Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,603)

Search Parameters:
Keywords = component trends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 17593 KiB  
Review
Responsive Therapeutic Environments: A Dual-Track Review of the Research Literature and Design Case Studies in Art Therapy for Children with Autism Spectrum Disorder
by Jing Liang, Jingxuan Jiang, Jinghao Hei and Jiaqi Zhang
Buildings 2025, 15(15), 2735; https://doi.org/10.3390/buildings15152735 (registering DOI) - 3 Aug 2025
Abstract
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms [...] Read more.
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms of environmental factors’ impact on therapeutic outcomes, and insufficient evidence-based support for technology integration. Purpose: This study aimed to construct an evidence-based theoretical framework for art therapy environment design for children with autism, clarifying the relationship between environmental design elements and therapeutic effectiveness. Methodology: Based on the Web of Science database, this study employed a dual-track approach comprising bibliometric analysis and micro-qualitative content analysis to systematically examine the knowledge structure and developmental trends. Research hotspots were identified through keyword co-occurrence network analysis using CiteSpace, while 24 representative design cases were analyzed to gain insights into design concepts, emerging technologies, and implementation principles. Key Findings: Through keyword network visualization analysis, this study identified ten primary research clusters that were systematically categorized into four core design elements: sensory feedback design, behavioral guidance design, emotional resonance design, and therapeutic support design. A responsive therapeutic environment conceptual framework was proposed, encompassing four interconnected components based on the ABC model from positive psychology: emotional, sensory, environmental, and behavioral dimensions. Evidence-based design principles were established emphasizing child-centeredness, the promotion of multisensory expression, the achievement of dynamic feedback, and appropriate technology integration. Research Contribution: This research establishes theoretical connections between environmental design elements and art therapy effectiveness, providing a systematic design guidance framework for interdisciplinary teams, including environmental designers, clinical practitioners, technology developers, and healthcare administrators. The framework positions technology as a therapeutic mediator rather than a driver, ensuring technological integration supports rather than interferes with children’s natural creative impulses. This contributes to creating more effective environmental spaces for art therapy activities for children with autism while aligning with SDG3 goals for promoting mental health and reducing inequalities in therapeutic access. Full article
(This article belongs to the Special Issue Art and Design for Healing and Wellness in the Built Environment)
Show Figures

Graphical abstract

14 pages, 6988 KiB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 (registering DOI) - 3 Aug 2025
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 (registering DOI) - 2 Aug 2025
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

17 pages, 1195 KiB  
Article
Phytochemical Profiling, Antioxidant Capacity, and α-Amylase/α-Glucosidase Inhibitory Effects of 29 Faba Bean (Vicia faba L.) Varieties from China
by Ying Li, Zhihua Wang, Chengkai Mei, Wenqi Sun, Xingxing Yuan, Jing Wang and Wuyang Huang
Biology 2025, 14(8), 982; https://doi.org/10.3390/biology14080982 (registering DOI) - 2 Aug 2025
Abstract
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography [...] Read more.
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and quantified via high-performance liquid chromatography (HPLC). Antioxidant capacity was evaluated, including DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging activity, and ferric reducing antioxidant power (FRAP), along with α-amylase/α-glucosidase inhibitory effects. Twenty-five phenolics were identified, including L-DOPA (11.96–17.93 mg/g, >70% of total content), seven phenolic acids, and seventeen flavonoids. L-DOPA showed potent enzyme inhibition (IC50 values of 22.45 μM for α-amylase and 16.66 μM for α-glucosidase) but demonstrated limited antioxidant effects. Lincan 13 (Gansu) exhibited the strongest antioxidant activity (DPPH, 16.32 μmol trolox/g; ABTS, 5.85 μmol trolox/g; FRAP, 21.38 mmol Fe2+/g), which correlated with it having the highest flavonoid content (40.51 mg rutin/g), while Yican 4 (Yunnan) showed the strongest α-amylase inhibition (43.33%). Correlation analysis confirmed flavonoids as the primary antioxidants, and principal component analysis (PCA) revealed geographical trends (e.g., Jiangsu varieties were particularly phenolic-rich). These findings highlight faba beans’ potential as functional foods and guide genotype selection in targeted breeding programs aimed at enhancing health benefits. Full article
Show Figures

