Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,777)

Search Parameters:
Keywords = composite reinforcement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
4 pages, 209 KiB  
Editorial
Advanced Polymer Composites and Applications
by Bing Wang, Lihua Zhan and Chenglong Guan
Polymers 2025, 17(15), 2062; https://doi.org/10.3390/polym17152062 - 28 Jul 2025
Abstract
Polymer composite materials, engineered by combining polymeric matrices with functional fillers or reinforcing phases, represent a frontier in advanced materials science driven by the dual imperatives of performance enhancement and sustainable development [...] Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites)
18 pages, 1650 KiB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

18 pages, 7474 KiB  
Article
Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint
by Xiaoyang Gao, Xin Hu and Ang Yang
J. Mar. Sci. Eng. 2025, 13(8), 1429; https://doi.org/10.3390/jmse13081429 - 27 Jul 2025
Abstract
Unmanned surface vehicles (USVs) course control research constitutes a vital branch of ship motion control studies and serves as a key technology for the development of marine critical equipment. Aiming at the problems of model uncertainties, external marine disturbances, performance optimization, and actuator [...] Read more.
Unmanned surface vehicles (USVs) course control research constitutes a vital branch of ship motion control studies and serves as a key technology for the development of marine critical equipment. Aiming at the problems of model uncertainties, external marine disturbances, performance optimization, and actuator constraints encountered by the autopilot system, this paper proposes a composite disturbance cancellation optimized control method based on fuzzy reinforcement learning. Firstly, a coupling design of the finite-time disturbance observer and fuzzy logic system is conducted to estimate and reject the composite disturbance composed of internal model uncertainty and ocean disturbances. Secondly, a modified backstepping control technique is employed to design the autopilot controller and construct the error system. Based on the designed performance index function, the fuzzy reinforcement learning is utilized to propose an optimized compensation term for the error system. Meanwhile, to address the actuator saturation issue, an auxiliary system is introduced to modify the error surface, reducing the impact of saturation on the system. Finally, the stability of the autopilot system is proved using the Lyapunov stability theory. Simulation studies conducted on the ocean-going training ship “Yulong” demonstrate the effectiveness of the proposed algorithm. Under the strong and weak ocean conditions designed, this algorithm can ensure that the tracking error converges within 7 s. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
20 pages, 14936 KiB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Viewed by 32
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

16 pages, 3360 KiB  
Article
Natural Fiber-Reinforced Foamed Rubber Composites: A Sustainable Approach to Achieving Lightweight and Structural Stability in Sole Materials
by Yi Jin, Shen Chen, Jinlan Xie, Weixing Xu, Yunhang Zeng and Bi Shi
Polymers 2025, 17(15), 2043; https://doi.org/10.3390/polym17152043 - 26 Jul 2025
Viewed by 41
Abstract
Lightweightness and durability are key consumer demands for footwear. To address the issues of deformation and poor durability in foamed sole materials, this study integrates natural fibers into the formulation of foamed rubber. The effects of natural fiber incorporation on density, mechanical properties, [...] Read more.
Lightweightness and durability are key consumer demands for footwear. To address the issues of deformation and poor durability in foamed sole materials, this study integrates natural fibers into the formulation of foamed rubber. The effects of natural fiber incorporation on density, mechanical properties, creep behavior, anti-slip performance, and aging resistance were comprehensively analyzed. Additionally, the study explored the mechanisms underlying the improved performance of the modified rubber materials. The results revealed that natural fiber integration significantly enhanced the structural stability, strength, and aging resistance of natural rubber (NR). Among the fibers compared, collagen fibers (CF) proved to be the most effective modifier for foamed NR. The density, tensile strength, tear strength, and coefficient of friction of CF-modified foamed NR (CF-NR) were found to be 0.72 g/cm3, 10.1 MPa, 48.0 N/mm, and 1.105, respectively, meeting the standard requirements for sole materials. Furthermore, CF-NR demonstrated a recoverable deformation of 4.58% and a negligible irreversible deformation of 0.10%, indicating a successful balance between comfort and durability. This performance enhancement can be attributed to the supportive role of CF in the pore structure, along with its inherent flexibility and recoverability. This work presents a novel approach for the development of high-quality, lightweight footwear in the sole material industry. Full article
(This article belongs to the Special Issue Towards Green Polymers Through Biomass Conversion and Utilization)
Show Figures

