Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,058)

Search Parameters:
Keywords = composite recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4225 KiB  
Article
Performance Optimization and Synergistic Mechanism of Ternary Blended Cementitious System Composed of Fly Ash, Slag, and Recycled Micro-Powder
by Rongfang Song, Qingnian Yang and Hang Song
Buildings 2025, 15(15), 2780; https://doi.org/10.3390/buildings15152780 - 6 Aug 2025
Abstract
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical [...] Read more.
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical properties, shrinkage performance, and microstructure of recycled mortar were systematically investigated. The experimental results show that with the increasing dosage of slag and recycled micro-powder (partially replacing cement and fly ash), the standard consistency water demand of the cementitious system decreases and the setting time is prolonged. When the replacement levels of recycled micro-powder and slag are both 10%, the 3-day, 7-day, and 28-day mechanical strengths of the mortar specimens are comparable to those of the reference group, with an increased flexural-to-compressive strength ratio and improved brittleness. SEM and mercury intrusion porosimetry (MIP) analyses revealed that systems incorporating low addition levels of recycled micro powder and slag powder exhibit calcium silicate hydrate (C-S-H) gel, acicular ettringite crystals, and a denser pore structure. However, at higher dosages (>10%), the porosity increases significantly and the pore structure deteriorates, resulting in reduced shrinkage performance. Overall, when the replacement rate of cement–fly ash by recycled micro-powder and slag is 10%, the ternary blended system exhibits optimal macroscopic performance and microstructure, providing a scientific basis for the resource utilization of solid waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 1952 KiB  
Article
Processing of Secondary Raw Materials from Ferrochrome Production via Agglomeration and Study of Their Mechanical Properties
by Yerlan Zhumagaliyev, Yerbol Shabanov, Maral Almagambetov, Maulen Jundibayev, Nursultan Ulmaganbetov, Salamat Laikhan, Akgul Jundibayeva, Aigerim Abilberikova, Nurbala Ubaidulayeva and Rysgul Adaibayeva
Metals 2025, 15(8), 878; https://doi.org/10.3390/met15080878 (registering DOI) - 6 Aug 2025
Abstract
In the process of producing ferroalloys, a large amount of secondary raw materials is formed, including slag, aspiration dusts and sludge. The recycling of secondary raw materials can create resources and bring environmental and economic benefits. Wet secondary raw materials (WSRMs) are characterized [...] Read more.
In the process of producing ferroalloys, a large amount of secondary raw materials is formed, including slag, aspiration dusts and sludge. The recycling of secondary raw materials can create resources and bring environmental and economic benefits. Wet secondary raw materials (WSRMs) are characterized by a high chromium oxide content (averaging 24%), but due to their high moisture levels, they cannot be directly used in arc furnaces. As a strategic approach, mixing WSRMs with drier, more chromium-rich dusts (up to 45% Cr2O3) has been proposed. This not only reduces the overall moisture content of the mixture but also enhances the metallurgical value of the charge material. This paper presents the results of laboratory studies on the agglomeration of secondary wet raw materials using briquetting, extrusion and pelletizing methods. The main factors influencing the quality of the resulting product were analyzed, including the method of agglomeration, the composition of the mixture, as well as the type and dosage of the binder component. The strength characteristics of the finished agglomerated samples were evaluated in terms of resistance to splitting, impact loads and falling. Notably, the selected binders are organic and polymer substances capable of complete combustion under metallurgical smelting conditions. Full article
Show Figures

Figure 1

16 pages, 2029 KiB  
Article
Multi-Objective Optimization of Biodegradable and Recyclable Composite PLA/PHA Parts
by Burak Kisin, Mehmet Kivanc Turan and Fatih Karpat
Polymers 2025, 17(15), 2147; https://doi.org/10.3390/polym17152147 - 6 Aug 2025
Abstract
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key [...] Read more.
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key printing parameters—layer height, printing orientation, and printing speed—on both the tensile and compressive strength. A full factorial design (3 × 3 × 3) was employed, and all of the samples were triplicated to ensure the consistency of the results. Grey relational analysis (GRA) was used as a multi-objective optimization method to determine the optimal parameter combinations. An analysis of variance (ANOVA) was also conducted to assess the statistical significance of each parameter. The ANOVA results revealed that printing orientation is the most significant parameter for both tensile and compression strength. The optimal parameter combination for maximizing mechanical properties was a layer height of 0.1 mm, an X printing orientation, and a printing speed of 50 mm/s. This study demonstrates the effectiveness of GRA in optimizing the mechanical properties of biodegradable composites and provides practical guidelines to produce environmentally sustainable polymer parts. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Figure 1

23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

16 pages, 1572 KiB  
Article
Application of ANN in the Performance Evaluation of Composite Recycled Mortar
by Shichao Zhao, Yaohua Liu, Geng Xu, Hao Zhang, Feng Liu and Binglei Wang
Buildings 2025, 15(15), 2752; https://doi.org/10.3390/buildings15152752 - 4 Aug 2025
Abstract
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick [...] Read more.
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick powder (RCBS), recycled concrete powder (RCBP), and recycled gypsum powder (RCGP)—we systematically investigated the effects of RP type, replacement rate, and curing period on mortar UCS. The core objective and novelty lie in establishing and comparing three artificial intelligence models for high-precision UCS prediction. Furthermore, leveraging GA-BP’s functional extremum optimization theory, we determined the optimal UCS alongside its corresponding mix proportion and curing scheme, with experimental validation of the solution reliability. Key findings include the following: (1) Increasing total RP content significantly reduces mortar UCS; the maximum UCS is achieved with a 1:1 blend ratio of RCBP:RCGP, while a 20% RCBS replacement rate and extended curing periods markedly enhance strength. (2) Among the prediction models, GA-BP demonstrates superior performance, significantly outperforming BP models with both single and double hidden layer. (3) The functional extremum optimization results exhibit high consistency with experimental validation, showing a relative error below 10%, confirming the method’s effectiveness and engineering applicability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Viewed by 57
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

36 pages, 4554 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 - 2 Aug 2025
Viewed by 189
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
Show Figures

Figure 1

20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 289
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Graphical abstract

14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 245
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 208
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 603
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

19 pages, 7574 KiB  
Article
Effect of Natural Fiber Characteristics on Properties of Cementitious Composites: A Comparison of Recycled Pulp from Beverage Cartons, Bamboo, and Eucalyptus Fibers
by Phouthanouthong Xaysombath, Nattakan Soykeabkaew, Darunee Wattanasiriwech and Suthee Wattanasiriwech
Constr. Mater. 2025, 5(3), 50; https://doi.org/10.3390/constrmater5030050 - 31 Jul 2025
Viewed by 147
Abstract
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF [...] Read more.
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF was rounded in shape and had the highest aspect ratio, while the ribbon-shaped EF exhibited the highest tensile strength index. The RPBC fibers were fibrillated and the shortest, with a ribbon shape. Flexural strength results showed that RPBCC achieved a maximum strength that was 47.6% higher than the control specimen (0% fiber), outperforming both BF- and EF-reinforced counterparts. This superior performance is attributed to the higher fibrillation level of the ribbon-shaped RPBC fibers, which promoted better fiber–matrix bonding. As the fiber content increased, the bulk density of EFC and BFC decreased linearly, while RPBC composites showed only a modest decrease in density. Porosity steadily increased in EFC and BFC, whereas a non-linear trend was observed in RPBCC, likely due to its unique morphology and fibrillation. Conversely, EFC exhibited significantly higher maximum fracture toughness (3600 J/m2 at 10 wt.%) compared to PBFCC (1600 J/m2 at 14 wt.%) and BFC (1400 J/m2 at 14 wt.%). This enhancement is attributed to extensive fiber pullout mechanisms and increased energy absorption during crack propagation. Overall, all composite types demonstrated flexural strength values above 4 MPa, placing them in the Grade I category. Those reinforced with 10–14% RPBC exhibited strengths of 11–12 MPa, categorizing them as Grade II according to ASTM C1186-02. Full article
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Experimental Investigation of Mechanical Properties and Microstructure in Cement–Soil Modified with Waste Brick Powder and Polyvinyl Alcohol Fibers
by Xiaosan Yin, Md. Mashiur Rahman, Hongke Pan, Yongchun Ma, Yuzhou Sun and Jian Wang
Materials 2025, 18(15), 3586; https://doi.org/10.3390/ma18153586 - 30 Jul 2025
Viewed by 325
Abstract
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) [...] Read more.
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) and PVA fiber content (0–1%), evaluating mechanical properties based on unconfined compressive strength (UCS) and splitting tensile strength (STS) and microstructure via scanning electron microscopy (SEM) across 3–28 days of curing. The results demonstrate that 0.75% PVA optimizes performance, enhancing UCS by 28.3% (6.87 MPa) and STS by 34.6% (0.93 MPa) at 28 days compared to unmodified cement–soil. SEM analysis revealed that PVA fibers bridged microcracks, suppressing propagation, while WBP triggered pozzolanic reactions to densify the matrix. This dual mechanism concurrently improves mechanical durability and valorizes construction waste, offering a pathway to reduce reliance on virgin materials. This study establishes empirically validated mix ratios for eco-efficient cement–soil composites, advancing scalable solutions for low-carbon geotechnical applications. By aligning material innovation with circular economy principles, this work directly supports global de-carbonization targets in the construction sector. Full article
Show Figures

Graphical abstract

Back to TopTop