Figure 1

31 pages, 5203 KiB  
Article
Projecting Extinction Risk and Assessing Conservation Effectiveness for Three Threatened Relict Ferns in the Western Mediterranean Basin
by Ángel Enrique Salvo-Tierra, Jaime Francisco Pereña-Ortiz and Ángel Ruiz-Valero
Plants 2025, 14(15), 2380; https://doi.org/10.3390/plants14152380 (registering DOI) - 1 Aug 2025
Abstract
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. [...] Read more.
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. This study assesses the population trends and climate sensitivity of these species in Los Alcornocales Natural Park using annual abundance time series for a decade, empirical survival projections, and principal component analysis to identify key climatic drivers. Results reveal distinct climate response clusters among populations, though intra-specific variation highlights the importance of local conditions. Climate change is already impacting population viability, especially for P. incompleta, which shows high sensitivity to rising maximum temperatures and prolonged heatwaves. Climate-driven models forecast more severe declines than empirical ones, particularly for C. macrocarpa and P. incompleta, with the latter showing a projected collapse by the mid-century. In contrast, D. caudatum exhibits moderate vulnerability. Crucially, the divergence between models underscores the impact of conservation efforts: without reinforcement and reintroduction actions, projected declines would likely be more severe. These results project a decline in the populations of the studied ferns, highlighting the urgent need to continue implementing both in situ and ex situ conservation measures. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

13 pages, 680 KiB  
Article
Anthropometric Characteristics and Somatotype of Young Slovenian Tennis Players
by Ales Germic, Tjasa Filipcic and Ales Filipcic
Appl. Sci. 2025, 15(15), 8584; https://doi.org/10.3390/app15158584 (registering DOI) - 1 Aug 2025
Abstract
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 [...] Read more.
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 years) over the last two decades. Using standardised anthropometric measurements and the Heath-Carter method, somatotypes were calculated and analysed by age and gender. The results showed clear age- and gender-specific trends and differences in both somatotype profiles and detailed anthropometric characteristics. Significant differences were found in height, body mass, BMI, skinfolds, girths, and limb lengths, with gender differences becoming more pronounced in the older age groups. In boys, mesomorphy increased with age, reflecting an increase in musculature, while in girls, a shift from ectomorphic to endomorphic profiles was observed during adolescence, probably influenced by pubertal and hormonal changes. Significant sex-specific differences were observed in all three somatotype components in most age groups, especially in fat mass and muscle. The longitudinal design provides valuable data and insights into the evolving physical profiles of adolescent tennis players that support more effective talent identification and training. Despite the changes that have taken place in tennis over time, standardised measurement protocols ensured comparability, making the results relevant for practitioners working with adolescents in tennis development. Full article
(This article belongs to the Special Issue Human Performance and Health in Sport and Exercise—2nd Edition)
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 (registering DOI) - 1 Aug 2025
Viewed by 74
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