Graphical abstract

12 pages, 475 KiB  
Article
Pelvic Floor Health and Urinary Incontinence in Female Soccer Players: A Comparative Analysis Between Professionals and Physically Active Women: A Cross-Sectional Descriptive Protocol
by Julia M. Sebastian-Rico, María Jesús Muñoz-Fernández, Luis Manuel Martínez-Aranda, África Calvo-Lluch and Manuel Ortega-Becerra
Diagnostics 2025, 15(15), 1881; https://doi.org/10.3390/diagnostics15151881 - 26 Jul 2025
Viewed by 48
Abstract
Background/Objectives: Urinary incontinence (UI), defined as the involuntary loss of urine, is common among female athletes. As more women engage in competitive sports, numerous studies have explored UI in young, nulliparous, and physically active women. The objectives of this study were (i) to [...] Read more.
Background/Objectives: Urinary incontinence (UI), defined as the involuntary loss of urine, is common among female athletes. As more women engage in competitive sports, numerous studies have explored UI in young, nulliparous, and physically active women. The objectives of this study were (i) to analyze the prevalence, severity, and characteristics of UI in professional nulliparous female soccer players and (ii) to compare the status of the pelvic floor muscles (PFMs) between professional soccer players and physically active young women. Methods: This descriptive cross-sectional study included professional soccer players (n = 18) and physically active women (n = 14). UI was assessed using the ICIQ-SF questionnaire, and PFM function was evaluated through intracavitary examination using the PERFECT method. Additional data were collected on body composition and on urinary, bowel, and sexual health. Results: UI affected 35.7% of physically active women and 50% of professional soccer players. Stress urinary incontinence (SUI) was the most common type, present in 100% of affected soccer players and 60% of affected active women. The severity of UI was mostly mild, with no significant differences between groups. PFM assessment revealed deficiencies in control, relaxation, endurance, and rapid contractions, as well as difficulties performing an effective perineal locking (PL) maneuver during increased intra-abdominal pressure. Conclusions: These findings highlight the need for targeted programs focused on strengthening and educating athletes about their PFMs, aiming to prevent UI and improve both performance and quality of life. The study reinforces the importance of preventive strategies for pelvic floor health in sports. Full article
(This article belongs to the Special Issue Diagnosis and Management of Sports Medicine)
Show Figures

Figure 1

26 pages, 8400 KiB  
Article
Conceptual Design of a Hybrid Composite to Metal Joint for Naval Vessels Applications
by Man Chi Cheung, Nenad Djordjevic, Chris Worrall, Rade Vignjevic, Mihalis Kazilas and Kevin Hughes
Materials 2025, 18(15), 3512; https://doi.org/10.3390/ma18153512 - 26 Jul 2025
Viewed by 137
Abstract
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the [...] Read more.
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the composite manufacturing process, where the dry fibres are displaced to accommodate the studs before the resin infusion process. The materials used were AA6082-T6 aluminium and plain-woven E-glass fabric reinforced epoxy, with primary applications in naval vessels. This joining approach offers a cost-effective solution that does not require complicated onsite welding. The joint design was developed based on a simulation test program with finite element analysis, followed by experimental characterisation and validation. The design solution was analysed in terms of the force displacement response, sequence of load transfer, and characterisation of the joint failure modes. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

12 pages, 6639 KiB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 91
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

18 pages, 2377 KiB  
Article
Sustainable Adhesive Formulation and Performance Evaluation of Bacterial Nanocellulose and Aloe Vera for Packaging Applications
by Urška Vrabič-Brodnjak and Aljana Vidmar
Molecules 2025, 30(15), 3136; https://doi.org/10.3390/molecules30153136 - 26 Jul 2025
Viewed by 69
Abstract
The development of bio-based adhesives as sustainable alternatives to synthetic formulations presents a significant opportunity for advancing environmental sustainability in packaging applications. This research aimed to develop and evaluate a bio-based adhesive derived from bacterial nanocellulose (BNC), aloe vera and its mixtures as [...] Read more.
The development of bio-based adhesives as sustainable alternatives to synthetic formulations presents a significant opportunity for advancing environmental sustainability in packaging applications. This research aimed to develop and evaluate a bio-based adhesive derived from bacterial nanocellulose (BNC), aloe vera and its mixtures as a potential replacement for commercial synthetic adhesives. Aloe vera, selected for its polysaccharide-rich composition, served as a natural polymeric matrix, while BNC contributed reinforcing properties. The adhesive formulations, with and without BNC, were compared to a commercial adhesive to assess their mechanical performance. T-peel and shear tests were conducted on smooth and rough paper substrates to evaluate adhesive strength. The bio-based adhesive incorporating BNC demonstrated superior shear and peel strength on rough substrates due to enhanced mechanical interlocking within the fibrous structure of paper, whereas performance on smooth surfaces was hindered by uneven BNC distribution, reducing adhesive-substrate interaction. Although the commercial adhesive achieved higher absolute maximum force values, the bio-based formulation exhibited comparable mechanical stability under specific conditions. These findings underscore the influence of substrate properties and application methods on adhesive performance, highlighting the potential of bio-based adhesives in packaging applications and the need for further formulation optimization to fully realize their advantages over traditional synthetic adhesives. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

24 pages, 4281 KiB  
Article
Free Vibration Characteristics of FG-CNTRC Conical–Cylindrical Combined Shells Resting on Elastic Foundations Using the Haar Wavelet Discretization Method
by Jianyu Fan, Haoran Zhang, Yongqiang Tu, Shaohui Yang, Yan Huang, Zhichang Du and Hakim Boudaoud
Polymers 2025, 17(15), 2035; https://doi.org/10.3390/polym17152035 - 25 Jul 2025
Viewed by 105
Abstract
Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are a novel breed of polymer nanocomposite, in which the nonuniform distribution of the carbon nanotube (CNT) reinforcement is adopted to maximize the macro-mechanical performance of the polymer with a lower content of CNTs. Composite conical–cylindrical [...] Read more.
Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are a novel breed of polymer nanocomposite, in which the nonuniform distribution of the carbon nanotube (CNT) reinforcement is adopted to maximize the macro-mechanical performance of the polymer with a lower content of CNTs. Composite conical–cylindrical combined shells (CCCSs) are widely utilized as loading-bearing components in various engineering applications, and a comprehensive understanding of the vibration characteristics of these shells under different external excitations and boundary conditions is crucial for engineering applications. In this study, the free vibration behaviors of FG-CNTRC CCCSs supported by an elastic foundation are examined using the Haar wavelet discretization method (HWDM). First, by means of the HWDM, the equations of motion of each shell segment, the continuity and boundary conditions are converted into a system of algebraic equations. Subsequently, the natural frequencies and modes of the CCCSs are achieved by calculating the resultant algebraic equations. The convergence and accuracy are evaluated, and the results demonstrate that the proposed method has stable convergence, high efficiency, and excellent accuracy. Furthermore, an exhaustive parametric investigation is conducted to reveal the effects of foundation stiffnesses, boundary conditions, material mechanical properties, and geometric parameters on the vibration characteristics of the FG-CNTRC CCCS. Full article
Show Figures

Figure 1

33 pages, 4841 KiB  
Article
Research on Task Allocation in Four-Way Shuttle Storage and Retrieval Systems Based on Deep Reinforcement Learning
by Zhongwei Zhang, Jingrui Wang, Jie Jin, Zhaoyun Wu, Lihui Wu, Tao Peng and Peng Li
Sustainability 2025, 17(15), 6772; https://doi.org/10.3390/su17156772 - 25 Jul 2025
Viewed by 209
Abstract
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in [...] Read more.
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in the single-operation mode that handles inbound or outbound tasks individually, with limited attention paid to the more prevalent composite operation mode where inbound and outbound tasks coexist. To bridge this gap, this study investigates the task allocation problem in an FWSS/RS under the composite operation mode, and deep reinforcement learning (DRL) is introduced to solve it. Initially, the FWSS/RS operational workflows and equipment motion characteristics are analyzed, and a task allocation model with the total task completion time as the optimization objective is established. Furthermore, the task allocation problem is transformed into a partially observable Markov decision process corresponding to reinforcement learning. Each shuttle is regarded as an independent agent that receives localized observations, including shuttle position information and task completion status, as inputs, and a deep neural network is employed to fit value functions to output action selections. Correspondingly, all agents are trained within an independent deep Q-network (IDQN) framework that facilitates collaborative learning through experience sharing while maintaining decentralized decision-making based on individual observations. Moreover, to validate the efficiency and effectiveness of the proposed model and method, experiments were conducted across various problem scales and transport resource configurations. The experimental results demonstrate that the DRL-based approach outperforms conventional task allocation methods, including the auction algorithm and the genetic algorithm. Specifically, the proposed IDQN-based method reduces the task completion time by up to 12.88% compared to the auction algorithm, and up to 8.64% compared to the genetic algorithm across multiple scenarios. Moreover, task-related factors are found to have a more significant impact on the optimization objectives of task allocation than transport resource-related factors. Full article
Show Figures

Figure 1

19 pages, 3828 KiB  
Communication
Multifunctional Graphene–Concrete Composites: Performance and Mechanisms
by Jun Shang, Mingyang Wang, Pei Wang, Mengyao Yang, Dingyang Zhang, Xuelei Cheng, Yifan Wu and Wangze Du
Appl. Sci. 2025, 15(15), 8271; https://doi.org/10.3390/app15158271 - 25 Jul 2025
Viewed by 161
Abstract
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, [...] Read more.
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, presents a transformative solution to these challenges. Despite its promise, comprehensive studies on the multifunctional properties and underlying mechanisms of graphene-enhanced concrete remain scarce. In this study, we developed a novel concrete composite incorporating cement, coarse sand, crushed stone, water, and graphene, systematically investigating the effects of the graphene dosage and curing duration on its performance. Our results demonstrate that graphene incorporation markedly improves the material’s density, brittleness, thermal conductivity, and permeability resistance. Notably, a comprehensive analysis of scanning electron microscopy (SEM) images and thermogravimetric (TG) data demonstrates that graphene-modified concrete exhibits a denser microstructure and the enhanced formation of hydration products compared to conventional concrete. In addition, the graphene-reinforced concrete exhibited a 44% increase in compressive strength, a 0.7% enhancement in the photothermal absorption capacity, a 0.4% decrease in maximum heat release, a 0.8% increase in heat-storage capacity, and a 200% reduction in the maximum penetration depth. These findings underscore the significant potential of graphene-reinforced concrete for advanced construction applications, offering superior mechanical strength, thermal regulation, and durability. Full article
Show Figures

Figure 1

18 pages, 2920 KiB  
Article
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
by Bing Zeng, Shuo Wu and Shufang Yao
Materials 2025, 18(15), 3484; https://doi.org/10.3390/ma18153484 - 25 Jul 2025
Viewed by 207
Abstract
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. [...] Read more.
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop