Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = complex molybdate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4096 KB  
Article
Kinetics of Propene Oxidation to Acrolein over Bismuth Molybdates
by Tomislav Penović, Vesna Tomašić, Aleksandra Sander, Stanislav Kurajica and Zoran Gomzi
ChemEngineering 2026, 10(2), 22; https://doi.org/10.3390/chemengineering10020022 - 2 Feb 2026
Viewed by 200
Abstract
The conversion of alkanes/alkenes into useful intermediates is highly important in the chemical industry. In this study, the physicochemical properties and catalytically active forms of bismuth molybdates (BiMo) were investigated using the selective oxidation of propene to acrolein as a model reaction. The [...] Read more.
The conversion of alkanes/alkenes into useful intermediates is highly important in the chemical industry. In this study, the physicochemical properties and catalytically active forms of bismuth molybdates (BiMo) were investigated using the selective oxidation of propene to acrolein as a model reaction. The catalysts were prepared by two methods, coprecipitation and spray-drying, with emphasis on spray-drying. The catalysts were characterized using X-ray diffraction, N2 adsorption/desorption isotherms, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of the BiMo samples were studied in a conventional fixed-bed reactor operated under different reaction conditions. The one-dimensional (1D) pseudohomogeneous model was applied to describe the obtained experimental results. The experimental kinetic data were correlated with two complex kinetic models based on multiple reactions (parallel and serial reaction systems). The proposed models were verified by comparing computer simulation data with experimental laboratory results. This study aimed to extend the understanding of the relationship between catalyst composition/structure and catalyst activity/selectivity for different BiMo structures, and to propose kinetic models using two approaches based on parallel and series reactions, in line with efforts to improve the valorization of light olefins. Full article
Show Figures

Figure 1

17 pages, 6456 KB  
Article
A Novel Dual-Function Red Mud Granule Mediated the Fate of Phosphorus in Agricultural Soils: Pollution Mitigation and Resource Recycling
by Yaqin Zhao, Bingyu Yang, Zixuan Niu, Liping Wang, Dejun Yang, Jing Wang and Zihao Chen
Sustainability 2025, 17(24), 10910; https://doi.org/10.3390/su172410910 - 5 Dec 2025
Viewed by 510
Abstract
The limited availability of phosphorus (P) in soil poses a critical constraint on agricultural productivity, and sustainable P fertilization practices are of great importance for crop production. In this study, we developed a novel dual-function granular material (RMG) derived from red mud, a [...] Read more.
The limited availability of phosphorus (P) in soil poses a critical constraint on agricultural productivity, and sustainable P fertilization practices are of great importance for crop production. In this study, we developed a novel dual-function granular material (RMG) derived from red mud, a waste residue from the aluminum industry. This material is capable of adsorbing P in P-rich soils and releasing P in P-deficient soils, thereby enabling the sustainable use of red mud and P fertilizer. The influences of RMG on the migration and transformation of P in soil were investigated. Application of RMG significantly increased the critical threshold for P leaching, thereby effectively mitigating P loss. In the initial stage of leaching, P in the leachate was present predominantly as particulate phosphorus, whereas molybdate-reactive P became the dominant form in later stages. With increasing RMG dosage, the pH of the leachate rose while the total phosphorus concentration declined, indicating that alkaline components in RMG promoted the adsorption and precipitation of phosphates in soil. The release behavior of P from P-enriched RMG was also examined. The results showed that the total soil P content increased progressively with higher RMG dosage and longer cultivation duration. Elevated temperature and soil moisture content were found to enhance the release and migration of P from RMG into the soil. SEM-EDS analyses revealed that released components (e.g., Ca2+ and Fe3+) from RMG formed relatively stable complexes with free phosphates. Moreover, adsorption of P onto the RMG surface further facilitated its migration and transformation within the soil. The research findings provide valuable insights for the simultaneous pollution remediation and resource utilization of red mud and phosphorus. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