24 pages, 2572 KiB  
Article
Hair Levels of Lead, Cadmium, Selenium, and Their Associations with Neurotoxicity and Hematological Biomarkers in Children from the Mojana Region, Colombia
by Jenny Palomares-Bolaños, Jesus Olivero-Verbel and Karina Caballero-Gallardo
Molecules 2025, 30(15), 3227; https://doi.org/10.3390/molecules30153227 (registering DOI) - 1 Aug 2025
Viewed by 44
Abstract
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing [...] Read more.
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing their relationship with neurotoxicity and hematological markers. The mean Pb concentrations at the study sites were 1.98 µg/g (Magangue) > 1.51 µg/g (Achi) > 1.24 µg/g (Arjona). A similar pattern was observed for Cd concentrations for Magangue (0.39 µg/g) > Achi (0.36 µg/g) > Arjona (0.14 µg/g). In contrast, Se concentrations followed a different trend for Arjona (0.29 µg/g) > Magangue (0.21 µg/g) > Achi (0.16 µg/g). The proportion of Se/Pb molar ratios > 1 was higher in Arjona (3.8%) than in Magangue (0.9%) and Achi (2.0%). For Se/Cd ratios, values > 1 were also more frequent in Arjona (70.7%), exceeding 20% in the other two locations. Significant differences were found among locations in red and white blood cell parameters and platelet indices. Neurotransmitter-related biomarkers, including serotonin, monoamine oxidase A (MAO-A), and acetylcholinesterase levels, also varied by location. Principal component analysis showed that Pb and Cd had high loadings on the same component as PLT, WBC, and RDW, and while Se loaded together with HGB, PDW, MCHC, MCH, and MCV, suggesting distinct hematological patterns associated with each element. Multiple linear regression analysis demonstrated a statistically significant inverse association between hair Pb levels and serotonin concentrations. Although MAO-A and Cd showed negative β coefficients, these associations were not statistically significant after adjustment. These findings highlight the potential impact of toxic element exposure on key hematological and neurochemical parameters in children, suggesting early biological alterations that may compromise health and neurodevelopment. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

35 pages, 2730 KiB  
Review
Deep Learning and NLP-Based Trend Analysis in Actuators and Power Electronics
by Woojun Jung and Keuntae Cho
Actuators 2025, 14(8), 379; https://doi.org/10.3390/act14080379 (registering DOI) - 1 Aug 2025
Viewed by 62
Abstract
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed [...] Read more.
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed abstracts obtained from the Web of Science database using BERTopic modeling, which integrates transformer-based sentence embeddings with UMAP for dimensionality reduction and HDBSCAN for clustering. The approach also employed class-based TF-IDF calculations, intertopic distance visualization, and hierarchical clustering to clarify topic structures. The analysis revealed a steady increase in research publications, with a marked surge post-2015. From 2005 to 2014, investigations were mainly focused on established areas including piezoelectric actuators, adaptive control, and hydraulic systems. In contrast, the 2015–2024 period saw broader diversification into new topics such as advanced materials, robotic mechanisms, resilient systems, and networked actuator control through communication protocols. The structural topic analysis indicated a shift from a unified to a more differentiated and specialized spectrum of research themes. This study offers a rigorous, data-driven outlook on the increasing complexity and diversity of actuator and power electronics research. The findings are pertinent for researchers, engineers, and policymakers aiming to advance state-of-the-art, sustainable industrial technologies. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

25 pages, 1488 KiB  
Article
DKWM-XLSTM: A Carbon Trading Price Prediction Model Considering Multiple Influencing Factors
by Yunlong Yu, Xuan Song, Guoxiong Zhou, Lingxi Liu, Meixi Pan and Tianrui Zhao
Entropy 2025, 27(8), 817; https://doi.org/10.3390/e27080817 (registering DOI) - 31 Jul 2025
Viewed by 69
Abstract
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage [...] Read more.
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging. To address these complexities, this study proposes a method for predicting carbon trading prices influenced by multiple factors. We introduce a Decomposition (DECOMP) module that separates carbon price data and its influencing factors into trend and cyclical components. To manage non-stationarity, we propose the KAN with Multi-Domain Diffusion (KAN-MD) module, which efficiently extracts relevant features. Furthermore, a Wave-MH attention module, based on wavelet transformation, is introduced to minimize interference from uncertainties, thereby enhancing the robustness of the model. Empirical research using data from the Hubei carbon trading market demonstrates that our model achieves superior predictive accuracy and resilience to fluctuations compared to other benchmark methods, with an MSE of 0.204% and an MAE of 0.0277. These results provide reliable support for pricing carbon financial derivatives and managing associated risks. Full article
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 (registering DOI) - 31 Jul 2025
Viewed by 103
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

37 pages, 23165 KiB  
Article
Leveraging High-Frequency UAV–LiDAR Surveys to Monitor Earthflow Dynamics—The Baldiola Landslide Case Study
by Francesco Lelli, Marco Mulas, Vincenzo Critelli, Cecilia Fabbiani, Melissa Tondo, Marco Aleotti and Alessandro Corsini
Remote Sens. 2025, 17(15), 2657; https://doi.org/10.3390/rs17152657 (registering DOI) - 31 Jul 2025
Viewed by 117
Abstract
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and [...] Read more.
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and photogrammetric surveys, acquired at average intervals of 14 days over a four-month period. UAV-derived orthophotos and DEMs supported displacement analysis through homologous point tracking (HPT), with robotic total station measurements serving as ground-truth data for validation. DEMs were also used for multi-temporal DEM of Difference (DoD) analysis to assess elevation changes and identify depletion and accumulation patterns. Displacement trends derived from HPT showed strong agreement with RTS data in both horizontal (R2 = 0.98) and vertical (R2 = 0.94) components, with cumulative displacements ranging from 2 m to over 40 m between April and August 2024. DoD analysis further supported the interpretation of slope processes, revealing sector-specific reactivations and material redistribution. UAV-based monitoring provided accurate displacement measurements, operational flexibility, and spatially complete datasets, supporting its use as a reliable and scalable tool for landslide analysis. The results support its potential as a stand-alone solution for both monitoring and emergency response applications. Full article
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm
by Xin Jin, Tingzhe Pan, Heyang Yu, Zongyi Wang and Wangzhang Cao
Energies 2025, 18(15), 4057; https://doi.org/10.3390/en18154057 (registering DOI) - 31 Jul 2025
Viewed by 125
Abstract
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift [...] Read more.
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift of the forecasting trend often occurs. Therefore, this paper proposes a gray relation analysis–frequency-enhanced decomposition transformer (GRA-FEDformer) method for forecasting power loads in power systems. Firstly, considering the impact of different weather factors on power loads, the correlation between various factors and power loads was analyzed using the GRA method to screen out the high-correlation factors as model inputs. Secondly, a frequency decomposition method for long short-time-scale components was utilized. Its combination with the transformer-based model can give the deep learning model an ability to simultaneously capture the fluctuating behavior of the short time scale and the overall trend of changes in the long time scale in power loads. The experimental results show that the proposed method had better forecasting performance than the other methods for a one-year dataset in a region of Morocco. In particular, the advantages of the proposed method were more obvious in the forecasting task with a longer forecasting length. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

29 pages, 10070 KiB  
Article
The Influence of MoS2 Coatings on the Subsurface Stress Distribution in Bearing Raceways
by Bing Su, Chunhao Lu and Zeyu Gong
Lubricants 2025, 13(8), 336; https://doi.org/10.3390/lubricants13080336 (registering DOI) - 30 Jul 2025
Viewed by 213
Abstract
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there [...] Read more.
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there is no international research regarding the influence of bearing coatings on the subsurface stress distribution in raceways. The Lundberg–Palmgren (L-P) theory states that subsurface stress variations govern bearing lifespan. Therefore, this paper utilizes existing formulas and Python programming to calculate the subsurface stress field of the inner raceway in a MoS2 solid-lubricated angular contact ball bearing. Furthermore, it analyzes the impacts of factors such as coating material properties, slide-to-roll ratio, traction coefficient, and load on its subsurface stress field. The results reveal that for solid-lubricated ball bearings, as the load increases, the maximum subsurface stress shifts closer to the center of the contact area, and the maximum subsurface shear stress becomes more concentrated. As the traction coefficient increases, the stress on the XZ-plane side increases and its position moves closer to the surface, while the opposite trend is observed on the other side. Additionally, the maximum value of the subsurface von Mises stress is approximately 0.64P0, and the maximum value of the orthogonal shear stress component τyz in the subsurface is approximately 0.25P0. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

28 pages, 5779 KiB  
Article
Regional Wave Spectra Prediction Method Based on Deep Learning
by Yuning Liu, Rui Li, Wei Hu, Peng Ren and Chao Xu
J. Mar. Sci. Eng. 2025, 13(8), 1461; https://doi.org/10.3390/jmse13081461 - 30 Jul 2025
Viewed by 166
Abstract
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave [...] Read more.
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model’s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop