Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = compound gratings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5136 KiB  
Review
Advancements in Optical Fiber Sensors for pH Measurement: Technologies and Applications
by Alaa N. D. Alhussein, Mohammed R. T. M. Qaid, Timur Agliullin, Bulat Valeev, Oleg Morozov, Airat Sakhabutdinov and Yuri A. Konstantinov
Sensors 2025, 25(14), 4275; https://doi.org/10.3390/s25144275 - 9 Jul 2025
Viewed by 470
Abstract
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for [...] Read more.
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for real-time monitoring. This review offers a comprehensive analysis of recent advances in optical fiber-based pH sensors, covering key techniques such as fluorescence-based, absorbance-based, evanescent wave, and interferometric methods. Innovations in Fiber Bragg Grating and Surface Plasmon Resonance technologies are also examined. The discussion extends to the impact of pH-sensitive coatings—ranging from nanomaterials and polymeric films to graphene-based compounds—on enhancing sensor performance. Recent advancements have also enabled automation in data analysis and improvements in remote sensing capabilities. The review further compares the economic viability of optical fiber sensors with traditional electrochemical methods, while acknowledging persistent issues such as temperature cross-sensitivity, long-term stability, and fabrication costs. Overall, recent developments have broadened the functionality and application scope of these sensors by improving efficiency, accuracy, and scalability. Future research directions are outlined, including advanced optical interrogation techniques, such as Addressed Fiber Bragg Structures (AFBSs), microwave photonic integration, and optimized material selection. These approaches aim to enhance performance, reduce costs, and enable the broader adoption of optical fiber pH sensors. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

13 pages, 2330 KiB  
Article
Does a SPR-Based Cell-Based Assay Provide Reliable Results on the Toxicity and Efficacy of Antiviral Drugs?
by Petia Genova-Kalou, Evdokiya Hikova, Todor Kereziev, Petar Kolev, Vihar Mankov, Petar Veselinov, Trifon Valkov and Georgi Dyankov
Sensors 2025, 25(13), 3905; https://doi.org/10.3390/s25133905 - 23 Jun 2025
Viewed by 356
Abstract
SPR has been recently established as a powerful tool for studying various cellular processes in real time and without the use of labeling agents. So far, all studies in this area have been performed using the Kretschmann method for SPR excitation. In our [...] Read more.
SPR has been recently established as a powerful tool for studying various cellular processes in real time and without the use of labeling agents. So far, all studies in this area have been performed using the Kretschmann method for SPR excitation. In our studies, we used grating-based SPR. Here, we investigated the feasibility of this approach in a cell-based assay applied for antiviral drug screening. It was found that the continuous-flow SPR detection used in the conventional SPR can be replaced by sequential signal measurements of SPR slides removed from the medium at fixed hours after seeding. A protocol ensuring correct measurements was established. SPR detection was performed up to 48 h after seeding the VERO E6 cell line in three experiments, in which the cells were (i) compound-untreated, (ii) compound-treated, and (iii) infected with human coronavirus type 229E and compound-treated. Therefore, the temporal variation in the SPR signal was determined, induced by the cell coverage on the slide, the compound toxicity, and its antiviral action. MTT analysis and microscopic observations were used as reference methods. The remarkable agreement found in the results of SPR detection proved the effectiveness and reliability of grating-based SPR applied in cell-based assays. Full article
Show Figures

Figure 1

20 pages, 7945 KiB  
Review
Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors
by Jiarui Zhang and Chi Ma
Nanomaterials 2025, 15(11), 816; https://doi.org/10.3390/nano15110816 - 28 May 2025
Viewed by 494
Abstract
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of [...] Read more.
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of perovskite gradually fails to meet the evolving requirements attributed to the escalating demand for low-cost, lightweight, flexible, and highly integrated photodetection. Direct manipulation of electrons and photons with differentiation of local electronic field through predesigned optical nanostructures is a promising strategy to reinforce the detectivity. This review provides a concise overview of the optical manipulation strategy in perovskite photodetector through various optical nanostructures, such as isolated metallic nanoparticles and continuous metallic gratings. Furthermore, the special light detection techniques involving more intricate nanostructure designs have been summarized and discussed. Reviewing these optical manipulation strategies could be beneficial to the next design of perovskite photodetector with high performance and special light recognition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 1024 KiB  
Article
Assessing Ochratoxin A Contamination in Pre-Packaged Grated Cheese: Implications for Food Safety
by Valentina Meucci, Alessio Lenzi, Andrea Armani, Francesca Pedonese, Ludovica Ghimenti and Lucia De Marchi
Foods 2025, 14(9), 1504; https://doi.org/10.3390/foods14091504 - 25 Apr 2025
Viewed by 761
Abstract
Cheese is a globally consumed dairy product, with Europe leading the world in its consumption. Italy, as the third-largest cheese producer within the European Union, plays a crucial role in the sector, particularly through its production of Protected Designation of Origin (P.D.O.) cheeses, [...] Read more.
Cheese is a globally consumed dairy product, with Europe leading the world in its consumption. Italy, as the third-largest cheese producer within the European Union, plays a crucial role in the sector, particularly through its production of Protected Designation of Origin (P.D.O.) cheeses, including Grana Padano and Parmigiano Reggiano. These hard cheeses are widely utilized in pre-packaged grated cheese products, owing to their broad appeal and recognized quality. While mold is a common and often necessary component in cheese production for the development of flavor and texture, fungal growth can also detrimentally affect the quality of cheese, potentially causing economic losses and posing food safety risks. Some molds are capable of producing mycotoxins, such as ochratoxin A (OTA), a toxic compound that has been identified in cheese. This study aims to quantitatively assess the prevalence of OTA contamination in various pre-packaged grated cheese products using the high-performance liquid chromatography method while also exploring the potential implications for food safety. The results revealed a high incidence of OTA, with 97.6% of the samples tested positive for contamination, ranging from below the limit of detection (<LOD) to 19.15 ng g−1. Among the cheeses tested, the Parmigiano Reggiano brand exhibited the significantly highest average level of OTA contamination (5.06 ± 0.66 ng g−1), followed by pecorino (2.25 ± 0.31 ng g−1), mixed (2.15 ± 0.18 ng g−1), and the Grana Padano cheeses (1.53 ± 0.21 ng g−1). Given the widespread consumption of pre-packaged grated cheese products, these findings underscore the importance of continuous monitoring and risk assessment of cheese products, particularly pre-packaged grated varieties, due to the potential health risks associated with OTA exposure. Further investigations are essential to identify the factors contributing to OTA contamination in cheese and to support the development of regulatory standards to ensure consumer safety. Full article
Show Figures

Figure 1

23 pages, 3869 KiB  
Article
Sulfur Emission Dependence on Various Factors During Biomass Combustion
by Giedrius Jomantas, Kęstutis Buinevičius and Justas Šereika
Energies 2025, 18(7), 1701; https://doi.org/10.3390/en18071701 - 28 Mar 2025
Cited by 1 | Viewed by 654
Abstract
The transition from fossil fuels to renewable energy sources often requires shifting toward biomass fuels such as agriculture residues and waste, which tend to emit higher emission rates during combustion, and one of them is sulfur compounds. The main objective of this study [...] Read more.
The transition from fossil fuels to renewable energy sources often requires shifting toward biomass fuels such as agriculture residues and waste, which tend to emit higher emission rates during combustion, and one of them is sulfur compounds. The main objective of this study is to clarify the regularities of the formation of sulfur compounds depending on the technological factors when burning sulfur-containing biomass. The experiments were conducted on two experimental stands—models of 20 kW and 25 kW capacities of industrial boilers equipped with reciprocating grates—by burning sunflower husk pellets and meat bone meal. The influence of incomplete combustion (indicator CO concentration), flue gas recirculation, and combined effects of both factors on concentrations of SO2, SO3, and H2S were investigated during experiments. In addition, 20–90% of the sulfur in the fuel is converted to SO2, contingent upon the combustion conditions. These findings have practical implications for the design and operation of biomass combustion systems. The highest SO2 emissions were observed when primary air was mixed with flue gas recirculation and at the highest content of CO. The correlation of SO2 and SO3 and SO2 and H2S concentrations in flue gases of boilers was investigated. The conversion ratio of SO2 to SO3 was determined under different combustion modes and showed that this ratio can reach up to 5%. The sulfur content in ash deposits in different areas of the actual industrial boiler was analyzed. The highest percent of sulfur (S = 20%) in ash was found on the first boiler pass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 2349 KiB  
Article
Wounding Citrus Peel By-Products as Abiotic Stress to Induce the Synthesis of Phenolic Compounds?
by Rosa Zapata, Lorena Martínez-Zamora, Marina Cano-Lamadrid and Francisco Artés-Hernández
Horticulturae 2024, 10(8), 885; https://doi.org/10.3390/horticulturae10080885 - 21 Aug 2024
Cited by 4 | Viewed by 1488
Abstract
Wounding stress stimulates secondary metabolism and induces the phytochemical accumulation of fresh-cut fruit and vegetables. This research aims to study the biosynthesis of secondary metabolites in citrus peel by-products after different wounding intensities. Orange, grapefruit, and lemon peels were cut into rectangular shapes [...] Read more.
Wounding stress stimulates secondary metabolism and induces the phytochemical accumulation of fresh-cut fruit and vegetables. This research aims to study the biosynthesis of secondary metabolites in citrus peel by-products after different wounding intensities. Orange, grapefruit, and lemon peels were cut into rectangular shapes of 8.5 × 2 cm (CTRL), 1 × 1 cm dices (D), and 0.25 cm grates (G). Samples were stored at 15 °C and 65% relative humidity. Their total phenolic content (TPC), total antioxidant capacity (TAC), and individual organic and phenolic compounds were analyzed after 0, 4, 8, 24, 28, and 36 h. The results showed that the metabolite content decreased with the incubation time, so it is recommended to sample by-products between the first 8 h to achieve the maximum content. Grating, the most severe abiotic stress, was not a suitable technique to induce the synthesis of biocompounds because it allowed the full recovery of flavedo, but partial of albedo. However, it was different for CTRL and D, whose TPCs were ~170 and ~200%, ~98 and ~78%, and ~8 and ~36% higher for orange, grapefruit, and lemon, respectively, compared to G. A principal component analysis confirmed differences between the fruit species and cutting shapes combining all factors. Wounding citrus peels induces the accumulation of phytochemical compounds, but the layer of peel recovered in the cut is crucial in the concentration of phytochemicals extracted. It could be an innovative tool to revalorize these inedible parts of citrus, but further research is still needed. Full article
(This article belongs to the Special Issue From Farm to Table in the Era of a New Horticulture in Spain)
Show Figures

Graphical abstract

14 pages, 3126 KiB  
Article
Comprehensive Experimental Study of Biomass Conversion Behavior: From Particle Phenomena to Reactor Scale
by João Silva, Lelis Fraga, Senhorinha Teixeira and José Teixeira
Energies 2024, 17(15), 3650; https://doi.org/10.3390/en17153650 - 24 Jul 2024
Cited by 1 | Viewed by 1081
Abstract
During biomass combustion in a grate-fired boiler, each particle undergoes a sequence of different reactions, and the phenomena differ from the conversion of a single, thermally thin, particle. Hence, this paper aims to deepen the understanding of biomass conversion processes and provides valuable [...] Read more.
During biomass combustion in a grate-fired boiler, each particle undergoes a sequence of different reactions, and the phenomena differ from the conversion of a single, thermally thin, particle. Hence, this paper aims to deepen the understanding of biomass conversion processes and provides valuable insights for advancing biomass-based energy systems. Firstly, the weight loss characteristics of the larger particles of eucalyptus, pine, acacia, and olive samples were investigated at different isothermal temperatures in a purpose-built reactor that simulates the devolatilization process in a controllable manner. As opposed to the thermogravimetric analysis using thermally thin particles, it was concluded that all fuels show that the combustion of large particles does not exhibit separate consecutive conversion stages, due to internal diffusion resistance. Furthermore, it was verified that the devolatilization rate depends mainly on the reactor temperature, and, consequently, the mass-loss profile is independent of the biomass type. In addition to these experiments, the composition of the gases over the devolatilization period was analyzed for the main fuel used in power plants, eucalyptus. Once again, a strong correlation to the reactor temperature was observed, with CO2 and CO always being the main devolatilization products. The temperature dependence of both compounds presented an increase from 8 to 13% between 600 and 800 °C for CO, while the CO2 yield only slightly increased from 11 to 12%. These observations were essential to identify the transport phenomena effect and the gaseous products released during the biomass combustion. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

11 pages, 3819 KiB  
Article
Switchable Dual-Wavelength Thulium-Doped Fiber Laser Based on Polarization-Maintaining Fiber Bragg Grating and Compound Cavity Filter
by Xiangdong Wang, Fengping Yan, Hao Guo, Wei Wang, Dandan Yang, Pengfei Wang, Ting Li, Chenhao Yu, Kazuo Kumamoto and Yuping Suo
Photonics 2024, 11(4), 360; https://doi.org/10.3390/photonics11040360 - 12 Apr 2024
Cited by 7 | Viewed by 2528
Abstract
This paper presents experimental evidence regarding a novel switchable dual-wavelength thulium-doped fiber laser (TDFL). Wavelength switching is achieved by combining a polarization-maintaining fiber Bragg grating (PM-FBG) with a polarization controller (PC). The three-coupler double-ring compound cavity (TC-DRC) structure, acting as a mode-selection filter, [...] Read more.
This paper presents experimental evidence regarding a novel switchable dual-wavelength thulium-doped fiber laser (TDFL). Wavelength switching is achieved by combining a polarization-maintaining fiber Bragg grating (PM-FBG) with a polarization controller (PC). The three-coupler double-ring compound cavity (TC-DRC) structure, acting as a mode-selection filter, is designed to select a single longitudinal mode (SLM) from the dense longitudinal modes. This paper introduces the design and fabrication method of the TC-DRC filter and analyzes, in detail, the mechanism for SLM selection. The experimental results demonstrate that the designed filter exhibits excellent performance. By adjusting the PC, the TDFL achieves stable SLM operation at the wavelengths of 1940.54 nm and 1941.06 nm, respectively. The optical signal-to-noise ratio (OSNR) is superior to 65 dB. When the TDFL is tested at room temperature, there is no significant wavelength drift, and power fluctuations are less than 1.5 dB. The operation of the SLM is verified through the self-heterodyne method, and the laser maintains stable SLM states for both wavelengths after continuous operation for an hour. Furthermore, based on the phase noise demodulation method, the linewidths of both wavelengths are measured to be less than 10 kHz at the integration time of 0.001 s. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

21 pages, 7013 KiB  
Article
Comparison of Multiple NIR Spectrometers for Detecting Low-Concentration Nitrogen-Based Adulteration in Protein Powders
by Matyas Lukacs, John-Lewis Zinia Zaukuu, George Bazar, Bernhard Pollner, Marietta Fodor and Zoltan Kovacs
Molecules 2024, 29(4), 781; https://doi.org/10.3390/molecules29040781 - 8 Feb 2024
Cited by 7 | Viewed by 2600
Abstract
Protein adulteration is a common fraud in the food industry due to the high price of protein sources and their limited availability. Total nitrogen determination is the standard analytical technique for quality control, which is incapable of distinguishing between protein nitrogen and nitrogen [...] Read more.
Protein adulteration is a common fraud in the food industry due to the high price of protein sources and their limited availability. Total nitrogen determination is the standard analytical technique for quality control, which is incapable of distinguishing between protein nitrogen and nitrogen from non-protein sources. Three benchtops and one handheld near-infrared spectrometer (NIRS) with different signal processing techniques (grating, Fourier transform, and MEM—micro-electro-mechanical system) were compared with detect adulteration in protein powders at low concentration levels. Whey, beef, and pea protein powders were mixed with a different combination and concentration of high nitrogen content compounds—namely melamine, urea, taurine, and glycine—resulting in a total of 819 samples. NIRS, combined with chemometric tools and various spectral preprocessing techniques, was used to predict adulterant concentrations, while the limit of detection (LOD) and limit of quantification (LOQ) were also assessed to further evaluate instrument performance. Out of all devices and measurement methods compared, the most accurate predictive models were built based on the dataset acquired with a grating benchtop spectrophotometer, reaching R2P values of 0.96 and proximating the 0.1% LOD for melamine and urea. Results imply the possibility of using NIRS combined with chemometrics as a generalized quality control tool for protein powders. Full article
(This article belongs to the Special Issue Miniaturized Sensors in Analytical Spectroscopy/Spectrometry)
Show Figures

Figure 1

21 pages, 4714 KiB  
Article
Feasibility Analysis of Municipal Solid Waste Incineration for Harmless Treatment of Potentially Virulent Waste
by Ying Li, Ruyan Zhao, Haonan Li, Wenting Song and Haoxiang Chen
Sustainability 2023, 15(21), 15379; https://doi.org/10.3390/su152115379 - 27 Oct 2023
Cited by 5 | Viewed by 3620
Abstract
The outbreak of major health emergencies, such as the COVID-19 pandemic, has posed numerous challenges to waste management. Environmentally sound treatment of such epidemic-related municipal solid waste (MSW) plays a vital role in interrupting virus transmission. In this study, the furnace type, incineration [...] Read more.
The outbreak of major health emergencies, such as the COVID-19 pandemic, has posed numerous challenges to waste management. Environmentally sound treatment of such epidemic-related municipal solid waste (MSW) plays a vital role in interrupting virus transmission. In this study, the furnace type, incineration process and control parameters of an MSW incinerator were comparatively analyzed with those of a medical waste incinerator and hazardous waste incinerator according to China’s MSW incineration pollution control standards. In addition, changes in flue gas emissions data before, during and after the outbreak of the pandemic were empirically analyzed. The study revealed the following: (1) the feasibility of MSW incinerators to meet the harmless disposal of potentially viral municipal solid waste (PVMSW); (2) the priority order of incinerator types for MSW incinerators in the disposal of potentially virulent waste was grate furnace incinerator > fluidized bed incinerator > cement kiln; and (3) when MSW incinerators treated PVMSW, the emissions of dioxin compounds in the flue gas fluctuated between 0.00052 and 0.031 ng TEQ/m3, HCl emissions fluctuated between 1.6 and 23.742 mg/m3, CO emissions fluctuated between 0.18 and 59.15 mg/m3, heavy metal emissions fluctuated between 0.000008 and 0.855 mg/m3, and particulate matter emissions fluctuated between 0.64 and 12.13 mg/m3. All emissions met the flue gas emission standards. This study verified the feasibility of using MSW incinerators to treat PVMSW during a sudden major pandemic and provided a theoretical basis for the environmentally sound collaborative treatment of PVMSW and a reference for the emergency management and sustainable development of MSW. Full article
Show Figures

Figure 1

26 pages, 6880 KiB  
Review
Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals
by Adib Bin Rashid, Md Enamul Hoque, Nahiyan Kabir, Fahim Ferdin Rifat, Hasin Ishrak, Abdulrahman Alqahtani and Muhammad E. H. Chowdhury
Polymers 2023, 15(20), 4070; https://doi.org/10.3390/polym15204070 - 12 Oct 2023
Cited by 52 | Viewed by 8016
Abstract
The exploration of nanocellulose has been aided by rapid nanotechnology and material science breakthroughs, resulting in their emergence as desired biomaterials. Nanocellulose has been thoroughly studied in various disciplines, including renewable energy, electronics, environment, food production, biomedicine, healthcare, and so on. Cellulose nanocrystal [...] Read more.
The exploration of nanocellulose has been aided by rapid nanotechnology and material science breakthroughs, resulting in their emergence as desired biomaterials. Nanocellulose has been thoroughly studied in various disciplines, including renewable energy, electronics, environment, food production, biomedicine, healthcare, and so on. Cellulose nanocrystal (CNC) is a part of the organic crystallization of macromolecular compounds found in bacteria’s capsular polysaccharides and plant fibers. Owing to numerous reactive chemical groups on its surface, physical adsorption, surface grating, and chemical vapor deposition can all be used to increase its performance, which is the key reason for its wide range of applications. Cellulose nanocrystals (CNCs) have much potential as suitable matrices and advanced materials, and they have been utilized so far, both in terms of modifying and inventing uses for them. This work reviews CNC’s synthesis, properties and various industrial applications. This review has also discussed the widespread applications of CNC as sensor, acoustic insulator, and fire retardant material. Full article
Show Figures

Figure 1

15 pages, 3992 KiB  
Article
On the Arrays Distribution, Scan Sequence and Apodization in Coherent Dual-Array Ultrasound Imaging Systems
by Laura Peralta, Daniele Mazierli, Kirsten Christensen-Jeffries, Alessandro Ramalli, Piero Tortoli and Joseph V. Hajnal
Appl. Sci. 2023, 13(19), 10924; https://doi.org/10.3390/app131910924 - 2 Oct 2023
Cited by 5 | Viewed by 1558
Abstract
Coherent multi-transducer ultrasound (CoMTUS) imaging creates an extended effective aperture through the coherent combination of multiple arrays, which results in images with enhanced resolution, extended field-of-view, and higher sensitivity. However, this also creates a large discontinuous effective aperture that presents additional challenges for [...] Read more.
Coherent multi-transducer ultrasound (CoMTUS) imaging creates an extended effective aperture through the coherent combination of multiple arrays, which results in images with enhanced resolution, extended field-of-view, and higher sensitivity. However, this also creates a large discontinuous effective aperture that presents additional challenges for current beamforming methods. The discontinuities may increase the level of grating and side lobes and degrade contrast. Also, direct transmissions between multiple arrays, happening at certain transducer relative positions, produce undesirable cross-talk artifacts. Hence, the position of the transducers and the scan sequence play key roles in the beamforming algorithm and imaging performance of CoMTUS. This work investigates the role of the distribution of the individual arrays and the scan sequence in the imaging performance of a coherent dual-array system. First, the imaging performance for different configurations was assessed numerically using the point-spread-function, and then optimized settings were tested on a tissue mimicking phantom. Finally, a subset of the proposed optimum imaging schemes was experimentally validated on two synchronized ULA OP-256 systems equipped with identical linear arrays. Results show that CoMTUS imaging performance can be enhanced by optimizing the relative position of the arrays and the scan sequence together, and that the use of apodization can reduce cross-talk artifacts without degrading spatial resolution. Adding weighted compounding further decreases artifacts and helps to compensate for the differences in the brightness across the image. Setting the maximum steering angle according to the spatial configuration of the arrays reduces the sidelobe energy up to 10 dB plus an extra 4 dB reduction is possible when increasing the number of PWs compounded. Full article
Show Figures

Figure 1

17 pages, 2014 KiB  
Article
Heat Capacity and Thermodynamic Functions of Titanium-Manganites of Lanthanum, Lithium and Sodium of LaLi2TiMnO6 and LaNa2TiMnO6
by Bulat Kunurovich Kasenov, Shuga Bulatovna Kasenova, Zhenisgul Imangalievna Sagintaeva, Sailaubai Baisanov, Natalya Yulievna Lu, Altynbek Nukhuly and Erbolat Ermekovich Kuanyshbekov
Molecules 2023, 28(13), 5194; https://doi.org/10.3390/molecules28135194 - 4 Jul 2023
Cited by 4 | Viewed by 1352
Abstract
Titanium-manganites of LaLi2TiMnO6 and LaNa2TiMnO6 were synthesized by the methods of ceramic technology from the oxides of lanthanum, titanium (IV), manganese (III), and the carbonates of lithium and sodium. The types of their syngony and the parameters [...] Read more.
Titanium-manganites of LaLi2TiMnO6 and LaNa2TiMnO6 were synthesized by the methods of ceramic technology from the oxides of lanthanum, titanium (IV), manganese (III), and the carbonates of lithium and sodium. The types of their syngony and the parameters of their gratings were determined radiographically. The isobaric heat capacities of titanium-manganites were measured with experimental calorimetry in the range of 298.15–673 K. It was found that on the dependence curve of heat capacity versus temperature of C°p~f(T), for LaLi2TiMnO6 at 348 K and 598 K, and LaNa2TiMnO6 at 348 K, there are abnormal jumps in heat capacity, probably related to phase transitions of the second kind. Taking into account the temperatures of the phase transitions, the equations of the temperature dependence of the heat capacity of titanium-manganites were derived. Their standard entropies were calculated by the ion increments method. Temperature dependences of the thermodynamic functions of S°(T), H°(T)-H°(298.15), and Φxx(T) were calculated using the experimental data on heat capacities and the calculated values of the standard entropies. The standard heat capacities of the studied compounds were calculated by the independent methods of ion increments and Debye, the values of which were in satisfactory agreement with the experimental data. The standard enthalpy of the formation of LaLi2TiMnO6 and LaNa2TiMnO6 was calculated according to the methodology developed by the authors. The conducted electrophysical studies determined the nature of the second-order phase transition and the semiconductor features of their conductivity. Thus, all the above-mentioned data on the experimental and calculated studies of the temperature dependence of heat capacity, the thermodynamic functions to determine a standard enthalpy of formation of LaLi2TiMnO6 and LaNa2TiMnO6, and the investigation of their electrical properties are absolutely new, and they have no analogues. Full article
Show Figures

Figure 1

13 pages, 7499 KiB  
Article
One-Dimensional High-Resolution Wavefront Sensor Enabled by Subwavelength Compound Gratings
by Yunlong Meng, Xinyu Shen, Junyang Xie, Yao Peng, Xiaowen Shao, Feng Yan and Cheng Yang
Photonics 2023, 10(4), 420; https://doi.org/10.3390/photonics10040420 - 7 Apr 2023
Cited by 1 | Viewed by 1918
Abstract
Angle sensors are widely used for wavefront measurements, which is attributed to their integration and robustness. Currently, commercial sensors are available with pixel sizes in the order of wavelengths. However, the spatial resolution of angle sensors still lags far behind. Here, we report [...] Read more.
Angle sensors are widely used for wavefront measurements, which is attributed to their integration and robustness. Currently, commercial sensors are available with pixel sizes in the order of wavelengths. However, the spatial resolution of angle sensors still lags far behind. Here, we report a one-dimensional, high-resolution wavefront sensor. It was produced by introducing subwavelength compound gratings above the pixels. The gratings involved could be replaced by the sensor’s intrinsic readout circuitry without additional operation. The experimental results showed that it had a spatial resolution of 1.4 µm, two orders of magnitude higher than that of the Shack–Hartmann wavefront sensor. The significant increase in spatial resolution enables angle sensors to reconstruct complex wavefronts accurately. Full article
Show Figures

Figure 1

10 pages, 4229 KiB  
Communication
Sub-kHz Narrow-Linewidth Single-Longitudinal-Mode Thulium-Doped Fiber Laser Utilizing Triple-Coupler Ring-Based Compound-Cavity Filter
by Biao Guan, Fengping Yan, Dandan Yang, Qi Qin, Ting Li, Chenhao Yu, Xiangdong Wang, Kazuo Kumamoto and Yuping Suo
Photonics 2023, 10(2), 209; https://doi.org/10.3390/photonics10020209 - 14 Feb 2023
Cited by 13 | Viewed by 2302
Abstract
This paper proposes and demonstrates a single-longitudinal-mode thulium-doped fiber laser using a passive triple-coupler ring-based compound-cavity filter (TCR-CC) and a uniform fiber Bragg grating. For the first time, the TCR-CC filter is used to select a single mode from dense longitudinal modes. Experimental [...] Read more.
This paper proposes and demonstrates a single-longitudinal-mode thulium-doped fiber laser using a passive triple-coupler ring-based compound-cavity filter (TCR-CC) and a uniform fiber Bragg grating. For the first time, the TCR-CC filter is used to select a single mode from dense longitudinal modes. Experimental results show that laser in the wavelength of 1941.28 nm can maintain exceptional stability with an optical signal-to-noise ratio of 74.1 dB. The measured maximum wavelength drift and power fluctuation are 0.01 nm and 0.45 dB, respectively. Meanwhile, the measured linewidth of the laser is 910 Hz, and the relative intensity noise is below −125.82 dB/Hz above 2 MHz frequencies. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

Back to TopTop