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Abstract: Delineating and modelling building roof plane structures is an active research direction in
urban-related studies, as understanding roof structure provides essential information for generating
highly detailed 3D building models. Traditional deep-learning models have been the main focus
of most recent research endeavors aiming to extract pixel-based building roof plane areas from
remote-sensing imagery. However, significant challenges arise, such as delineating complex roof
boundaries and invisible boundaries. Additionally, challenges during the post-processing phase,
where pixel-based building roof plane maps are vectorized, often result in polygons with irregular
shapes. In order to address this issue, this study explores a state-of-the-art method for planar graph
reconstruction applied to building roof plane extraction. We propose a framework for reconstructing
regularized building roof plane structures using aerial imagery and cadastral information. Our
framework employs a holistic edge classification architecture based on an attention-based neural
network to detect corners and edges between them from aerial imagery. Our experiments focused
on three distinct study areas characterized by different roof structure topologies: the Stadsveld–
‘t Zwering neighborhood and Oude Markt area, located in Enschede, The Netherlands, and the
Lozenets district in Sofia, Bulgaria. The outcomes of our experiments revealed that a model trained
with a combined dataset of two different study areas demonstrated a superior performance, capable
of delineating edges obscured by shadows or canopy. Our experiment in the Oude Markt area
resulted in building roof plane delineation with an F-score value of 0.43 when the model trained on
the combined dataset was used. In comparison, the model trained only on the Stadsveld–‘t Zwering
dataset achieved an F-score value of 0.37, and the model trained only on the Lozenets dataset achieved
an F-score value of 0.32. The results from the developed approach are promising and can be used for
3D city modelling in different urban settings.

Keywords: roof structure extraction; image processing; deep learning; HEAT; 3D modelling; LOD2

1. Introduction

The rapid urban development and limited available land in urban areas have led
to increased infrastructural developments above and below the ground surface [1]. The
fundamental components of an urban area are buildings. The use of 3D building models
in vector format is essential for creating accurate, interoperable, and efficient representa-
tions of urban environments. These models support a wide range of applications, from
urban planning and design to disaster management and environmental analysis. Build-
ing structure mapping is a topic of ongoing study being explored in various industries
since understanding these features helps to create detailed and realistic 3D city models [2].
Traditional 2D cadastral registration systems face challenges in capturing the evolving
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relationship between people and property in complex 3D urban environments [3]. Three-
dimensional city models have emerged as a viable solution, offering a means to record
and represent the various vertical developments within the 3D geographic information
systems (GIS) [4]. Furthermore, 3D city models find applications in diverse fields, including
urban planning, disaster management, energy efficiency, real estate, tourism, and serve as
a cornerstone step toward realizing Urban Digital Twin [5].

Three-dimensional city models could be used as platforms for analytical and simulated
analyses, opening avenues to unveil emergent patterns and behaviors within urban land-
scapes [6]. In the process of 3D model reconstruction, defining the desired level of detail
(LOD) becomes essential. The concept of “levels of detail” (LODs) in the City Geography
Markup Language (CityGML) standards offers a hierarchical division of the geometric and
semantic representation of objects in a 3D city model [7]. Four LODs are defined in the
Open Geospatial Consortium’s (2021) CityGML 3.0 standard [8]. Although the concept
is centered mainly on buildings, it is meant for numerous thematic objects; the five cases
mentioned increase in geometric and semantic complexity [9,10]. Around the world, there
are many examples of 3D city models for large areas; an inventory by Santhanavanich
(2020) demonstrates several examples of datasets containing building models of large cities
or even nations [11]. However, the generation of these 3D city models generally relies on LI-
DAR point clouds, in which the extraction of building roof structures can be accomplished
through point cloud segmentation [12]. This segmentation technique is complemented by
integrating building footprints as a reference for each building segmentation [6], resulting
in the creation of detailed roof structure comprising distinct roof planes. However, utilizing
LIDAR is costly and may be challenging for many counties, particularly those in the path of
development. Therefore, our study is focused on delineating building roof plane structures
exclusively from aerial imagery to derive the geometry configuration of building rooftops,
which afterwards serve as input for LOD2 3D city model creation [13].

In addition, the complexities associated with urban features pose substantial chal-
lenges for designing automated end-to-end frameworks that span the entire range from
building information retrieval and feature extraction using remote-sensing data to com-
plete 3D model reconstruction [14]. In this context, delineating building roof planes has
become a central focus of recent research, mainly when a higher level of detail (LOD) of
3D city models is needed [15]. For this task, roof plane segmentation is an essential step
in 3D building modeling. This process generates input data needed for reconstructing 3D
building models at a minimum level of detail (LOD2) [16].

Despite many research attempts to delineate building rooftop planes from remote-
sensing data, many of those attempts yield results in raster format, and limited exploration
has been undertaken in the automated extraction of roof plane structures in vector for-
mat [17]. However, vector formats represent geometric objects with mathematical precision,
allowing for accurate representation of building shapes and dimensions. In addition, vector
formats facilitate the integration of building models with other geospatial data layers and
are generally more efficient in terms of storage and processing compared to raster formats.
To have precise vector 3D building models including their complex roof structures is crucial
in 3D city modeling, where the accuracy of building footprints and heights is important for
various applications, such as urban planning and disaster management. In that vein, the
feasibility of manual extraction is compromised for large-scale projects due to significant
investments in time and cost [18]. Therefore, machine-learning and deep-learning methods
have emerged as promising solutions to address this challenge, enabling the automation
of object delineation across diverse features, including buildings, roads, roofs, and land
parcels, while ensuring efficient and accurate feature extraction [19]. However, the ability
to mimic human-level perception for comprehensive geometric structures from images,
especially in areas with complex topology or when a canopy or different obstacles obscure
roof edges, remains a significant challenge in computer vision research [20].

Recent advancements are oriented towards achieving accurate 3D vector buildings
in LOD2 with regularized outlines and straight edges [17]. Efforts are underway to ex-
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plore end-to-end frameworks for accurate planar graph reconstruction of buildings [21].
Despite the diversity in input remote-sensing datasets, the inherent challenge persists
due to varying roof topology configurations in different study areas [22]. Primarily, this
challenge arises in achieving the capability to perform holistic structural reasoning, such as
graph reconstruction derived from corners and edges—a formidable task for end-to-end
neural networks [23].

A persistent challenge for developing automated feature extraction frameworks lies in
obtaining, processing, and preparing suitable datasets. Thus, the complexity of built-up
areas can lead to inaccuracies in the extracted features, giving rise to challenges, including
such as occlusions, imprecise borders, and other issues [24], as highlighted in recent
studies [25,26]. Understanding the configuration of building roof plane structures is
paramount in developing detailed 3D models.

The presented research introduces a novel multi-stage framework for delineating
and extracting roof plan structures from RGB images into a polygon vector format. The
approach is to use HEAT [23] as a basis to detect corners and edges on the RGB input
samples. Once all features have been detected, a planar graph of the identified structure
on the input RGB image is obtained, which derives the framework’s next stage related to
the planar graph’s vectorization. One of the achievements is that the proposed framework
manages to extract even the invisible rooflines located under the vegetation. This is followed
by a subsequent 3D modelling stage that combines the vector planar roof structures with
digital elevation models to generate a LOD2 3D model of the applied study area. We have
evaluated our framework in three different study areas: the Stadsveld–‘t Zwering area and
Oude Mark area, both areas located in Enschede, The Netherlands, and the neighborhood
of Lozenets, Sofia, Bulgaria. The qualitative and quantitative evaluations demonstrated
that a model trained on a dataset from two different areas outperforms during the testing
stage from all of the models trained in their specific areas.

The present study is organized as follows. Section 2 describes the study areas, presents
the datasets employed in this study, and describes the two main stages utilized in our frame-
work. Section 3 describes all the steps implemented in this study. Section 4 presents the
quantitative and qualitative results obtained in our experiments. Following this, Section 5
presents a discussion of the main findings. Finally, Section 6 presents the conclusions of
our study.

2. Materials and Methods

This section outlines the resources and methodology used in our study, offering an
open framework for the entire research. The proposed framework aims to extract roof
planes from RGB images to convert and combine those 2D outputs for the LOD2 3D
modelling in two stages: (1) Roof plane extraction and (2) LOD2 3D modelling.

2.1. Study Area

The study area of Stadsveld–‘t Zwering, located in the southern urban area of Enschede,
The Netherlands, covers an area of around 153 hectares. The dataset contains 1972, 123,
and 370 building samples for training validation and testing, randomly split. The extent
and distribution of the building’s samples are shown in Figure 1.

The study area of Oude Markt, located in the central urban area of Enschede, The
Netherlands, covers an area of around 6 hectares. The dataset contains 119 building samples
for testing the whole workflow. The extent and distribution of the building’s samples are
shown in Figure 2.
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Figure 2. The building distribution for Oude Markt, Enschede, The Netherlands.

The study area of Lozenets, located in the urban area of Sofia, Bulgaria, covers an
area of around 812 hectares. The dataset contains 1440, 90, and 270 building samples
for training, validation, and testing, randomly split. The extent and distribution of the
building’s samples are shown in Figure 3.



Remote Sens. 2024, 16, 1386 5 of 18

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 19 
 

 

training, validation, and testing, randomly split. The extent and distribution of the build-
ing’s samples are shown in Figure 3. 

 
Figure 3. The building distribution for Lozenets, Sofia, Bulgaria. 

2.2. Data 
Experiments were performed using the datasets of Enschede, The Netherlands, and 

Sofia, Bulgaria. The data used for this research are presented in Table 1 and include (1) 
VHR aerial images, (2) the building footprints, (3) the building internal (inner) roof planes 
of the buildings, and (4) the LIDAR point cloud derived for AHN4.  

For our experiments, aerial images define our study areas, from which all building 
footprints will be used to perform a 2-meter buffer operation around each building. This 
operation will clip each building image sample according to the bounding box defined by 
the 2 m. buffer around each building. The inner roof planes of the buildings will be em-
ployed to generate planar graph information, serving as a reference to train/validate/test 
the HEAT model in the different study areas. From the LIDAR point cloud, the digital 
surface model (DSM) and digital terrain model (DTM) will be derived. Additionally, by 
subtracting the DTM from the DSM, the normalized digital surface model (nDSM) will be 
obtained. For these operations, ArcGIS Pro version 3.0.2 was used as the GIS software. 

Table 1. Description of the dataset used in the presented research. 

Area Data Source 

Stadsveld–‘t Zwering,  
Enschede,  

The Netherlands  

RGB Orthophoto (8 cm)  
PDOK [27],  

from aerial imagery, 2020  
The buildings inner roof planes, in poly-

gon vector format  
Digitalized by the author, 2023 

The buildings footprints, in polygon vec-
tor format  

PDOK [27], edited by the author, 2023 

Oude Markt  
Enschede,  

The Netherlands  

RGB Orthophoto (8 cm)  
PDOK [27],  

from aerial imagery, 2020  
The buildings inner roof planes, in poly-

gon vector format  
Digitalized by the author, 2023  

Figure 3. The building distribution for Lozenets, Sofia, Bulgaria.

2.2. Data

Experiments were performed using the datasets of Enschede, The Netherlands, and
Sofia, Bulgaria. The data used for this research are presented in Table 1 and include (1) VHR
aerial images, (2) the building footprints, (3) the building internal (inner) roof planes of the
buildings, and (4) the LIDAR point cloud derived for AHN4.

Table 1. Description of the dataset used in the presented research.

Area Data Source

Stadsveld–‘t Zwering,
Enschede,

The Netherlands

RGB Orthophoto (8 cm) PDOK [27],
from aerial imagery, 2020

The buildings inner roof planes, in polygon vector format Digitalized by the author, 2023

The buildings footprints, in polygon vector format PDOK [27], edited by the author, 2023

Oude Markt
Enschede,

The Netherlands

RGB Orthophoto (8 cm) PDOK [27],
from aerial imagery, 2020

The buildings inner roof planes, in polygon vector format Digitalized by the author, 2023

The buildings footprints, in polygon vector format PDOK [27], edited by the author, 2023

LIDAR, point cloud AHN4 [28] (Point Cloud), 2020

Lozenets,
Sofia,

Bulgaria

RGB Orthophoto (10 cm) GATE,
from aerial imagery, 2020

The buildings inner roof planes, in polygon vector format Digitalized by RMSI, 2023

The buildings footprints, in polygon vector format Digitalized by RMSI, 2023

For our experiments, aerial images define our study areas, from which all building
footprints will be used to perform a 2-m buffer operation around each building. This opera-
tion will clip each building image sample according to the bounding box defined by the 2 m.
buffer around each building. The inner roof planes of the buildings will be employed to
generate planar graph information, serving as a reference to train/validate/test the HEAT
model in the different study areas. From the LIDAR point cloud, the digital surface model
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(DSM) and digital terrain model (DTM) will be derived. Additionally, by subtracting the
DTM from the DSM, the normalized digital surface model (nDSM) will be obtained. For
these operations, ArcGIS Pro version 3.0.2 was used as the GIS software.

2.3. Roof Plane Extraction

In the first stage, the proposed framework uses as a cornerstone the deep-learning
approach developed by Cheng, 2022 [23], HEAT (holistic edge attention transformer)
developed for outdoor building reconstruction from satellite images and indoor floorplan
reconstruction. This model is applied to the current roof-plane delineation context in aerial
images, to delineate buildings, which are inherently 3D structures but appear as 2D planes
in aerial imagery. First, a data preparation process is initiated on the reference data on the
study areas based on aerial images and the cadastral data of the buildings in the image.
The automation of the data preparation process is to be used in different dataset sizes, and
the dataset is split into training, validation, and testing subsets.

Subsequently, the HEAT models are trained using the different subsets of datasets. For
the proposed framework, the availability of building footprints is assumed to be necessary
for building sample creation and the requisite information for framework utilization.

For the current research, the building footprints datasets were manually edited to
match with the aerial imagery. Furthermore, the trained HEAT models were applied to
extract the detected roof planes in the selected study areas. Finally, the obtained planar
graphs were vectorized using specialized Python libraries to convert the planar graphs
representations into a shapefile file. The overall workflow of the roof plane extraction is
shown in Figure 4.
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2.4. 3D Modelling

The aim of this 3D modeling process is to use the extracted vector roof output from
the remotely sensed data and use the building footprints to reconstruct a full 3D building
model at LOD2. This process aligns with the 3D city modelling methodology shown in the
3DBasemap extension of the commercial GIS software ArcGIS. The proposed methodology
involves a multistep procedure that integrates various GIS tools to combine the inner
roof planes, digital surface model (DSM), digital terrain model (DTM), and normalized
digital surface model (nDSM), and subsequently enables the creation of 3D building objects
at LOD2.
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This phase underwent testing exclusively using the Oude Markt dataset. The overall
workflow of the 3D modelling stage is shown in Figure 5. The figure illustrates the
sequential steps involved in the GIS software, wherein building roof planes are combined
with digital elevation models to extrude them.
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from the obtained rooftop planes and different digital elevation models.

The accuracy of the results is evaluated using the metrics proposed in [23] for the
extraction stage for detecting corners, edges, and regions. Furthermore, the vectorization
stage is analyzed by using the intersection over union (IoU) metric. This additional accuracy
metric captures the quality of the extracted vector format polygons, a factor not considered
in the standard metrics presented by [23]. The root mean square error (RMSE) serves as a
pivotal metric for quantifying the dissimilarity between the digital surface model (DSM)
and the resultant LOD2 3D city model, derived from the inner roof planes of buildings.
This computation encompasses the evaluation of each pixel enclosed within the inner roof
planes. To ensure alignment with the DSM’s resolution, the LOD2 3D city model undergoes
rasterization, attaining a uniform 0.2 m resolution.

3. Proposed Framework

The proposed framework includes innovative methods for delineating and extracting
building roof planes from RGB photos, addressing the complexities of the urban envi-
ronment for 3D modelling. The framework includes the following steps explained in the
next subsections.

3.1. Data Preparation Implementation

The application of the HEAT approach is explored for mapping building rooftop
structures. This method entails deriving a planar graph, encompassing corners, edges, and
regions, from a cropped 256 × 256 image. An automated data preparation procedure is
employed to extend the application of this approach across an entire area. The process
takes an aerial image, the building footprints and inner roof planes as input. It commences
by cropping buildings from the aerial image using a bounding box generated from a 2 m
polygon buffer surrounding each building footprint. Following this, the cropped images
are resized to the 256 × 256 pixel format, ensuring compatibility with HEAT.

Furthermore, reference training data are essential to generate the training data for the
HEAT model, which includes cropped images of the building samples and their associated
planar graph. Building image samples are generated in .jpg format alongside the planar
graphs for each building sample, considering the necessary resizing from real-world
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coordinates to the 256 × 256 image coordinates. Figure 6 shows the overall workflow of
the data preparation process.
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The entire data preparation process is executed using a combination of GIS software
tools and Python libraries comprised in a Jupyter Notebook with Python 3.8. The informa-
tion regarding the coordinate reference system of the used bounding box for each building
sample necessary for resizing from real-world coordinates to image coordinates is stored
in a text file per image building sample. This information is crucial for mapping the inner
roof planar graph delineated on each building image sample to real-world coordinates.

3.2. Training HEAT Model

The training process starts with the pre-trained HEAT model for outdoor architectural
reconstruction, in which training parameters are outlined in [23]. Using the pre-trained
HEAT model instead of training a new one is chosen to leverage the existing understanding
of outdoor architectural reconstruction. Three models underwent training based on the
designated dataset for each study area: the model trained with the Stadsveld–‘t Zwering
dataset, the model trained with the Lozenets dataset, and the combined model which
was generated by combining the same training and validation datasets considered for the
individual models. This approach helps to prevent overfitting when testing the combined
model on the respective areas.

Based on empirical experiments, an arbitrary number of 646 epochs is set for every
training session. The training process is monitored by utilizing the validation accuracy
value to find the model with the highest accuracy within the training session. The training
was conducted using Python 3.8 and PyTorch 1.12.1. Table 2 shows how the input data for
all three models are split into training and validation datasets, including image size, batch
size, and maximum number of corners per image.

Table 2. Dataset parameters for training.

Model
Dataset Size Max. Number of

Corners per ImageTraining Validation Total Image Size Batch Size

Model trained on the
Stadsveld–‘t Zwering, Enschede,
The Netherlands, dataset

1972 123 2095

256 16 150
Model trained on the Lozenets,
Sofia, Bulgaria, dataset 1440 90 1530

Model trained on the combined
dataset from Stadsveld–‘t
Zwering and Lozenets dataset

3412 213 3625

In the following sections of this research, the model trained on the Stadsveld–’t
Zwering dataset will be denoted as “Model trained on Enschede dataset”, the model
trained on the Lozenets dataset will be denoted as “Model trained on Sofia dataset”, and
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the model trained on the combined dataset will be labeled as “Model trained on the
combined dataset”.

3.3. Building Roof Plane Extraction

After completing the training process, this study focuses on applying and evaluating
the performance of the generated trained models in delineating the inner roof planes of
buildings within our designated testing datasets. Subsequently, post-processing operations
are conducted to convert the obtained planar graph text file of each building sample into
vector format datasets. The planar graph output obtained from HEAT is stored in a Python
dictionary with three distinct keys, which are described as follows:

- corners’: This key corresponds to a 2D array of integers, where each row represents
the x and y coordinates of an identified corner in the building image sample;

- edges’: This key corresponds to a 2D array of integers. Each row represents a pair of
corners (indicated by their indices in the ‘corners’ array) forming an edge;

- image_path’: This key corresponds to a string specifying an image file’s path. This
image aligns with the deduced corners and edges on the input-image building sample.

The following approach transforms the acquired planar graph text file into a real-
world coordinate vector polygon format. The conversion process has a similar structure as
in the data preparation process, as every planar graph based on the building file name is
mapped to the corresponding bounding box information file used for clipping the image to
its original size saved during the data preparation process. Once every sample was resized
and georeferenced to its real-world location, all the generated building inner roof plane
planar graphs were merged into one vector file. The overall workflow of the building roof
plane extraction is shown in Figure 7.
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The process described above is performed in a Jupyter Notebook using Python 3.8.
The outputs of the Jupyter Notebook are provided in polyline vector format. GIS software
is employed to convert the geometry of these outputs to a polygon vector format.

3.4. 3D Modelling

After acquiring all the roof plane structures, the subsequent stage of the framework
concentrates on testing the application of the obtained outputs for 3D modelling. A 3D
city model at LOD2 for the Oude Markt area in Enschede, The Netherlands, is generated,
utilizing the 3DBasemaps extension of ArcGIS Pro, whose methodology for combining roof
form structures with DEMs is detailed in [29]. This approach was applied to generate a
LOD2 3D city modelling for the Oude Markt area in Enschede, The Netherlands. This area
was employed to test the whole framework without being part of the training stage for the
roof structure extraction step. The overall workflow of this stage is shown in Figure 5.
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To display the results of the created 3D model at LOD2 of the Oude Markt, a webmap
was developed to provide a user-friendly interface for assessing the qualitative outcomes
obtained in this stage. Readers can access the platform following the resource: https:
//arcg.is/1raWvS0, accessed on 12 March 2024 [30].

3.5. Evaluation Metrics

The results are evaluated across the different stages: building inner roof plane delin-
eation, vectorization, and 3D modelling.

Building inner roof plane delineation. To evaluate the correctness of the inner roof
plane delineation results on every building sample, the trained models’ performances are
assessed on detecting corners, edges, and regions using the standard formulas for precision,
recall, and F1 score.

- Corners. A corner is successfully predicted and considered a true positive if a ground-
truth corner is located within an Euclidean distance of an 8-pixel radius. In cases
where multiple corners are detected around a single ground-truth corner, only the
closest corner will be deemed a true positive;

- Edges. An edge is successfully predicted and considered a true positive if both end
corners are detected and the pair of corners exists on the ground truth;

- Regions. A region is successfully predicted and considered a true positive if the inter-
section over union (IoU) of a region defined by the different connected components of
predicted corners and edges and a ground-truth region is greater than or equal to 0.7;

Vectorization. The accuracy of the final outputs is evaluated by the number of detected
closed planes that resulted from edges. As certain edges may not converge into planes and
are delineated as unclosed structures, the IoU metric is employed. This metric compares
the obtained polygon planes with the ground-truth vector planes, providing a measure of
accuracy for the final results.

3D Modelling. In the 3D modelling process, the root mean square error (RMSE) was
calculated to assess the discrepancies between the generated 3D city model at LOD2 and the
DSM. This involves a pixel–pixel computation, with the 3D city model at LOD2 rasterized
to a 0.2 m resolution.

4. Results

The proposed framework was developed to automatically extract building inner roof
planes on a study area and generate a 3D model at LOD2. This section compares the
results obtained on the test dataset for the different study areas. The processing outputs
from the building roof plane extraction and the 3D modelling stage are presented in the
following subsections.

4.1. Quantitative Results
4.1.1. Building Roof Plane Extraction

Table 3 presents the quantitative evaluations for delineating and extracting building
inner roof planes. The models customized for Stadsveld–’t Zwering and Lozenets areas
showed the best results throughout the entire workflow. Upon testing the trained model
on the combined dataset within the Oude Markt study area, the model trained on this inte-
grated dataset demonstrates a superior performance, showcasing a noteworthy advantage,
particularly during the final vectorization stage.

Our experiments were conducted using image samples with a resolution of 256 × 256.
Our hypothesis suggests that the model trained on the combined dataset exhibits more
advanced holistic geometric reasoning [23] than the other two models. Consequently, when
tested in a different environment without prior context, the model trained on the combined
dataset emerges as the superior performer due to its training on a more diverse dataset.

It is observed that the IoU test for the vectorization stage was only conducted on the
top two models from the delineation stage.

https://arcg.is/1raWvS0
https://arcg.is/1raWvS0
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Table 3. Quantitative evaluations on building roof structure extraction. The values in bold mark the top results on our experiments.

Area Models
Corners Edges Regions Vectorization

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score IoU

Stadsveld–’t Zwering,
Enschede, The
Netherlands

Model trained on Enschede dataset 0.85 0.68 0.76 0.61 0.50 0.55 0.72 0.64 0.68 0.82
Model trained on Sofia dataset 0.52 0.72 0.60 0.34 0.48 0.40 0.41 0.56 0.47 -

Model trained on combined dataset 0.85 0.68 0.76 0.61 0.51 0.56 0.73 0.64 0.68 0.80

Oude Markt, Enschede,
The Netherlands

Model trained on Enschede dataset 0.69 0.46 0.55 0.38 0.24 0.29 0.49 0.30 0.37 0.66
Model trained on Sofia dataset 0.43 0.64 0.51 0.22 0.34 0.27 0.27 0.40 0.32 -

Model trained on combined dataset 0.60 0.55 0.57 0.31 0.29 0.30 0.44 0.43 0.43 0.82

Lozenets,
Sofia,

Bulgaria

Model trained on Enschede dataset 0.84 0.27 0.41 0.39 0.12 0.19 0.45 0.13 0.21 -
Model trained on Sofia dataset 0.80 0.53 0.63 0.44 0.31 0.37 0.47 0.37 0.41 0.71

Model trained on combined dataset
(Enschede + Sofia) 0.81 0.50 0.62 0.44 0.30 0.36 0.47 0.35 0.41 0.70
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4.1.2. 3D City Modelling

Table 4 presents the quantitative evaluations for the 3D city modeling stage, relying
on the extracted inner roof planes of buildings obtained in the preceding stage, utilizing
the model trained on the combined dataset specific to the Oude Markt area. The RMSE
values indicate that approximately 95% of the buildings within the study area exhibit
discrepancies ranging from 0 to 10 m between the generated LOD2 3D model and the DSM
for this specific geographical region.

Table 4. Quantitative evaluations on 3D modelling stage.

Area
RMSE

Total
(0–5) m. (5–10) m. (10–15) m. (15–20) m. (25–30) m.

Oude Markt, Enschede,
The Netherlands

No. of buildings’
planes 473 164 25 8 2 672

% 70.39 24.40 3.72 1.19 0.30 100.00

The 3D city modelling process utilized a pre-established method dictated by the
software employed. Consequently, this stage offers room for improvement by exploring
alternative options to enhance the 3D city model.

4.2. Qualitative Results
4.2.1. Building Roof Plane Extraction

Figure 8 provides a qualitative comparison between the top two trained models
that outperform in Stadsveld–‘t Zwering, Enschede, The Netherlands. As illustrated, the
reconstruction quality is similar between the two models and close to the ground truth.
However, the reconstruction ability of the model trained on the combined dataset is notable
for detecting even more building inner roof planes than the ones detected from the model
trained on the Enschede dataset only, which certainly impacts the qualitative results.
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Figure 9 compares the top two trained models outperforming Oude Markt, Enschede,
The Netherlands. As observed, the reconstruction quality is similar between the two models
with the ground truth facing the same challenges in the reconstruction of structures that
are covered by shadows and in reconstructing structures with circular shapes (row E). The
model trained on the combined dataset performs better than the model trained on the
Stadsveld–‘t Zwering dataset.
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Figure 10 compares the top two trained models outperforming in the Lozenets, Sofia,
Bulgaria, area. The reconstruction quality is similar between the two models with the
ground truth. The same traits were observed in the previous experiments, in which the
model trained on the combined dataset could detect even more planes than those presented
on the ground truth. However, the qualitative evaluations show the ability of the model
trained on the combined dataset to detect the finest details, including the inner planes of
buildings that are occluded by the canopy of trees (row E).

4.2.2. 3D Modelling

Figure 11 shows the generated 3D model at LOD2 for the Oude Markt area. A
comparative analysis of selected buildings considered representative within the area is
conducted, contrasting the generated 3D structures with their counterparts from Google
Earth Pro 3D buildings. Noteworthy are the discernible disparities in our model that
require some rectification. Specific structures that were not recognized in the previous stage
exhibit susceptibility to distortion in the 3D modelling phase.
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The generated LOD2 3D model of Oude Markt at LOD2 and all the generated outputs
on this research are published on a webmap ArcGIS online application [30].

5. Discussion

The present study introduced a novel framework to delineate building roof planes
applicable across entire areas, utilizing aerial imagery and building footprint information
using as a basis and upgrading the work developed by Cheng in 2022 [23]. In contrast
to conventional segmentation methods for outdoor building reconstruction, which face
challenges detecting straight edges [31], our proposed framework is specifically trained to
identify corners and edges and establish geometric relationships between these corners.
Notably, the framework achieves remarkable results, demonstrated by its ability to detect
building inner roof planes, even in complex scenarios where vegetation obscures edges.
This capability is facilitated by accurately identifying the end corners of the building’s
inner roof planes and then, based on its holistic geometry reasoning, drawing the edges
between them as demonstrated in Sample C5 and C6 (Figure 10) of the model trained on
the combined dataset for Lozenets, Sofia, Bulgaria. This achievement surpasses traditional
methods employed in such cases.

Despite the robust performance exhibited by our approach in delineating inner roof
plane structures, specific limitations become evident in certain scenarios. A constraint
arises when image samples encompass more than one building in the same image with
a ground surface between, as illustrated in Sample D in Stadsveld–‘t Zwering, Sample
C in Oude Markt (Figure 9), and Sample E in Lozenets (Figure 10). The trained models
could predict the ground as a planar structure in such situations. This misclassification is
attributed to the model’s challenge in discerning between various types of flat surfaces,
particularly distinguishing between the ground, vegetation, and the roofs of buildings. This
difficulty intensifies when the ground is a substantial portion of the image and assumes a
shape similar to that of the building. Misinterpreting the ground as part of the building
roof structure could introduce inaccuracies into the final 3D model, as exemplified in image
Sample C in Oude Markt (Figure 9), representing “Gemeente Enschede”, where the 3D
model appears different from the representation in Google Earth’s 3D model. Furthermore,
these misinterpretations may result in significant errors that must be considered when
assessing the model’s performance.

An additional complication arises when the model endeavors to infer inner planes on
image samples featuring intricate roof graphs characterized by many corners intended to
generate circular or highly complex roof structures with many planes, as demonstrated by
the buildings depicted in sample E within Stadsveld–‘t Zwering and Oude Markt (Figure 9).
The model encounters challenges in accurately interpreting and reconstructing the geo-
metrical attributes inherent in these complex roof structures. Specifically, it frequently
encounters difficulties in correctly identifying and processing planes characterized by
numerous corners, resulting in the inaccurate generation of circular roof planes. As the
complexity and number of corners within the roof graph increase, the model’s performance
tends to diminish, indicating a potential vulnerability in handling geometric intricacies.

In instances where the image samples comprise large, densely packed, and complex
buildings, as illustrated in Sample E in Stadsveld–‘t Zwering and Lozenets (Figure 10),
all trained models exhibited suboptimal performance in detecting planes. This limitation
can be ascribed to the model’s inherent difficulty in discerning between diverse structural
elements within extensive, densely packed, and intricate building configurations within a
limited pixelated image sample.

As shown by the observations in Sample F6 in Oude Markt and Row F in Lozenets
(Figure 10), the output quality depends on the input data quality. In these cases, the
trained model misinterpreted the building facades as part of the interior roof planes. This
misconception is attributed to the building samples’ tilt of the aerial picture, which allowed
some facade planes to be visible in the image samples.
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Quantitative evaluations reveal susceptibility to bias in some instances, such as Sam-
ples A, B, D, E in Stadsveld–‘t Zwering, and C in Oude Markt (Figure 9), where the model
trained on the combined dataset detects more planes than those presented in the ground
truth, resulting in false positives that impact the quantitative assessment. However, when
evaluating qualitative metrics, this discrepancy demonstrates that the trained model on
the combined dataset performance is superior, detecting finer details, thus providing an
advantage for the modeling stage.

Despite the advancements demonstrated in this study, certain limitations persist within
the proposed framework. While this research highlights the feasibility of generating a Level
of Detail 2 (LOD2) 3D model, some enhancements may involve integrating additional fac-
tors. For instance, incorporating normalized digital surface models (nDSM) as a four-band
component in the building image sample is proposed to improve surface discrimination.
Furthermore, future studies could benefit from experimenting with building image samples
featuring a resolution of 512 × 512 pixels.

Finally, the current 3D city modelling methodology relies on pre-established tools
within GIS software, and future investigations can extend and refine this presented frame-
work by constructing a comprehensive end-to-end open-source framework.

6. Conclusions

This study introduces a multi-phase framework based on HEAT, a transformer-based
deep-learning model, to automatically extract building inner roof planes and then use
them to generate 3D city models at LOD2. The proposed approach extracts inner and
outer rooflines applicable to different roof topologies. The inner roof planes are obtained
in vector format, without additional post-processing, addressing challenges in image
segmentation methods.

Further experiments in different areas demonstrated sensitivity to bias, affecting
model performance. Quantitative assessments reveal that models tailored to specific study
areas successfully extracted inner roof plane structures with a performance similar to a
model trained on a combined dataset. However, a model trained on a combined dataset
from both study areas demonstrated a superior performance when tested on a study that
was not included in the training process, such as the Oude Markt, Enschede, study area.
Nevertheless, topological evaluations requiring GIS post-processing of the final vector roof
structures were not within the scope of this research. Qualitative assessments indicate
superior performance of the model trained on the combined dataset, excelling in detecting
roof boundaries even when vegetation obscures them. This achievement is significant
because it allows for the prediction of invisible boundaries using the HEAT capability
for structural reasoning in an integrated manner. Furthermore, the model’s ability to
generate straight edges in the outputs represents a noteworthy success. Considering these
accomplishments is crucial, as they address common challenges that classical deep-learning
methods based on image segmentation often struggle with.

The developed framework successfully extracts inner roof planes, however, there are
still inconsistencies including incomplete corner prediction in complex roof structures,
requiring additional post-processing. The study demonstrates the feasibility of creating
LOD2 3D city models by integrating the generated inner roof planes with DSM, DTM, and
nDSM. While improvements can be added to the framework, the approach confirms the
viability of combining remote sensing, GIS, and deep learning for urban mapping and 3D
city modelling, making it a cornerstone for future research and growth.
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