Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = complex shape boundary of buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2934 KiB  
Article
Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects
by Xinfei Zhao, Kangning Kong, Run Wang, Jiachen Liu, Yongpeng Deng, Le Yin and Baolei Zhang
Sustainability 2025, 17(15), 7015; https://doi.org/10.3390/su17157015 (registering DOI) - 1 Aug 2025
Abstract
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, [...] Read more.
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, previous research has primarily focused on the maximum cooling impact, often overlooking the accumulative effects arising from spatial continuity. The present study fills this gap by investigating 74 urban parks located in the central area of Jinan and constructing a comprehensive cooling evaluation framework through two dimensions: maximum impact (Park Cooling Area, PCA; Park Cooling Efficiency, PCE) and cumulative impact (Park Cooling Intensity, PCI; Park Cooling Gradient, PCG). We further systematically examined the influence of park attributes and the surrounding urban structures on these metrics. The findings indicate that urban parks, as a whole, significantly contribute to lowering the ambient temperatures in their vicinity: 62.3% are located in surface temperature cold spots, reducing ambient temperatures by up to 7.77 °C. However, cooling intensity, range, and efficiency vary significantly across parks, with an average PCI of 0.0280, PCG of 0.99 °C, PCA of 46.00 ha, and PCE of 5.34. For maximum impact, PCA is jointly determined by park area, boundary length, and shape complexity, while smaller parks generally exhibit higher PCE—reflecting diminished cooling efficiency at excessive scales. For cumulative impact, building density and spatial enclosure degree surrounding parks critically regulate PCI and PCG by influencing cool-air aggregation and diffusion. Based on these findings, this study classified urban parks according to their cooling characteristics, clarified the functional differences among different park types, and proposed targeted recommendations. Full article
Show Figures

Figure 1

32 pages, 2962 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 (registering DOI) - 1 Aug 2025
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
14 pages, 38692 KiB  
Article
Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
by Hyo-Been An and Seung-Bu Park
Atmosphere 2025, 16(8), 905; https://doi.org/10.3390/atmos16080905 - 25 Jul 2025
Viewed by 126
Abstract
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics [...] Read more.
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics using OpenFOAM, can resolve complex flow structures around built environments. Inflow boundary conditions were generated using logarithmic wind profiles derived from Automatic Weather System (AWS) observations under neutral stability. After validation with wind-tunnel data for a single block, the system was applied to airflow modeling around a university campus in Seoul using AWS data from four nearby stations. The results demonstrated that the system captured key flow characteristics such as channeling, wake, and recirculation induced by complex terrain and building configurations. In particular, easterly inflow cases with high-rise buildings on the leeward side of a mountain exhibited intensified wakes and internal recirculations, with elevated centers influenced by tall structures. This modeling framework, with further development, could support diverse urban applications for microclimate and air quality, facilitating urban resilience. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 31625 KiB  
Article
The Construction and Analysis of a Spatial Gene Map of Marginal Villages in Southern Sichuan
by Jiahao Wan, Xiaoyang Guo, Zehua Wen and Xujun Zhang
Buildings 2025, 15(15), 2628; https://doi.org/10.3390/buildings15152628 - 24 Jul 2025
Viewed by 299
Abstract
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study [...] Read more.
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study takes Xuyong County in Luzhou City as a case and develops a three-tier analytical framework—“genome–spatial factors–specific indicators”—based on the space gene theory to identify, classify, and map spatial patterns in marginal villages of southern Sichuan. Through cluster analysis, common and distinctive spatial genes are extracted. Common genes—such as medium surface roughness (GeneN-2-b), medium building dispersion (GeneA-3-b), and low intelligibility (GeneT-2-b)—are prevalent across multiple village types, reflecting shared adaptive strategies to complex terrains, ecological constraints, and historical development. In contrast, distinctive genes—such as high building dispersion (GeneA-3-a) and linear boundaries (GeneB-1-c)—highlight unique spatial responses that are shaped by local cultural and environmental conditions. The results contribute to a deeper understanding of spatial morphology and adaptive mechanisms in rural settlements. This research offers a theoretical and methodological basis for village classification, conservation zoning, and spatial optimization, providing practical guidance for rural revitalization efforts focusing on both development and heritage protection. Full article
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 290
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 281 KiB  
Article
Jurisdictional Struggles Between Bishop and Grand Master in Malta in the First Half of the Seventeenth Century
by Nicholas Joseph Doublet
Religions 2025, 16(4), 484; https://doi.org/10.3390/rel16040484 - 9 Apr 2025
Viewed by 465
Abstract
This study examines the jurisdictional disputes between the bishop of Malta and the grand masters of the Order of St John during the first half of the seventeenth century, specifically from 1563 to 1650, in the wake of the Council of Trent. It [...] Read more.
This study examines the jurisdictional disputes between the bishop of Malta and the grand masters of the Order of St John during the first half of the seventeenth century, specifically from 1563 to 1650, in the wake of the Council of Trent. It focuses on conflicts concerning ecclesiastical immunities—personal, real (material), and local—as key points of tension between spiritual and temporal authority in early modern Malta. By analysing extensive archival correspondence preserved in the diocesan archive of Malta between the bishop, the grand master, and the Holy See, the study reconstructs how these immunities were invoked, negotiated, and contested. It employs a historical–legal methodology, interpreting these documents within the wider European context of Tridentine reform and absolutist State building. While established scholarship has highlighted broader patterns of Church–State conflict in early modern Europe, this study contributes an original case from the periphery of Catholic Christendom, where both bishop and grand master were ultimately subject to the papacy. The article is structured around the three traditional forms of ecclesiastical immunity, each examined as a distinct yet interconnected site of struggle. It argues that, in Malta, the application of Tridentine reforms served both to consolidate episcopal authority and to provoke resistance from secular powers, revealing the complex, mediated nature of ecclesiastical governance. The study ultimately sheds light on how canonical tradition, papal intervention, and local political configurations shaped the contested boundaries of sacred and secular jurisdiction. Full article
(This article belongs to the Special Issue Casta Meretrix: The Paradox of the Christian Church Through History)
23 pages, 38107 KiB  
Article
Bidirectional Pattern Recognition and Prediction of Bending-Active Thin Sheets via Artificial Neural Networks
by Yuxin Xie, Xiang Wang, Xinjie Zhou and Qiang Zhou
Electronics 2025, 14(3), 503; https://doi.org/10.3390/electronics14030503 - 26 Jan 2025
Cited by 1 | Viewed by 655
Abstract
Currently, active-bending structures and their shape optimization techniques have become a hot topic in the design of spatial structures and freeform buildings. However, their form-finding process is usually time-consuming, and the application of finite element methods (FEM) requires huge computational effort. In the [...] Read more.
Currently, active-bending structures and their shape optimization techniques have become a hot topic in the design of spatial structures and freeform buildings. However, their form-finding process is usually time-consuming, and the application of finite element methods (FEM) requires huge computational effort. In the face of these challenges, artificial intelligence techniques have great potential for application and bring many important advantages to this field. In this paper, we propose a novel, data-driven, bidirectional prediction method based on artificial neural networks. It can both forward infer the bending deformation shapes of a thin plate under specific complex conditions and reverse infer the boundary conditions necessary for a given bending shape. In comparison to traditional active-bending simulation, the proposed method is quicker and simpler to utilize during the design process and facilitates reverse predictions. Communication between design and construction can be facilitated to ensure quality and efficiency in the construction of relevant bent structural components. It is experimentally demonstrated that the network can control the mean value of prediction deviation below 40 mm for a 4 m × 0.5 m aluminum plate. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

23 pages, 5897 KiB  
Article
A Large-Scale Building Unsupervised Extraction Method Leveraging Airborne LiDAR Point Clouds and Remote Sensing Images Based on a Dual P-Snake Model
by Zeyu Tian, Yong Fang, Xiaohui Fang, Yan Ma and Han Li
Sensors 2024, 24(23), 7503; https://doi.org/10.3390/s24237503 - 25 Nov 2024
Viewed by 979
Abstract
Automatic large-scale building extraction from the LiDAR point clouds and remote sensing images is a growing focus in the fields of the sensor applications and remote sensing. However, this building extraction task remains highly challenging due to the complexity of building sizes, shapes, [...] Read more.
Automatic large-scale building extraction from the LiDAR point clouds and remote sensing images is a growing focus in the fields of the sensor applications and remote sensing. However, this building extraction task remains highly challenging due to the complexity of building sizes, shapes, and surrounding environments. In addition, the discreteness, sparsity, and irregular distribution of point clouds, lighting, and shadows, as well as occlusions of the images, also seriously affect the accuracy of building extraction. To address the above issues, we propose a new unsupervised building extraction algorithm PBEA (Point and Pixel Building Extraction Algorithm) based on a new dual P-snake model (Dual Point and Pixel Snake Model). The proposed dual P-snake model is an enhanced active boundary model, which uses both point clouds and images simultaneously to obtain the inner and outer boundaries. The proposed dual P-snake model enables interaction and convergence between the inner and outer boundaries to improve the performance of building boundary detection, especially in complex scenes. Using the dual P-snake model and polygonization, this proposed PBEA can accurately extract large-scale buildings. We evaluated our PBEA and dual P-snake model on the ISPRS Vaihingen dataset and the Toronto dataset. The experimental results show that our PBEA achieves an area-based quality evaluation metric of 90.0% on the Vaihingen dataset and achieves the area-based quality evaluation metric of 92.4% on the Toronto dataset. Compared with other methods, our method demonstrates satisfactory performance. Full article
(This article belongs to the Special Issue Object Detection via Point Cloud Data)
Show Figures