12 pages, 2456 KB  
Article
Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations
by Romain Botella and Grégory Lefèvre
Colloids Interfaces 2025, 9(5), 59; https://doi.org/10.3390/colloids9050059 - 5 Sep 2025
Viewed by 820
Abstract
Drying is ubiquitous. However, its influence on surface speciation has been seldom studied. Through an in situ Attenuated Total Reflection–Infrared (ATR-IR) spectroscopy analysis of the drying of molybdate solutions on a lepidocrocite particle film, the change in surface speciation is followed. No formation [...] Read more.
Drying is ubiquitous. However, its influence on surface speciation has been seldom studied. Through an in situ Attenuated Total Reflection–Infrared (ATR-IR) spectroscopy analysis of the drying of molybdate solutions on a lepidocrocite particle film, the change in surface speciation is followed. No formation polymolybdates nor precipitate are observed upon drying at pH 8. An in situ washing of the dried solid/solution interface unveils the existence of surface outer-sphere and inner-sphere complexes. Decreasing the molybdate concentration highlights a saturation effect of the surface upon drying. Moreover, the careful analysis of substrate IR bands showed non-uniform drying which is an important insight to understand dehydration chemistry. The remaining molybdate ions at the surface as inner-sphere complexes are present as binuclear monodentate complexes stabilized by sodium. Full article
(This article belongs to the Special Issue Ten Years Without Nikola Kallay)
Show Figures

Graphical abstract

16 pages, 3927 KB  
Article
3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption
by Qinglin Wang, Yinghao Zhao, Hao Zeng, Xiaohu Chen, Chunliang Chen, Jiashu Cui and Yanen Wang
Gels 2025, 11(9), 703; https://doi.org/10.3390/gels11090703 - 2 Sep 2025
Cited by 1 | Viewed by 1320
Abstract
With the rapid development of flexible electronic skin materials, the demand for ion-conductive hydrogels is constantly growing. Specifically, these ion-conductive hydrogels are required to simultaneously exhibit excellent mechanical properties, high conductivity, and multifunctionality. Moreover, this performance requirement needs to be met in complex [...] Read more.
With the rapid development of flexible electronic skin materials, the demand for ion-conductive hydrogels is constantly growing. Specifically, these ion-conductive hydrogels are required to simultaneously exhibit excellent mechanical properties, high conductivity, and multifunctionality. Moreover, this performance requirement needs to be met in complex environments. However, the rapid production of hydrogels that combine high conductivity and photochromic properties remains a major challenge. In this study, a simple one-pot method was employed to successfully prepare multifunctional photochromic hydrogels by incorporating ammonium molybdate (Mo7) and lithium chloride (LiCl) into a dual-network hydrogel composed of polyacrylamide (PAAm) and sodium alginate (SA). PAAm/SA/Mo7/LiCl (PSML) hydrogels exhibit excellent comprehensive performance, including superior conductivity (average value of 164 S/cm), rapid UV response time (<20 s), good color-changing reversibility, outstanding high stretchability (peak value of 2800%), and high transparency (>70%). The design ingeniously combines two types of synergistic effects: the synergistic effect of the dual-network structure and that of the multifunctional component functional additives (Mo7, LiCl). Specifically, the PSML hydrogel integrates photochromic properties, excellent mechanical properties, good anti-freezing properties, and 3D printability through this design. Due to these outstanding properties, the PSML hydrogel shows broad application prospects in fields such as flexible strain sensors, information storage, and encryption devices. Full article
Show Figures

Figure 1

16 pages, 3766 KB  
Article
Enhanced Molybdenum Recovery Achieved by a Complex of Porous Material-Immobilized Surface-Engineered Yeast in Development of a Sustainable Biosorption Technology
by Thiti Jittayasotorn, Kentaro Kojima, Audrey Stephanie, Kaho Nakamura, Hernando P. Bacosa, Kengo Kubota, Masanobu Kamitakahara, Chihiro Inoue and Mei-Fang Chien
Microorganisms 2025, 13(5), 1034; https://doi.org/10.3390/microorganisms13051034 - 30 Apr 2025
Viewed by 1057
Abstract
Molybdenum (Mo) is a critical industrial metal valued for its corrosion resistance and strength-enhancing properties. However, increasing demand necessitates more efficient and sustainable recovery methods. Bio-recovery of Mo by biosorption is a promising resolution, especially by the use of surface-engineered microbes that express [...] Read more.
Molybdenum (Mo) is a critical industrial metal valued for its corrosion resistance and strength-enhancing properties. However, increasing demand necessitates more efficient and sustainable recovery methods. Bio-recovery of Mo by biosorption is a promising resolution, especially by the use of surface-engineered microbes that express metal binding proteins on its cell surface. This study investigates the potential of Saccharomyces cerevisiae strain ScBp6, which displays a molybdate-binding protein (ModE) on its cell surface, immobilized on porous materials. Our findings reveal that polyurethane sponges (PS) significantly outperform ceramic materials in yeast immobilization, entrapping 1.76 × 107 cells per sponge compared to 1.70 × 106 cells per ceramic cube. Furthermore, the yeast–PS complex demonstrated superior Mo adsorption, reaching 2.16 pg Mo per yeast cell under 10 ppm Mo conditions, comparable to free yeast cells (1.96 pg Mo per yeast cell). These results establish PS as an effective and scalable platform for Mo recovery, offering high biosorption efficiency, reusability, and potential for industrial wastewater treatment applications. Full article
(This article belongs to the Special Issue Bio-Convergence: Microorganism Usage for Sustainability Applications)
Show Figures

Figure 1

18 pages, 2735 KB  
Article
Determination of Phosphate as an Ion-Association Complex of 11-Molybdovanadophosphate and Diindodicarbocyanine Based on Selective Oxidation of Excess Dye
by Andriy B. Vishnikin, Svitlana V. Khlyntseva, Yaroslav Bazel, Ioseph Balogh and Ihor E. Barchiy
Molecules 2025, 30(9), 1872; https://doi.org/10.3390/molecules30091872 - 22 Apr 2025
Viewed by 1081
Abstract
The elimination of absorbance of excess dye by selective oxidation was first proposed for analytical methods using the formation of ion-association complexes (IAs). On this basis, a new sensitive and selective spectrophotometric method for the determination of phosphate in the form of the [...] Read more.
The elimination of absorbance of excess dye by selective oxidation was first proposed for analytical methods using the formation of ion-association complexes (IAs). On this basis, a new sensitive and selective spectrophotometric method for the determination of phosphate in the form of the IA of 11-molybdovanadophosphate with diindodicarbocyanine (DIDC) was developed. Symmetric diindodicarbocyanine and diindotricarbocyanine dyes can be completely oxidized by sufficiently strong oxidizing agents such as permanganate, dichromate, cerium (IV), and vanadate. Of the three dyes investigated (DIDC, N,N’-dipropyldiindodicarbocyanine, and diindotricarbocyanine), the best results were obtained with DIDC. A mixture of molybdate, vanadate, and nitric acid was preferably used as an oxidizing agent. Selective decolorization of only free dye ions, as well as changes in the IA spectrum compared to the dye spectrum, were explained by the isolation of the dye due to the formation of poorly soluble IA nanoparticles and changes in the redox potential of the dye due to its aggregation. The following optimal conditions for phosphate determination were found: 0.3 M nitric acid, 0.43 mM sodium molybdate, 0.041 mM sodium vanadate, 0.015 mM DIDC, and 18 min for the reaction time. The molar absorptivity of the IA was 1.86 × 105 mol−1·L·cm−1 at 600 nm, and the detection limit for phosphate was 0.013 µM. The developed method was applied to the determination of phosphate in natural water samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

30 pages, 10226 KB  
Article
Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications
by Norica Godja and Florentina-Daniela Munteanu
Coatings 2025, 15(4), 439; https://doi.org/10.3390/coatings15040439 - 8 Apr 2025
Cited by 4 | Viewed by 2492
Abstract
The adoption of chrome-free anodizing and sealing systems for aluminum alloys, particularly AA2024, is gaining prominence due to environmental and health concerns associated with traditional Cr(VI)-based processes. This study evaluates the environmental and economic impacts of sulfuric acid anodizing (SAA) combined with sealing [...] Read more.
The adoption of chrome-free anodizing and sealing systems for aluminum alloys, particularly AA2024, is gaining prominence due to environmental and health concerns associated with traditional Cr(VI)-based processes. This study evaluates the environmental and economic impacts of sulfuric acid anodizing (SAA) combined with sealing based on fluorozirconate, molybdate, and cerate. Comparative analyses were conducted against conventional Cr(VI) systems and SAA with Cr(III) sealing, focusing on corrosion resistance, energy consumption, washing steps and material flows. The entire anodizing process was examined, including pretreatment, anodization, and sealing. Electrochemical analyses and surface characterization through SEM/EDS, FIB, and XPS were conducted. The results demonstrate that the chromium-free system offers competitive corrosion resistance while significantly reducing environmental and economic costs. Furthermore, fluorozirconate, molybdate, and cerate-based post-treatments broaden its application spectrum in corrosion science and warrant further exploration. However, adopting new sealing technologies in aerospace requires extensive certification involving corrosion resistance, durability assessments, and stringent environmental simulations. Compliance with regulatory standards set by the FAA (Federal Aviation Administration) and EASA (European Union Aviation Safety Agency) necessitates thorough documentation, third-party validation, and testing to ensure safety and performance before industrial implementation. These challenges underscore the complexity of transitioning to more sustainable anodizing and sealing technologies in the aerospace industry. Full article
(This article belongs to the Special Issue Corrosion Protection of Metals and Alloys in Extreme Environments)
Show Figures

Graphical abstract

15 pages, 6281 KB  
Article
Structure and Mixed Proton–Electronic Conductivity in Pr and Nb-Substituted La5.4MoO12−δ Ceramics
by Abraham Sánchez-Caballero, José M. Porras-Vázquez, Lucía dos Santos-Gómez, Javier Zamudio-García, Antonia Infantes-Molina, Jesús Canales-Vázquez, Enrique R. Losilla and David Marrero-López
Materials 2025, 18(3), 529; https://doi.org/10.3390/ma18030529 - 24 Jan 2025
Cited by 2 | Viewed by 1434
Abstract
Lanthanide molybdates are materials known for their mixed proton–ionic conductivity. This study investigates the effects of Pr content and Nb-doping on the crystal structure and electrical properties of the La5.4−xPrxMo1−yNbyO12−δ (x = 0, 1.35, [...] Read more.
Lanthanide molybdates are materials known for their mixed proton–ionic conductivity. This study investigates the effects of Pr content and Nb-doping on the crystal structure and electrical properties of the La5.4−xPrxMo1−yNbyO12−δ (x = 0, 1.35, 2.7, 4.05, 5.4; y = 0, 0.1) series. The research focuses on two primary objectives: (i) enhancing the electronic conductivity through the use of Pr4+/Pr3+ redox pairs and (ii) increasing the ionic conductivity through Nb5+ aliovalent doping. The materials were thoroughly characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission and scanning electron microscopy (TEM and SEM), and complex impedance spectroscopy. The average crystal structure of the materials depended significantly on the Pr content. In general, compositions with a higher Pr content crystallize in a cubic fluorite-type structure, whereas those with a lower Pr content stabilize a rhombohedral polymorph. However, detailed TEM studies reveal a more complex local crystal structure characterized by nanodomains and incommensurate modulations. The highest conductivity values were observed in a N2 atmosphere for compositions with an elevated Pr content, with values of 0.17 and 204.4 mS cm−1 for x = 0 and x = 5.4, respectively, at 700 °C, which is attributed to electronic conduction mediated by the Pr4+/Pr3+ redox pair, as confirmed by XPS. These findings highlight the potential of tailored doping strategies to optimize the conducting properties of lanthanide molybdates for specific high-temperature electrochemical applications. Full article
Show Figures

Figure 1

23 pages, 5932 KB  
Article
Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems
by Safe ELdeen M. E. Mahmoud, Tarek M. Abdel-Fattah, Mohamed E. Mahmoud and Eva Díaz
Nanomaterials 2024, 14(22), 1789; https://doi.org/10.3390/nano14221789 - 7 Nov 2024
Cited by 1 | Viewed by 1388
Abstract
Functionalized nanomaterials with surface-active groups have garnered significant research interest due to their wide-ranging applications, particularly in water treatment for removing various contaminants. This study focuses on developing a novel, multi-functional nanobiosorbent by synthesizing nanosized biochar from artichoke leaves (NBAL) and molybdic acid [...] Read more.
Functionalized nanomaterials with surface-active groups have garnered significant research interest due to their wide-ranging applications, particularly in water treatment for removing various contaminants. This study focuses on developing a novel, multi-functional nanobiosorbent by synthesizing nanosized biochar from artichoke leaves (NBAL) and molybdic acid (MA). The resulting nanobiosorbent, MA@NBAL, is produced through a microwave-irradiation process, offering a promising material for enhanced environmental remediation. The characteristics of assembled MA@NBAL were evaluated from SEM-EDX, XPS, TGA, FT-IR, and zeta potential detection. The size of particles ranged from 18.7 to 23.7 nm. At the same time, the EDX analysis denoted the existence of several major elements with related percentage values of carbon (52.9%), oxygen (27.6%), molybdenum (8.8%), and nitrogen (4.5%) in the assembled MA@NBAL nanobiosorbent. The effectiveness of MA@NBAL in removing Hg(II) ions was monitored via the batch study method. The optimized maximum removal capacity of Hg(II) ions onto MA@NBAL was established at pH 6.0, 30.0 min equilibrium time, and 20 mg of nanobiosorbent, providing 1444.25 mg/g with a 10.0 mmol/L concentration of Hg(II). Kinetic studies revealed that the adsorption process followed a pseudo-second-order model, with R2 values ranging from 0.993 to 0.999 for the two tested Hg(II) concentrations, indicating excellent alignment with the experimental data. This suggests that the chemisorption mechanism involves cation exchange and complex formation. Isotherm model evaluation further confirmed the adsorption mechanism, with the Freundlich model providing the best fit, yielding an R2 of 0.962. This result indicates that Hg(II) adsorption onto the surface of MA@NBAL nanobiosorbent occurs on a heterogeneous surface with multilayer formation characteristics. The results of the temperature factor and computation of the thermodynamic parameters referred to endothermic behavior via a nonspontaneous process. Finally, the valid applicability of MA@NBAL nanobiosorbent in the adsorptive recovery of 2.0 and 5.0 µg/mL Hg(II) from contaminated real aquatic matrices was explored in this study, providing 91.2–98.6% removal efficiency. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

18 pages, 6764 KB  
Article
A Facile Synthesis of RGO-Ag2MoO4 Nanocomposites for Efficient Lead Removal from Aqueous Solution
by Mohd Shoeb, Fouzia Mashkoor, Mohmmad Naved Khan and Changyoon Jeong
Molecules 2024, 29(21), 5152; https://doi.org/10.3390/molecules29215152 - 31 Oct 2024
Cited by 8 | Viewed by 1448
Abstract
Efficiently treating wastewater, particularly the elimination of heavy metal ions from water systems, continues to be one of the most pressing and complex challenges in modern environmental management. In this work, reduced graphene oxide coupled silver molybdate binary nanocomposites (RGO-Ag2MoO4 [...] Read more.
Efficiently treating wastewater, particularly the elimination of heavy metal ions from water systems, continues to be one of the most pressing and complex challenges in modern environmental management. In this work, reduced graphene oxide coupled silver molybdate binary nanocomposites (RGO-Ag2MoO4 NCs) have been prepared via hydrothermal method. The crystalline nature and surface properties of the developed RGO-Ag2MoO4 NCs were proved by XRD, FTIR, SEM, and EDS techniques. Adsorption experiments demonstrated that the nanocomposites (NCs) effectively removed Pb(II) ions within 120 min, achieving a maximum removal efficiency ranging from 94.96% to 86.37% for Pb(II) concentrations between 20 and 100 mg/L at pH 6. Kinetic studies showed that the adsorption process followed a pseudo-second order model. Isotherm analysis presented that the Langmuir model provided the greatest fit for the equilibrium data, with a monolayer adsorption capacity of 128.94 mg/g. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic. The results of this study highlight RGO-Ag2MoO4 NCs as a highly promising and eco-friendly material for the effective elimination of Pb(II) ions from wastewater. Their strong adsorption capacity, coupled with sustainable properties, makes them an efficient solution for addressing lead contamination, offering significant potential for practical applications in water treatment systems. Full article
Show Figures

Graphical abstract

14 pages, 2045 KB  
Review
Advances in Functional Ceramics for Water Splitting: A Comprehensive Review
by Julia Exeler and Thomas Jüstel
Photochem 2024, 4(2), 271-284; https://doi.org/10.3390/photochem4020016 - 12 Jun 2024
Cited by 5 | Viewed by 3058
Abstract
The global demand for sustainable energy sources has led to extensive research regarding (green) hydrogen production technologies, with water splitting emerging as a promising avenue. In the near future the calculated hydrogen demand is expected to be 2.3 Gt per year. For green [...] Read more.
The global demand for sustainable energy sources has led to extensive research regarding (green) hydrogen production technologies, with water splitting emerging as a promising avenue. In the near future the calculated hydrogen demand is expected to be 2.3 Gt per year. For green hydrogen production, 1.5 ppm of Earth’s freshwater, or 30 ppb of saltwater, is required each year, which is less than that currently consumed by fossil fuel-based energy. Functional ceramics, known for their stability and tunable properties, have garnered attention in the field of water splitting. This review provides an in-depth analysis of recent advancements in functional ceramics for water splitting, addressing key mechanisms, challenges, and prospects. Theoretical aspects, including electronic structure and crystallography, are explored to understand the catalytic behavior of these materials. Hematite photoanodes, vital for solar-driven water splitting, are discussed alongside strategies to enhance their performance, such as heterojunction structures and cocatalyst integration. Compositionally complex perovskite oxides and high-entropy alloys/ceramics are investigated for their potential for use in solar thermochemical water splitting, highlighting innovative approaches and challenges. Further exploration encompasses inorganic materials like metal oxides, molybdates, and rare earth compounds, revealing their catalytic activity and potential for water-splitting applications. Despite progress, challenges persist, indicating the need for continued research in the fields of material design and synthesis to advance sustainable hydrogen production. Full article
Show Figures

Graphical abstract

18 pages, 5077 KB  
Article
Extended Hydrogen-Bonded Molybdenum Arrays Derived from Carboxylic Acids and Dianilines: ROP Capability of the Complexes and Parent Acids and Dianilines
by William Clegg, Mark R. J. Elsegood and Carl Redshaw
Catalysts 2024, 14(3), 214; https://doi.org/10.3390/catal14030214 - 21 Mar 2024
Cited by 3 | Viewed by 1963
Abstract
From reactions involving sodium molybdate and dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3 [...] Read more.
From reactions involving sodium molybdate and dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3-1,4-(CO2H)2, in the presence of Et3N and Me3SiCl, products adopting H-bonded networks have been characterized. In particular, the reaction of 2,2′-diaminobiphenyl, [2,2′-NH2(C6H4)]2, and 2-aminoterephthalic acid, H2NC6H3-1,4-(CO2H)2, led to the isolation of [(MoCl3[2,2′-N(C6H4)]2}{HNC6H3-1-(CO2),4-(CO2H)]·2[2,2′-NH2(C6H4)]2·3.5MeCN (1·3.5MeCN), which contains intra-molecular N–H∙∙∙Cl H-bonds and slipped π∙∙∙π interactions. Similar use of 2,2′-methylenedianiline, [2,2′-(NH2)C6H4]2CH2, in combination with 2-aminoterephthalic acid led to the isolation of [MoCl2(O2CC6H3NHCO2SiMe3)(NC6H4CH2C6H4NH2)]·3MeCN (2·3MeCN). Complex 2 contains extensive H-bonds between pairs of centrosymmetrically-related molecules. In the case of 2,2′ethylenedianiline, [2,2′-(NH2)C6H4]2CH2CH2, and anthranilic acid, 1,2-(NH2)(CO2H)C6H4, reaction with Na2MoO4 in the presence of Et3N and Me3SiCl in refluxing 1,2-dimethoxyethane afforded the complex [MoCl3{1,2-(NH)(CO2)C6H4}{NC6H4CH2CH2C6H4NH3}]·MeCN (3·MeCN). In 3, there are intra-molecular bifurcated H-bonds between NH3 H atoms and chlorides, whilst pairs of molecules H-bond further via the NH3 groups to the non-coordinated carboxylate oxygen, resulting in H-bonded chains. Complexes 1 to 3 have been screened for the ring opening polymerization (ROP) of both ε-caprolactone (ε-CL) and δ-valerolactone (δ-VL) using solvent-free conditions under N2 and air. The products were of moderate to high molecular weight, with wide Ð values, and comprised several types of polymer families, including OH-terminated, OBn-terminated (for PCL only), and cyclic polymers. The results of metal-free ROP using the dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and the amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3-1,4-(CO2H)2 under similar conditions (no BnOH) are also reported. The dianilines were found to be capable of the ROP of δ-VL (but not ε-CL), whilst anthranilic acid outperformed 2-aminoterephthalic acid for both ε-Cl and δ-VL. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Figure 1

27 pages, 18236 KB  
Review
Crystal Chemistry and Structural Complexity of the Uranyl Molybdate Minerals and Synthetic Compounds
by Ivan V. Kuporev, Sophia A. Kalashnikova and Vladislav V. Gurzhiy
Crystals 2024, 14(1), 15; https://doi.org/10.3390/cryst14010015 - 23 Dec 2023
Cited by 6 | Viewed by 2279
Abstract
This paper reviews not the largest, but at the same time quite an interesting, group of natural and synthetic uranyl molybdate compounds. Nowadays, nine minerals of U and Mo are known, but the crystal structures have only been reported for five of them. [...] Read more.
This paper reviews not the largest, but at the same time quite an interesting, group of natural and synthetic uranyl molybdate compounds. Nowadays, nine minerals of U and Mo are known, but the crystal structures have only been reported for five of them. Almost an order of magnitude more (69) synthetic compounds are known. A significant discrepancy in the topological types for natural and synthetic phases is shown, which is most likely due to elevated temperatures of laboratory experiments (up to 1000 °C), while natural phases apparently grow at significantly lower temperatures. At the same time, the prevalence of dense topologies (with edge-sharing interpolyhedral linkage) among natural phases can be noted, which is fully consistent with other recently considered mineral groups. Uranyl molybdates demonstrate several similarities with compounds of other U-bearing groups; however, even topological matches do not lead to the appearance of completely isotypic compounds. Structural complexity calculations confirm, in general, crystal chemical observations. Considering the prevalence of dense structures in which coordination polyhedra of uranium and molybdenum are connected through common edges as well as framework architectures, one can expect a less significant influence of interlayer species on the formation of the crystal structure than the main U-bearing complexes. The more structural complexity of the uranyl molybdate units, the more complex of the entire crystal structure is. In addition, there is a tendency for complexity to increase with increasing density of the complex; the simplest structures are vertex-shared, while the complexity increases with the appearance of common edges. Full article
(This article belongs to the Special Issue Mineralogical Crystallography (3rd Edition))
Show Figures

Figure 1

14 pages, 2208 KB  
Review
The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant Arabidopsis thaliana
by Jan-Niklas Weber, Rieke Minner-Meinen and David Kaufholdt
Molecules 2024, 29(1), 40; https://doi.org/10.3390/molecules29010040 - 20 Dec 2023
Cited by 7 | Viewed by 3238
Abstract
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in [...] Read more.
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in higher plants, molybdenum is indispensable as part of the molybdenum cofactor (Moco), which is responsible for functionality as a prosthetic group in a variety of essential enzymes like nitrate reductase and sulfite oxidase. Therefore, plants need mechanisms for molybdate import and transport within the organism, which are accomplished via high-affinity molybdate transporter (MOT) localized in different cells and membranes. Two different MOT families were identified. Legumes like Glycine max or Medicago truncatula have an especially increased number of MOT1 family members for supplying their symbionts with molybdate for nitrogenase activity. In Arabidopsis thaliana especially, the complete pathway followed by molybdate through the plant is traceable. Not only the uptake from soil by MOT1.1 and its distribution to leaves, flowers, and seeds by MOT2-family members was identified, but also that inside the cell. the transport trough the cytoplasm and the vacuolar storage mechanisms depending on glutathione were described. Finally, supplying the Moco biosynthesis complex by MOT1.2 and MOT2.1 was demonstrated. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Figure 1

15 pages, 1134 KB  
Review
Chlamydomonas reinhardtii—A Reference Microorganism for Eukaryotic Molybdenum Metabolism
by Manuel Tejada-Jimenez, Esperanza Leon-Miranda and Angel Llamas
Microorganisms 2023, 11(7), 1671; https://doi.org/10.3390/microorganisms11071671 - 27 Jun 2023
Cited by 16 | Viewed by 4251
Abstract
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, [...] Read more.
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, Mo must be chelated to a pterin, forming the so-called Mo cofactor (Moco). Deficiency or mutation in any of the genes involved in Moco biosynthesis results in the simultaneous loss of activity of all molybdoenzymes, fully or partially preventing the normal development of the affected organism. To prevent this, the different mechanisms involved in Mo homeostasis must be finely regulated. Chlamydomonas reinhardtii is a unicellular, photosynthetic, eukaryotic microalga that has produced fundamental advances in key steps of Mo homeostasis over the last 30 years, which have been extrapolated to higher organisms, both plants and animals. These advances include the identification of the first two molybdate transporters in eukaryotes (MOT1 and MOT2), the characterization of key genes in Moco biosynthesis, the identification of the first enzyme that protects and transfers Moco (MCP1), the first characterization of mARC in plants, and the discovery of the crucial role of the nitrate reductase–mARC complex in plant nitric oxide production. This review aims to provide a comprehensive summary of the progress achieved in using C. reinhardtii as a model organism in Mo homeostasis and to propose how this microalga can continue improving with the advancements in this field in the future. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop