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Abstract: This paper proposes and demonstrates a single-longitudinal-mode thulium-doped fiber
laser using a passive triple-coupler ring-based compound-cavity filter (TCR-CC) and a uniform
fiber Bragg grating. For the first time, the TCR-CC filter is used to select a single mode from
dense longitudinal modes. Experimental results show that laser in the wavelength of 1941.28 nm
can maintain exceptional stability with an optical signal-to-noise ratio of 74.1 dB. The measured
maximum wavelength drift and power fluctuation are 0.01 nm and 0.45 dB, respectively. Meanwhile,
the measured linewidth of the laser is 910 Hz, and the relative intensity noise is below−125.82 dB/Hz
above 2 MHz frequencies.

Keywords: single-longitudinal-mode; thulium-doped fiber laser; triple-coupler ring-based compound-
cavity filter

1. Introduction

Narrow-linewidth single-longitudinal-mode (SLM) fiber lasers have been extensively
explored owing to their advantages like long coherent length, which can be advanta-
geously applied in various fields, including fiber sensing [1], Doppler LIDAR [2], coherent
beam combination [3], gravitational-wave observation [4], and high precision optical mea-
surement systems [5]. Several techniques have been reported so far to realize SLM fiber
laser, including short-cavity distributed Bragg reflector (DBR) [6], distributed feedback
(DFB) structure [7], Raman fiber laser [8], compound-ring cavity fiber laser [9], and optical
self-injection feedback [10].

Despite their compactness and robustness in the SLM operation, DBR and DFB fiber
lasers have some inherent structural limitations that prevent them from achieving wide
tunability. SLM ring cavity fiber lasers are free from these limitations due to their flexibility
in embedding various spectral filters. The ring lasers with long cavity lengths lead to
narrow linewidth based on Schawlow-Townes theory [11] and the relaxation oscillation
frequency peak shifts towards lower frequency. It is more susceptible to mode-hopping
and multi-longitudinal mode oscillation due to densely spaced resonant modes in low
frequency. To circumvent these drawbacks, numerous mode-selection mechanisms have
been investigated. The unpumped active fibers based on saturable absorber (SA) can restrict
the laser’s longitudinal modes and strengthen the single-mode oscillation in a SA. Yin et al.
demonstrated a stable SLM thulium-doped fiber laser (TDFL) using a SA as self-tracking
narrow-band filter [12]. However, the approach caused a large amount of laser energy to
be absorbed by SA, resulting in a large cavity loss. Narrow bandwidth filters are a crucial
tool for SLM operation. Cheng et al. presented a simple and stable SLM fiber laser that
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consists of an apodized uniform fiber Bragg grating (UFBG) and a high finesse FBG-based
Fabry–Perot (F-P) etalon in the ring cavity [13]. The manufacturing process was strict due
to ultra-narrow bandwidth of FBG. The compound-cavity composed of sub-ring cavity
filters can expand longitudinal mode interval according to the vernier effect [14] resulting
in a low production cost. Feng et al. used a four-wavelength-switchable erbium-doped
fiber laser with a superimposed high-birefringence FBG and a dual-coupler ring-based
compound-cavity filter to achieve SLM operation [15]. Furthermore, Cheng et al. proposed
and demonstrated a six-wavelength SLM thulium-doped fiber laser, which was guaranteed
by a novel passive dual-ring compound cavity composed of two symmetric 3 × 3 optical
couplers [16]. Although some passive sub-ring resonators have been designed, developing
more effective passive sub-ring resonators is still important for potential applications
requiring extremely high stability and ultra-narrow linewidth. To further improve the
output linewidth and stability performance, it is useful to use the compound-ring cavity
filter with transmission spectrum owing to the narrow main resonance peak.

In this paper, a mode of analysis for a compound-ring cavity mode-selection mecha-
nism is established. The evolution characteristics of the SLM operation is demonstrated
based on theoretical analysis. Herein, a main ring cavity consists of a UFBG and a triple-
coupler ring-based compound-cavity (TCR-CC) filter. A laser of 1941.28 nm with a 74.1 dB
optical signal-to-noise ratio (OSNR) was obtained when the pump power was 2.1 W. The
experimental results indicated that the laser exhibits exceptional spectral stability within
one hour. Moreover, the radio frequency (RF) spectra with different ranges were given to
verify the SLM operation. Finally, the relative intensity noise (RIN) of the proposed laser
was −125.82 dB/Hz at frequencies above 2 MHz, and the linewidth was 910 Hz with an
integration time of 0.001 s.

2. Experimental Setup and Principles
2.1. Experimental Configuration

The experimental setup of the proposed SLM TDFL utilizing a TCR-CC filter is shown
in Figure 1a. A 3.5 m-long thulium-doped fiber (TDF, SM-TDF10P/130-HE, Coherent, Santa
Clara, CA, USA) as an active media was pumped using a 793 nm pump (K793DA3RN-
12.00W, BWT Beijing Ltd., Beijing, China) through a fiber combiner (FC, LightComm
Technology, China). The peak cladding absorption of TDF at 793 nm is 3 dB/m, and it can
offer sufficient gain to the fiber laser with high conversion efficiency. The core/cladding
diameters of TDF and FC’s output pigtails are both 10/130 µm.

To ensure a counterclockwise transmission of laser, a circulator was inserted between
the optical coupler (OC4) and FC. An optical spectrum analyzer (OSA, AQ6375B, Yokogawa,
Japan) with a resolution of 0.05 nm and a sampling interval of 0.01 nm was used to measure
10% of laser power from the 10/90 OC. It can be connected to a photodetector (PD) that
can convert light signals into electronic signals injected into the signal analyzer. The length
of the main cavity L was 11.3 m, which provided an 18.4 MHz longitudinal-mode spacing
according to ∆ν = c/neff L, where c = 3 × 108 m/s is the speed of light in vacuum, and
neff = 1.4414 is the refractive index of the fiber at 2 µm band. A TCR-CC filter made of two
2 × 2 couplers (OC2, OC3) and a 3 × 3 coupler (OC1) is shown in Figure 1b. The UFBG was
fabricated in a uniform phase mask (period Λ = 1347.3 nm), and a 248 nm KrF excimer
laser. The transmission and reflection spectra of UFBG were detected by an amplified
spontaneous emission (ASE), as shown in Figure 1c. The peak reflection wavelength is
1941.28 nm, the corresponding reflectivity is 75%, and the reflection bandwidth (RB) is
0.12 nm.

2.2. Principle of SLM Operating

The TCR-CC was injected in the ring cavity because the UFBG with a 3 dB bandwidth
of 8.6 GHz was not narrow enough to directly produce a SLM laser. The TCR-CC filter,
as shown in Figure 1b, was assembled by three OCs. We set Ein1–E14 as the electric-field
amplitudes of each light port, L1–L4 as the fiber lengths, κ1 as the cross-coupling ratio, γ1
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and γ2 as the insertion loss of the OCs, α as the fiber loss coefficient, δ as the fusion splicing
loss, β = 2πneff /λ as the light propagation constant, neff as the effective refractive index,
and λ as the wavelength.

According to Mason’s rule [17], with the signal-flow graph in Figure 2, the lasing
transmission at each node is given by:

C1 =
√

1− γ1/
√

3
Z1 =

√
1− γ1ei2π/3/

√
3

Xm =
√

1− κm
√

1− γm(m = 2, 3)
Ym = i

√
κm
√

1− γm(m = 2, 3)
Tn =

√
1− δe(−α+jβ)L1(n = 1, 2, 3, 4)

(1)

The straight transmittance of the OC1 is labeled as C1 and the cross-coupling transmit-
tance is labeled as Z1. Different from the 3 × 3 coupler, the straight transmittance of the
OCm (m = 2, 3) is labeled as Xm and the cross-coupling transmittance is labeled as Ym. The
propagation gain of the fiber optical path is labeled as Tn. Considering the operation of the
light, input power was set as Ein1 = 1, E2 = E3 = E8 = E12 = 0, and the process of the laser
can be written as: 

Ein1 = 1
E4 = C1E1 + Z1E2 + Z1E3
E5 = Z1E1 + C1E2 + Z1E3
E6 = Z1E1 + Z1E2 + C1E3
E7 = T1E4
E9 = X2E7 + Y2E8
E10 = Y2E7 + X2E8
E11 = T2E9
E13 = X3E11 + Y3E12
E14 = Y3E11 + X3E12
E2 = T4E14
E3 = T3E13

(2)

The solution of E10 can be calculated through the above equations and the transmission
T of the TCR-CC filter can be written as:

T =

(
Eout10

Ein1

)
·
(

Eout10

Ein1

)∗
(3)

The transmission spectra of the TCR-CC filter were obtained by simulation, and the
result is shown in Figure 3. The main cavity’s longitudinal mode spacing of 18.4 MHz is
close to the effective 3 dB bandwidth of the TCR-CC filter, which ensures that only one
longitudinal mode is dominant in the transmission band. Moreover, the TCR-CC filter’s
effective free-spectral range (FSR) should be at least as wide as its 3 dB bandwidth. Based
on the determined cavity length of Ring 1 and Ring 2, according to the above analysis, the
influence of the coupling ratio κ on the TCR-CC filtering characteristics was simulated in
detail, as shown in Figure 3. The used parameters were β = 0.2 dB/km, δ = 0.01 dB, γi(i = 1,
2, 3) = 0.09 dB, neff = 1.4414, L1 = 0.7 m, L2 = 0.7 m, L3 = 0.7 m, L4 = 0.73 m. The coupling
ratio of OC1 is 1:1:1. For the TCR-CC filter, the transmission spectra were simulated for
the values of the coupling ratio κ3 of 0.1, 0.5, and 0.9, respectively, as shown in Figure 3a–c.
The coupling ratio κ2 was defined as 0.5. As can be seen, the transmission of the TCR-CC
filter increased from 0.63 to 0.81, then dropped down to 0.63, while the FSR maintained
the constant of 6.9 GHz determined by the ∆L of 3 cm. To obtain a high transmissivity
of the proposed fiber laser, the ratio κ3 was chosen as 0.5. Moreover, the influence of
OC2

′s ratio can be seen in Figure 3d,e; the transmission of the filter with OC2
′s ratios of

0.1 and 0.9 was lower than that at the ratio of 0.5. Therefore, the ratio of OC2 was set to
0.5. The main resonant peak of TCR-CC filter can be observed through partial enlarged
view, as shown in Figure 3f. The 3 dB bandwidth of the main resonant peak was 18.5 MHz,
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satisfying the condition of being 1–2 times the longitudinal mode interval of the main cavity.
Based on the determined parameters of the TCR-CC, the simulated spectra of TCR-CC are
shown in Figure 4a,b to investigate the length difference of sub-rings on the transmission
performance. The length differences ∆L between Ring 1 and Ring 2 were set to 0.01 m and
0.03 m, corresponding to a FSR of 20.8 GHz and 4.6 GHz, respectively. They were consistent
with the value calculated according to FSR = c/(n eff ∆ L).
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Photonics 2023, 10, 209  6  of  10 
 

 

 

Figure 4. Simulated spectra of the proposed TCR‐CC filter, with (a,b) showing the influence of sub‐

ring cavity length on the transmission performance. 

3. Experimental Results 

The optical spectrum of proposed TDFL with the pump power of 2.1 W was meas‐

ured by OSA with a span of 10 nm. A sharp unimodal with an OSNR of more than 74.1 

dB can be observed  in Figure 5a. The  lasing stability was demonstrated  in  the  inset of 

Figure 5a, which was recorded for 60 min in 5 min intervals. Figure 5b shows the medium‐

term operating stability at a lasing wavelength of 1941.28 nm, which demonstrates that 

the laser operates with good wavelength stability, and the maximum wavelength fluctu‐

ation is 0.01 nm. The power fluctuation of 0.45 dB was produced by the pump source due 

to vibration caused by an  internal device during heat radiation. Moreover, the thermal 

effects accumulated over a prolonged period of the laser operation can cause power fluc‐

tuation. The temperature change caused by the continuous operation of the pump will 

affect the refractive index of the optical fiber and cause wavelength fluctuation. 

   

Figure 5. (a) Measured optical spectrum of proposed TDFL with pump power of 2.1 W. (b) Fluctu‐

ations of wavelength and power of 1941.28 nm. 

The SLM property was detected by a 12.5 GHz PD and a 26.5 GHz signal analyzer 

(Keysight, N9020A) when the TDFL was operating at 2.1 W pump power. Figure 6a dis‐

plays the RF spectrum with a resolution bandwidth (RBW) of 1 MHz and a span of 100 

MHz. It can be noticed that this fiber laser operates in SLM status. A detailed drawing of 

signal analyzer results is shown in the inset of Figure 6a and the RF spectrum was contin‐

uously monitored  for 60 min. As can be seen  in Figure 6b,c, no beat  frequency can be 

observed in the scanning range of 0–500 MHz and 0–1 GHz, indicating that the TDFL was 

operating at a stable SLM state. To further investigate the mode suppression property of 

TCR‐CC structure, the TCRR‐CC filter was removed in the ring cavity and replaced with 

single‐mode fiber of the same length. As can be seen in Figure 6d, the spacing of the main 

cavity’s  longitudinal mode  is 18.4 MHz, which  is consistent with the above‐mentioned 

results. The comparison of different SLM states under two conditions indicated that the 

0 10 20 30 40 50 60
1941.26

1941.27

1941.28

1941.29

1941.30

W
av

el
en

gt
h 

(n
m

)

Time (min)

f ≤ 0.01 nm

1.0

1.5

2.0
(b)

 f p ≤ 0.45 dB

O
pt

ic
al

 p
ow

er
 (

dB
m

)

Figure 4. Simulated spectra of the proposed TCR-CC filter, with (a,b) showing the influence of
sub-ring cavity length on the transmission performance.



Photonics 2023, 10, 209 6 of 10

3. Experimental Results

The optical spectrum of proposed TDFL with the pump power of 2.1 W was measured
by OSA with a span of 10 nm. A sharp unimodal with an OSNR of more than 74.1 dB can
be observed in Figure 5a. The lasing stability was demonstrated in the inset of Figure 5a,
which was recorded for 60 min in 5 min intervals. Figure 5b shows the medium-term
operating stability at a lasing wavelength of 1941.28 nm, which demonstrates that the
laser operates with good wavelength stability, and the maximum wavelength fluctuation
is 0.01 nm. The power fluctuation of 0.45 dB was produced by the pump source due to
vibration caused by an internal device during heat radiation. Moreover, the thermal effects
accumulated over a prolonged period of the laser operation can cause power fluctuation.
The temperature change caused by the continuous operation of the pump will affect the
refractive index of the optical fiber and cause wavelength fluctuation.
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tions of wavelength and power of 1941.28 nm.

The SLM property was detected by a 12.5 GHz PD and a 26.5 GHz signal analyzer
(Keysight, N9020A) when the TDFL was operating at 2.1 W pump power. Figure 6a
displays the RF spectrum with a resolution bandwidth (RBW) of 1 MHz and a span of
100 MHz. It can be noticed that this fiber laser operates in SLM status. A detailed drawing
of signal analyzer results is shown in the inset of Figure 6a and the RF spectrum was
continuously monitored for 60 min. As can be seen in Figure 6b,c, no beat frequency can be
observed in the scanning range of 0–500 MHz and 0–1 GHz, indicating that the TDFL was
operating at a stable SLM state. To further investigate the mode suppression property of
TCR-CC structure, the TCRR-CC filter was removed in the ring cavity and replaced with
single-mode fiber of the same length. As can be seen in Figure 6d, the spacing of the main
cavity’s longitudinal mode is 18.4 MHz, which is consistent with the above-mentioned
results. The comparison of different SLM states under two conditions indicated that the
TCR-CC can constrain multi-longitudinal modes and the proposed laser combined with
FBG and TCR-CC can operate in the SLM state.

One typical RIN spectrum was investigated for the TDFL by a system composed of a
12.5 GHz PD and an oscilloscope (Tektronix, DPO7104), as shown in Figure 7. Obviously,
the RIN of the SLM TDFL was lower than −125.82 dB/Hz at frequencies over 2 MHz,
and a range of 0–500 kHz was given in the inset of Figure 7. Theoretically, the RIN below
−120 dB/Hz can satisfy the application requirements, such as an interferometric fiber
sensing laser [18]. The relaxation oscillation frequencies peak of 52.5 kHz can be observed
in the inset, which was mainly influenced by the cavity length, pump power, cavity loss,
mechanical vibration, and thermal disturbance [19].

The linewidth of the fiber laser was measured using the unbalanced Michelson inter-
ferometer involving a 3 × 3 coupler, two Faraday rotation mirrors, and a 50 m single-mode
fiber [20]. The linewidth was calculated through laser phase noise demodulation based
on the β-separation linewidth method under different integration times, and the results
are reported in Figure 8 [21–23]. The laser linewidth at different integration times (0.001,
0.005, 0.01, 0.05, 0.1, 0.5, and 1 s) were 0.91, 18.09, 20.49, 24.67, 30.37, 87.27, and 278.91 kHz,
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respectively. As can be seen, the linewidth was 910 Hz at the minimum measurement
time, which is the intrinsic linewidth of the laser. Meanwhile, the measured linewidths
gradually expand as the integration time increases. These increasing values was primarily a
result of technical noise brought on by environmental vibrations and low-frequency signal
interference during the experiment. In addition, the linewidth was affected by the thermal
effect accumulated by the cladding pump due to prolonged operation.
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Moreover, the proposed fiber laser is compared with some of the previously reported
TDFLs with different technique, as shown in Table 1. The maximal power fluctuation in the
TDFL proposed in this paper is 0.45 dB, which is lower than in the report [24]. The OSNR is
higher than that in the previous reports [24–27], and the exceptional OSNR is obtained. In
addition, compared with fiber lasers using other technique, the linewidth of the proposed
TDFL can reach a narrow value. It can be seen from the comparison results that the laser
proposed in this paper has the advantages of high OSNR and high stability.

Table 1. Wavelength, Maximal power, OSNR comparison of SLM TDFL based on different techniques.

Technique Wavelength
/nm

Maximal Power
Fluctuation OSNR Linewidth Reference

Self-injection
+ SA 1923.44 0.7 dB 25 dB <9.1 MHz [24]

DBR 1950 NA 58 dB 6.95 kHz [25]
FBG + SA 1950.06 NA 68 dB 6.76 kHz [26]

SA 1957.24 NA 60 dB 20 kHz [12]
Micro resonator 1978.6 NA 55 dB 15.1 kHz [27]

This work 1941.28 0.45 dB 74.1 dB 910 Hz

The relationship between laser output power and pump power was measured by a
power meter (Laser point). As can be seen in Figure 9, the laser began to lase with an output
power of 0.24 mW when the pump power was 2.05 W, and the output power increased
with the increasing pump power. Three measurements of the output power were taken for
each pump power, and the average power was then computed. When the pump power
was 6.5 W, the average output power was 75.92 mW and the slope of the laser was about
1.76%. The reason of low output power is the mode field mismatch loss caused by the size
mismatch during the fusion splicing between TDF and SMF.
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4. Conclusions

A SLM TDFL centered at 1941.28 nm with an OSNR as high as 74.1 dB was constructed.
The stable SLM operation was obtained by combining a UFBG and a TCR-CC filter. The
design and characterization of the TCR-CC filter were presented in detail. The fluctuations
of the wavelength and corresponding output power were less than 0.01 nm and 0.47 dB,
respectively. Experimental results measured by the signal analyzer revealed the SLM
characteristics. The RIN of the proposed laser was measured to be under −125.82 dB/Hz
with frequencies above 2 MHz. Based on the β-separation line method, the linewidth of less
than 910 Hz was calculated by the frequency noise power spectral density under different
integration times. The output power increased up to 75.92 mW when the pump power was
fixed at 6.5 W with a slope efficiency of 1.76%. The proposed TDFL has a great potential in
free-space optical communication.
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