Figure 1

19 pages, 7684 KiB  
Article
A Building Point Cloud Extraction Algorithm in Complex Scenes
by Zhonghua Su, Jing Peng, Dajian Feng, Shihua Li, Yi Yuan and Guiyun Zhou
Remote Sens. 2024, 16(11), 1934; https://doi.org/10.3390/rs16111934 - 28 May 2024
Cited by 1 | Viewed by 1711
Abstract
Buildings are significant components of digital cities, and their precise extraction is essential for the three-dimensional modeling of cities. However, it is difficult to accurately extract building features effectively in complex scenes, especially where trees and buildings are tightly adhered. This paper proposes [...] Read more.
Buildings are significant components of digital cities, and their precise extraction is essential for the three-dimensional modeling of cities. However, it is difficult to accurately extract building features effectively in complex scenes, especially where trees and buildings are tightly adhered. This paper proposes a highly accurate building point cloud extraction method based solely on the geometric information of points in two stages. The coarsely extracted building point cloud in the first stage is iteratively refined with the help of mask polygons and the region growing algorithm in the second stage. To enhance accuracy, this paper combines the Alpha Shape algorithm with the neighborhood expansion method to generate mask polygons, which help fill in missing boundary points caused by the region growing algorithm. In addition, this paper performs mask extraction on the original points rather than non-ground points to solve the problem of incorrect identification of facade points near the ground using the cloth simulation filtering algorithm. The proposed method has shown excellent extraction accuracy on the Urban-LiDAR and Vaihingen datasets. Specifically, the proposed method outperforms the PointNet network by 20.73% in precision for roof extraction of the Vaihingen dataset and achieves comparable performance with the state-of-the-art HDL-JME-GGO network. Additionally, the proposed method demonstrated high accuracy in extracting building points, even in scenes where buildings were closely adjacent to trees. Full article
Show Figures

Graphical abstract

18 pages, 15447 KiB  
Article
Automatic Building Roof Plane Extraction in Urban Environments for 3D City Modelling Using Remote Sensing Data
by Carlos Campoverde, Mila Koeva, Claudio Persello, Konstantin Maslov, Weiqin Jiao and Dessislava Petrova-Antonova
Remote Sens. 2024, 16(8), 1386; https://doi.org/10.3390/rs16081386 - 14 Apr 2024
Cited by 5 | Viewed by 4288
Abstract
Delineating and modelling building roof plane structures is an active research direction in urban-related studies, as understanding roof structure provides essential information for generating highly detailed 3D building models. Traditional deep-learning models have been the main focus of most recent research endeavors aiming [...] Read more.
Delineating and modelling building roof plane structures is an active research direction in urban-related studies, as understanding roof structure provides essential information for generating highly detailed 3D building models. Traditional deep-learning models have been the main focus of most recent research endeavors aiming to extract pixel-based building roof plane areas from remote-sensing imagery. However, significant challenges arise, such as delineating complex roof boundaries and invisible boundaries. Additionally, challenges during the post-processing phase, where pixel-based building roof plane maps are vectorized, often result in polygons with irregular shapes. In order to address this issue, this study explores a state-of-the-art method for planar graph reconstruction applied to building roof plane extraction. We propose a framework for reconstructing regularized building roof plane structures using aerial imagery and cadastral information. Our framework employs a holistic edge classification architecture based on an attention-based neural network to detect corners and edges between them from aerial imagery. Our experiments focused on three distinct study areas characterized by different roof structure topologies: the Stadsveld–‘t Zwering neighborhood and Oude Markt area, located in Enschede, The Netherlands, and the Lozenets district in Sofia, Bulgaria. The outcomes of our experiments revealed that a model trained with a combined dataset of two different study areas demonstrated a superior performance, capable of delineating edges obscured by shadows or canopy. Our experiment in the Oude Markt area resulted in building roof plane delineation with an F-score value of 0.43 when the model trained on the combined dataset was used. In comparison, the model trained only on the Stadsveld–‘t Zwering dataset achieved an F-score value of 0.37, and the model trained only on the Lozenets dataset achieved an F-score value of 0.32. The results from the developed approach are promising and can be used for 3D city modelling in different urban settings. Full article
Show Figures

Figure 1

23 pages, 11832 KiB  
Article
Extraction of Building Roof Contours from Airborne LiDAR Point Clouds Based on Multidirectional Bands
by Jingxue Wang, Dongdong Zang, Jinzheng Yu and Xiao Xie
Remote Sens. 2024, 16(1), 190; https://doi.org/10.3390/rs16010190 - 2 Jan 2024
Cited by 4 | Viewed by 2604
Abstract
Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extraction efficiency. [...] Read more.
Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extraction efficiency. To solve these problems, a building contour extraction algorithm based on multidirectional bands was proposed in this study. Firstly, the point clouds were divided into bands with the same width in one direction, the points within each band were vertically projected on the central axis in the band, the two projection points with the farthest distance were determined, and their corresponding original points were regarded as the roof contour points; given that the contour points obtained based on single-direction bands were sparse and discontinuous, different banding directions were selected to repeat the above contour point marking process, and the contour points extracted from the different banding directions were integrated as the initial contour points. Then, the initial contour points were sorted and connected according to the principle of joining the nearest points in the forward direction, and the edges with lengths greater than a given threshold were recognized as long edges, which remained to be further densified. Finally, each long edge was densified by selecting the noninitial contour point closest to the midpoint of the long edge, and the densification process was repeated for the updated long edge. In the end, a building roof contour line with complete details and topological relationships was obtained. In this study, three point cloud datasets of representative building roofs were chosen for experiments. The results show that the proposed algorithm can extract high-quality outer contours from point clouds with various boundary structures, accompanied by strong robustness for point clouds differing in density and density change. Moreover, the proposed algorithm is characterized by easily setting parameters and high efficiency for extracting outer contours. Specific to the experimental data selected for this study, the PoLiS values in the outer contour extraction results were always smaller than 0.2 m, and the RAE values were smaller than 7%. Hence, the proposed algorithm can provide high-precision outer contour information on buildings for applications such as 3D building model reconstruction. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud II)
Show Figures

Figure 1

21 pages, 10820 KiB  
Article
An Aggregated Shape Similarity Index: A Case Study of Comparing the Footprints of OpenStreetMap and INSPIRE Buildings
by Renata Ďuračiová
ISPRS Int. J. Geo-Inf. 2023, 12(12), 495; https://doi.org/10.3390/ijgi12120495 - 9 Dec 2023
Cited by 3 | Viewed by 2691
Abstract
The mutual identification of spatial objects is a fundamental issue when updating geographic data with other data sets. Representations of spatial objects in different sources may not have the same identifiers, which would unambiguously assign them to each other. Intersections of spatial objects [...] Read more.
The mutual identification of spatial objects is a fundamental issue when updating geographic data with other data sets. Representations of spatial objects in different sources may not have the same identifiers, which would unambiguously assign them to each other. Intersections of spatial objects can be used for this purpose, but this does not allow for the detection of possible changes and their quantification. The aim of this paper is to propose a simple, applicable procedure for calculating the shape similarity measure, which should be able to efficiently identify different representations of spatial objects in two data sources, even though they may be changed or generalised. The main result is the aggregated index of shape similarity and instructions for its calculation and implementation. The shape similarity index is based on the calculation of the set similarity, the distance of the boundaries, and the differences in the area, perimeter, and number of the vertices of areal spatial objects. In the case study, the footprints of the building complexes in Dúbravka (part of the city of Bratislava, the capital of Slovakia) are compared using data from OpenStreetMap and INSPIRE (Infrastructure for Spatial Information in Europe) Buildings. A contribution to the quality check of the OpenStreetMap data is then a secondary result. The proposed method can be effectively used in the semi-automatic integration of heterogeneous data sources, updating the data source with other spatial data, or in their quality control. Full article
Show Figures

Figure 1

28 pages, 6569 KiB  
Article
A Novel Building Extraction Network via Multi-Scale Foreground Modeling and Gated Boundary Refinement
by Junlin Liu, Ying Xia, Jiangfan Feng and Peng Bai
Remote Sens. 2023, 15(24), 5638; https://doi.org/10.3390/rs15245638 - 5 Dec 2023
Cited by 2 | Viewed by 1841
Abstract
Deep learning-based methods for building extraction from remote sensing images have been widely applied in fields such as land management and urban planning. However, extracting buildings from remote sensing images commonly faces challenges due to specific shooting angles. First, there exists a foreground–background [...] Read more.
Deep learning-based methods for building extraction from remote sensing images have been widely applied in fields such as land management and urban planning. However, extracting buildings from remote sensing images commonly faces challenges due to specific shooting angles. First, there exists a foreground–background imbalance issue, and the model excessively learns features unrelated to buildings, resulting in performance degradation and propagative interference. Second, buildings have complex boundary information, while conventional network architectures fail to capture fine boundaries. In this paper, we designed a multi-task U-shaped network (BFL-Net) to solve these problems. This network enhances the expression of the foreground and boundary features in the prediction results through foreground learning and boundary refinement, respectively. Specifically, the Foreground Mining Module (FMM) utilizes the relationship between buildings and multi-scale scene spaces to explicitly model, extract, and learn foreground features, which can enhance foreground and related contextual features. The Dense Dilated Convolutional Residual Block (DDCResBlock) and the Dual Gate Boundary Refinement Module (DGBRM) individually process the diverted regular stream and boundary stream. The former can effectively expand the receptive field, and the latter utilizes spatial and channel gates to activate boundary features in low-level feature maps, helping the network refine boundaries. The predictions of the network for the building, foreground, and boundary are respectively supervised by ground truth. The experimental results on the WHU Building Aerial Imagery and Massachusetts Buildings Datasets show that the IoU scores of BFL-Net are 91.37% and 74.50%, respectively, surpassing state-of-the-art models. Full article
Show Figures

Figure 1

5 pages, 219 KiB  
Proceeding Paper
Urban Environment and Human Health: Motivations for Urban Regeneration to Adapt
by Letizia Cremonini, Federico Carotenuto, Daniela Famulari, Edoardo Fiorillo, Marianna Nardino, Luisa Neri and Teodoro Georgiadis
Environ. Sci. Proc. 2023, 27(1), 28; https://doi.org/10.3390/ecas2023-16350 - 27 Nov 2023
Cited by 2 | Viewed by 848
Abstract
Urban regeneration is not only an opportunity for the city to adapt according to criteria of resilience to climate change, but also a significant opportunity to build a city based on an approach to health that places the human person at the center [...] Read more.
Urban regeneration is not only an opportunity for the city to adapt according to criteria of resilience to climate change, but also a significant opportunity to build a city based on an approach to health that places the human person at the center of the whole system. According to the World Health Organization, health is not only the absence of disease, but the broader well-being understood as a complex of socio-economic, biological, and environmental relationships. We want to present some results of applying this human-centered approach where the urban fabric’s shape, texture, and materials are essential to building the boundary conditions for developing a healthy city. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
19 pages, 8731 KiB  
Article
Simplification and Regularization Algorithm for Right-Angled Polygon Building Outlines with Jagged Edges
by Linghui Kong, Haizhong Qian, Yuqing Wu, Xinyu Niu, Di Wang and Zhekun Huang
ISPRS Int. J. Geo-Inf. 2023, 12(12), 469; https://doi.org/10.3390/ijgi12120469 - 21 Nov 2023
Cited by 3 | Viewed by 3084
Abstract
Building outlines are important for emergency response, urban planning, and change analysis and can be quickly extracted from remote sensing images and raster maps using deep learning technology. However, such building outlines often have irregular boundaries, redundant points, inaccurate positions, and unclear turns [...] Read more.
Building outlines are important for emergency response, urban planning, and change analysis and can be quickly extracted from remote sensing images and raster maps using deep learning technology. However, such building outlines often have irregular boundaries, redundant points, inaccurate positions, and unclear turns arising from variations in the image quality, the complexity of the surrounding environment, and the extraction methods used, impeding their direct utility. Therefore, this study proposes a simplification and regularization algorithm for right-angled polygon building outlines with jagged edges. First, the minimum bounding rectangle of the building outlines is established and populated with a square grid based on the smallest visible length principle. Overlay analysis is then applied to the grid and original buildings to extract the turning points of the outlines. Finally, the building orientation is used as a reference axis to sort the turning points and reconstruct the simplified building outlines. Experimentally, the proposed simplification method enhances the morphological characteristics of building outlines, such as parallelism and orthogonality, while considering simplification principles, such as the preservation of the direction, position, area, and shape of the building. The proposed algorithm provides a new simplification and regularization method for right-angled polygon building outlines with jagged edges. Full article
Show Figures

Figure 1

Back to TopTop