influence of the b value on the
ACDS when m = 1 and m = 1.5, respectively. As shown in Figure 11, the ACD calculated
by Liu’s solution [23] decreases with the increase of the b value, which is quite different
from the change of Us with the b value when c = 0.5. The ACD obtained by the present
solution increases with the increase of the b value in the early stage of consolidation, and
decreases with the increase of the b value in the middle and late stages of consolidation. As
shown in Figure 12, considering both the non-Darcy seepage and nonlinear characteristics
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of soil, the ACD calculated by Liu’s solution [23] decreases with the increase of the b value
in the early stage of consolidation, but the variation of Us with the b value is not obvious
in the late stage of consolidation. However, the ACD calculated by the present solution
increases with the increase of the b value in the early stage of consolidation, decreases
with the increase of the b value in the middle stage of consolidation and increases with
the increase of the b value in the late stage of consolidation. Figure 12 shows that the soil
consolidation law considering both non-Darcy seepage and nonlinear characteristics of soil
is very complex.
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6. Conclusions

In this paper, the solutions of the 1D nonlinear consolidation problem of soft clays
with Hansbo’s flow are derived based on the CDB. The present solutions are verified by
comparing them with existing solutions and models. Then, a parametric study is carried
out to investigate the consolidation behavior of soil, and the following conclusions can
be obtained:

(1) When the interface parameter is large enough, the solutions based on the continuous
drainage boundary can be degenerated into the solutions based on the Terzaghi
drainage boundary.
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(2) With the increase of the interface parameter, the soil consolidation rate increases, but
the gap between the present solution and Liu’s solution [23] gradually decreases.
When the interface parameter is small, increasing the interface parameter will greatly
improve the average consolidation degree defined by settlement, while when the
interface parameter is large, increasing the interface parameter will not affect the
average consolidation degree defined by settlement.

(3) When non-Darcy seepage is not considered or the ratio of soil thickness to external
load is smaller, the soil consolidation rate is slower.

(4) The soil consolidation behavior considering both non-Darcy seepage and nonlinear
characteristics of soil is very complex.
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