Advances in Functional Ceramics for Water Splitting: A Comprehensive Review
Abstract
:1. Introduction
2. Theoretical Aspects
3. The OER Process
4. Photoanodes for Water Splitting
5. Compositionally Complex Perovskite Oxides
6. Superfunctional High Entropy Alloys and Ceramics for Water Splitting
7. Further Inorganic Materials for Water Splitting
8. Conclusions
9. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Beswick, R.R.; Oliveira, A.M.; Yan, Y. Does the Green Hydrogen Economy Have a Water Problem? ACS Energy Lett. 2021, 6, 3167–3169. [Google Scholar] [CrossRef]
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Hisatomi, T.; Domen, K. Overall water splitting: What’s next? Next Energy 2023, 1, 100006. [Google Scholar] [CrossRef]
- Ivon, A.; Glot, A.; Lavrov, R.; Lu, Z.-Y. Grain resistivity in zinc oxide and tin dioxide varistor ceramics. J. Alloys Compd. 2014, 616, 372–377. [Google Scholar] [CrossRef]
- Koga, E.; Higashi, Y.; Matsuoka, M. Latest Trend of ZnO Multilayer Ceramic Varistors. In Encyclopedia of Materials: Technical Ceramics and Glasses; Elsevier: Amsterdam, The Netherlands, 2021; pp. 272–280. [Google Scholar]
- Matsuoka, M. Nonohmic Properties of Zinc Oxide Ceramics. Jpn. J. Appl. Phys. 1971, 10, 736. [Google Scholar] [CrossRef]
- Reimann, T.; Töpfer, J. Low-temperature sintered Ni–Zn–Co–Mn–O spinel oxide ceramics for multilayer NTC thermistors. J. Mater. Sci. Mater. Electron. 2021, 32, 10761–10768. [Google Scholar] [CrossRef]
- Whatmore, R.W. Pyroelectric Crystals, Ceramics, and Thin Films for IR Sensors. In Encyclopedia of Materials: Technical Ceramics and Glasses; Elsevier: Amsterdam, The Netherlands, 2021; pp. 139–150. [Google Scholar]
- Bondarchuk, A.N.; Corrales-Mendoza, I.; Aguilar-Martínez, J.A.; García-Pérez, U.M.; Marken, F. Porous and conductive SnO2 ceramics as a promising nanostructured substrate to host photocatalytic hematite coatings: Towards low cost solar-driven water splitting. Catal. Commun. 2023, 174, 106593. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Bolton, J.R. Solar photoproduction of hydrogen: A review. Sol. Energy 1996, 57, 37–50. [Google Scholar] [CrossRef]
- Domen, K.; Kondo, J.N.; Hara, M.; Takata, T. Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts. Bull. Chem. Soc. Jpn. 2000, 73, 1307–1331. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2008, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Nande, A.; Kalyani, N.T.; Tiwari, A.; Dhoble, S.J. Exploring the world of functional materials. In Functional Materials from Carbon, Inorganic, and Organic Sources; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–19. [Google Scholar]
- Keane, M.A. Ceramics for catalysis. J. Mater. Sci. 2003, 38, 4661–4675. [Google Scholar] [CrossRef]
- Labhsetwar, N.; Doggali, P.; Rayalu, S.; Yadav, R.; Mistuhashi, T.; Haneda, H. Ceramics in Environmental Catalysis: Applications and Possibilities. Chin. J. Catal. 2012, 33, 1611–1621. [Google Scholar] [CrossRef]
- Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574. [Google Scholar] [CrossRef]
- Montoya, J.H.; Seitz, L.C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T.F.; Nørskov, J.K. Materials for solar fuels and chemicals. Nat. Mater. 2016, 16, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.J.; Chen, Z.; Deutsch, T.G.; James, B.D.; Baum, K.N.; Baum, G.N.; Ardo, S.; et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002. [Google Scholar] [CrossRef]
- Fabian, D.M.; Hu, S.; Singh, N.; Houle, F.A.; Hisatomi, T.; Domen, K.; Osterloh, F.E.; Ardo, S. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 2015, 8, 2825–2850. [Google Scholar] [CrossRef]
- Kato, H.; Kudo, A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B 2002, 106, 5029–5034. [Google Scholar] [CrossRef]
- Ishii, T.; Kato, H.; Kudo, A. H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J. Photochem. Photobiol. A Chem. 2004, 163, 181–186. [Google Scholar] [CrossRef]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation. J. Phys. Chem. B 2004, 108, 8992–8995. [Google Scholar] [CrossRef]
- Niishiro, R.; Kato, H.; Kudo, A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem. Chem. Phys. 2005, 7, 2241–2245. [Google Scholar] [CrossRef] [PubMed]
- Niishiro, R.; Konta, R.; Kato, H.; Chun, W.-J.; Asakura, K.; Kudo, A. Photocatalytic O2 Evolution of Rhodium and Antimony-Codoped Rutile-Type TiO2 under Visible Light Irradiation. J. Phys. Chem. C 2007, 111, 17420–17426. [Google Scholar] [CrossRef]
- Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Investigations of Electronic Structures and Photocatalytic Activities under Visible Light Irradiation of Lead Molybdate Replaced with Chromium(VI). Bull. Chem. Soc. Jpn. 2007, 80, 885–893. [Google Scholar] [CrossRef]
- Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Hosogi, Y.; Kato, H.; Kudo, A. Photocatalytic Activities of Layered Titanates and Niobates Ion-Exchanged with Sn2+ under Visible Light Irradiation. J. Phys. Chem. C 2008, 112, 17678–17682. [Google Scholar] [CrossRef]
- Kim, H.G.; Hwang, D.W.; Lee, J.S. An undoped, single-phase oxide photocatalyst working under visible light. J. Am. Chem. Soc. 2004, 126, 8912–8913. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Nunoshige, J.; Takata, T.; Kondo, J.N.; Domen, K. Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem. Commun. 2003, 24, 3000–3001. [Google Scholar] [CrossRef]
- Liu, M.; You, W.; Lei, Z.; Zhou, G.; Yang, J.; Wu, G.; Ma, G.; Luan, G.; Takata, T.; Hara, M.; et al. Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem. Commun. 2004, 36, 2192–2193. [Google Scholar] [CrossRef]
- Ogisu, K.; Ishikawa, A.; Teramura, K.; Toda, K.; Hara, M.; Domen, K. Lanthanum–Indium Oxysulfide as a Visible Light Driven Photocatalyst for Water Splitting. Chem. Lett. 2007, 36, 854–855. [Google Scholar] [CrossRef]
- Liao, P.; Keith, J.A.; Carter, E.A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309. [Google Scholar] [CrossRef]
- Rao, R.R.; Kolb, M.J.; Halck, N.B.; Pedersen, A.F.; Mehta, A.; You, H.; Stoerzinger, K.A.; Feng, Z.; Hansen, H.A.; Zhou, H.; et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 2017, 10, 2626–2637. [Google Scholar] [CrossRef]
- Mefford, J.T.; Rong, X.; Abakumov, A.M.; Hardin, W.G.; Dai, S.; Kolpak, A.M.; Johnston, K.P.; Stevenson, K.J. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053. [Google Scholar] [CrossRef]
- Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W.T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K.A.; Koper, M.T.M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465. [Google Scholar] [CrossRef]
- Kudernatsch, W.; Peng, G.; Zeuthen, H.; Bai, Y.; Merte, L.R.; Lammich, L.; Besenbacher, F.; Mavrikakis, M.; Wendt, S. Direct Visualization of Catalytically Active Sites at the FeO–Pt(111) Interface. ACS Nano 2015, 9, 7804–7814. [Google Scholar] [CrossRef] [PubMed]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Nørskov, J.K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef]
- Pahlevanpour, G.; Bashiri, H. Kinetic Monte Carlo simulation of hydrogen production from photocatalytic water splitting in the presence of methanol by 1 wt% Au/TiO2. Int. J. Hydrogen Energy 2022, 47, 12975–12987. [Google Scholar] [CrossRef]
- Sproviero, E.M.; Gascón, J.A.; McEvoy, J.P.; Brudvig, G.W.; Batista, V.S. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J. Am. Chem. Soc. 2008, 130, 3428–3442. [Google Scholar] [CrossRef] [PubMed]
- Nikonenko, V.; Urtenov, M.; Mareev, S.; Pourcelly, G. Mathematical Modeling of the Effect of Water Splitting on Ion Transfer in the Depleted Diffusion Layer Near an Ion-Exchange Membrane. Membranes 2020, 10, 22. [Google Scholar] [CrossRef]
- Stich, S.; Ding, K.; Muhammad, Q.K.; Porz, L.; Minnert, C.; Rheinheimer, W.; Durst, K.; Rödel, J.; Frömling, T.; Fang, X. Room-temperature dislocation plasticity in SrTiO3 tuned by defect chemistry. J. Am. Ceram. Soc. 2022, 105, 1318–1329. [Google Scholar] [CrossRef]
- Chen, F.; Yan, K.; Zhou, J.; Zhu, Y.; Hong, J. High toughness Si3N4 ceramic composites synergistically toughened by multilayer graphene/β-Si3N4 whisker: Preparation and toughening mechanism investigation. J. Alloys Compd. 2022, 921, 166183. [Google Scholar] [CrossRef]
- Andraskar, N.D.; Tiwari, G.; Goel, M.D. Impact response of ceramic structures—A review. Ceram. Int. 2022, 48, 27262–27279. [Google Scholar] [CrossRef]
- Yi, W.; Hu, X.; Ichim, P.; Sun, X. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening. Mater. Sci. Eng. A 2012, 558, 543–549. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Ye, F.; Cheng, L.; Zhang, Y. High-temperature atomically laminated materials: The toughening components of ceramic matrix composites. Ceram. Int. 2022, 48, 32628–32648. [Google Scholar] [CrossRef]
- Rahimizadeh, A.; Sarvestani, H.Y.; Li, L.; Robles, J.B.; Backman, D.; Lessard, L.; Ashrafi, B. Engineering toughening mechanisms in architectured ceramic-based bioinspired materials. Mater. Des. 2021, 198, 109375. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; Huang, Q.; Yuan, C. Research and application of biomimetic modified ceramics and ceramic composites: A review. J. Am. Ceram. Soc. 2024, 107, 663–697. [Google Scholar] [CrossRef]
- Nong, H.N.; Falling, L.J.; Bergmann, A.; Klingenhof, M.; Tran, H.P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A.; et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
- Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catal. 2012, 2, 1765–1772. [Google Scholar] [CrossRef]
- Lei, B.; Xu, D.; Wei, B.; Xie, T.; Xiao, C.; Jin, W.; Xu, L. In Situ Synthesis of α-Fe2O3/Fe3O4 Heterojunction Photoanode via Fast Flame Annealing for Enhanced Charge Separation and Water Oxidation. ACS Appl. Mater. Interfaces 2021, 13, 4785–4795. [Google Scholar] [CrossRef]
- Yang, J.-S.; Lin, W.-H.; Lin, C.-Y.; Wang, B.-S.; Wu, J.-J. n-Fe2O3 to N+-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Appl. Mater. Interfaces 2015, 7, 13314–13321. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liang, X.; Chen, H.; Yang, L.; Xie, T.; Zou, X. Surface-oxidized titanium diboride as cocatalyst on hematite photoanode for solar water splitting. CrystEngComm 2022, 24, 2251–2257. [Google Scholar] [CrossRef]
- Ahmed, A.Y.; Ahmed, M.G.; Kandiel, T.A. Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting. J. Phys. Chem. C 2016, 120, 23415–23420. [Google Scholar] [CrossRef]
- Phuan, Y.W.; Chong, M.N.; Satokhee, O.; De Souza, A.B.; Zhu, T.; Chan, E.S. Synthesis and Characterization of a Novel Ternary Hematite Nanocomposites Structure with Fullerene and 2D-Electrochemical Reduced Graphene Oxide for Superior Photoelectrochemical Performance. Part. Part. Syst. Charact. 2016, 34, 1600216. [Google Scholar] [CrossRef]
- Rodrigues, M.H.d.M.; Junior, J.B.S.; Leite, E.R. The Influence of Magnetic Field and Nanoparticle Concentration on the Thin Film Colloidal Deposition Process of Magnetic Nanoparticles: The Search for High-Efficiency Hematite Photoanodes. Nanomaterials 2022, 12, 1636. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Huang, M.-C.; Hsieh, Y.-K.; Chang, W.-S.; Lin, J.-C.; Lee, C.-H.; Wang, C.-F. Influence of sodium halides (NaF, NaCl, NaBr, NaI) on the Photocatalytic performance of hydrothermally synthesized hematite photoanodes. ACS Appl. Mater. Interfaces 2013, 5, 7937–7949. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.; Waseem, A.; Bagal, I.V.; Johar, M.A.; Kulkarni, M.A.; Lee, J.K.; Ryu, S.-W. Stable and Efficient Photoelectrochemical Water Splitting of GaN Nanowire Photoanode Coated with Au Nanoparticles by Hot-Electron-Assisted Transport. ACS Appl. Energy Mater. 2021, 4, 13759–13765. [Google Scholar] [CrossRef]
- Hwang, J.B.; Mahadik, M.A.; Anushkkaran, P.; Choi, S.H.; Chae, W.-S.; Kumar, M.; Pathan, H.M.; Lee, H.H.; Jang, J.S. Co-dependency of TiO2 underlayer and ZrO2 top layer in sandwiched microwave-assisted Zr-Fe2O3 photoanodes for photoelectrochemical water splitting. Sustain. Energy Fuels 2023, 7, 4914–4921. [Google Scholar] [CrossRef]
- Koren, M.G.; Dotan, H.; Rothschild, A. Nano Gold Rush: On the Origin of the Photocurrent Enhancement in Hematite Photoanodes Decorated with Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 15042–15051. [Google Scholar] [CrossRef]
- Bondarchuk, A.N.; Corrales-Mendoza, I.; Marken, F.; Arellanes-Mendoza, L.; Aguilar-Martínez, J.A.; Silva-Vidaurri, L.; Curiel-Olivares, G.; Montejo-Alvaro, F. Hematite photoelectrodes grown on porous CuO–Sb2O5–SnO2 ceramics for photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 2021, 221, 110886. [Google Scholar] [CrossRef]
- Bondarchuk, A.N.; Marken, F. Hematite photoanodes for water splitting from directed assembly of Prussian blue onto CuO–Sb2O5–SnO2 ceramics. Phys. Chem. Chem. Phys. 2023, 25, 25681–25688. [Google Scholar] [CrossRef] [PubMed]
- Bondarchuk, A.N.; Corrales-Mendoza, I.; Tomás, S.A.; Marken, F. A hematite photoelectrode grown on porous and conductive SnO2 ceramics for solar-driven water splitting. Int. J. Hydrogen Energy 2019, 44, 19667–19675. [Google Scholar] [CrossRef]
- Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.S.; Unal, U.; Karadas, F. Photocatalytic Water Oxidation with a CoFe Prussian Blue Analogue–Layered Niobate Hybrid Material. ACS Appl. Energy Mater. 2021, 4, 12383–12390. [Google Scholar] [CrossRef]
- Ghobadi, T.G.U.; Ghobadi, A.; Buyuktemiz, M.; Yildiz, E.A.; Yildiz, D.B.; Yaglioglu, H.G.; Dede, Y.; Ozbay, E.; Karadas, F. A Robust, Precious-Metal-Free Dye-Sensitized Photoanode for Water Oxidation: A Nanosecond-Long Excited State Lifetime through a Prussian Blue Analogue. Angew. Chem. Int. Ed. 2020, 59, 4082–4090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; De Santiago, H.A.; Xu, B.; Liu, C.; Trindell, J.A.; Li, W.; Park, J.; Rodriguez, M.A.; Coker, E.N.; Sugar, J.D.; et al. Compositionally Complex Perovskite Oxides for Solar Thermochemical Water Splitting. Chem. Mater. 2023, 35, 1901–1915. [Google Scholar] [CrossRef]
- Pornrungroj, C.; Andrei, V.; Rahaman, M.; Uswachoke, C.; Joyce, H.J.; Wright, D.S.; Reisner, E. Bifunctional Perovskite-BiVO4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. Adv. Funct. Mater. 2021, 31, 2008182. [Google Scholar] [CrossRef]
- Zong, R.; Fang, Y.; Zhu, C.; Zhang, X.; Wu, L.; Hou, X.; Tao, Y.; Shao, J. Surface Defect Engineering on Perovskite Oxides as Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Appl. Mater. Interfaces 2021, 13, 42852–42860. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, C.; Chen, L.; Dolia, K.; Fu, S.; Sun, N.; Li, Y.; Wyatt, K.; Young, J.L.; Deutsch, T.G.; et al. All-Perovskite Tandem Photoelectrodes for Unassisted Solar Hydrogen Production. ACS Energy Lett. 2023, 8, 2611–2619. [Google Scholar] [CrossRef]
- Yoon, M.; Hwang, K.; Byeon, D.; Kim, J.; Hwang, H.; Jeong, S. Computational Analysis of Oxide Ion Conduction in Orthorhombic Perovskite Structured La0.9A0.1InO2.95 (A = Ca, Sr and Ba). J. Am. Ceram. Soc. 2015, 98, 515–519. [Google Scholar] [CrossRef]
- Vu, T.V.; Nguyen, M.T.T.; Do, T.T.; Nguyen, H.L.; Nguyen, V.; Nguyen, D.T. Adsorption of Copper Ions onto Poly(1,8-diaminonaphthalene)/Graphene Film for Voltammetric Determination of Pyridoxine. Electroanalysis 2022, 34, 1478–1486. [Google Scholar] [CrossRef]
- Mishra, A.; Prasad, R. Synthesis and Performance of Transition Metal Based Perovskite Catalysts for Diesel Soot Oxidation. Bull. Chem. React. Eng. Catal. 2017, 12, 469–477. [Google Scholar] [CrossRef]
- Lee, J.; Yun, J.; Kwon, S.-R.; Chang, W.J.; Nam, K.T.; Chung, T.D. Reverse Electrodialysis-Assisted Solar Water Splitting. Sci. Rep. 2017, 7, 12281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xue, Z.; Chen, W.; Wang, Y.; Mu, T. Eutectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting. ChemSusChem 2020, 13, 2038–2042. [Google Scholar] [CrossRef] [PubMed]
- Mayrhofer, P.; Kirnbauer, A.; Ertelthaler, P.; Koller, C. High-entropy ceramic thin films; A case study on transition metal diborides. Scr. Mater. 2018, 149, 93–97. [Google Scholar] [CrossRef]
- Inui, H.; Kishida, K.; Chen, Z. Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys. Mater. Trans. 2022, 63, 394–401. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Meng, X.; Xie, Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Adv. Eng. Mater. 2019, 21, 1900343. [Google Scholar] [CrossRef]
- Akrami, S.; Edalati, P.; Shundo, Y.; Watanabe, M.; Ishihara, T.; Fuji, M.; Edalati, K. Significant CO2 photoreduction on a high-entropy oxynitride. Chem. Eng. J. 2022, 449, 137800. [Google Scholar] [CrossRef]
- Yang, J.X.; Dai, B.-H.; Chiang, C.-Y.; Chiu, I.-C.; Pao, C.-W.; Lu, S.-Y.; Tsao, I.-Y.; Lin, S.-T.; Chiu, C.-T.; Yeh, J.-W.; et al. Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions. ACS Nano 2021, 15, 12324–12333. [Google Scholar] [CrossRef]
- Akrami, S.; Murakami, Y.; Watanabe, M.; Ishihara, T.; Arita, M.; Fuji, M.; Edalati, K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B Environ. 2022, 303, 120896. [Google Scholar] [CrossRef]
- Sun, J.; Lei, Y.Y.; Fu, W.; Lin, D.; Hu, S.; Song, X.; Cao, J.; Yang, M. Brazing SiC ceramic to Al0.3CoCrFeNi high-entropy alloy using Ag-Cu filler metal. J. Am. Ceram. Soc. 2022, 105, 6570–6580. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, H.; Qu, Y.; Li, C.; Lv, Q.; Li, Z.; Li, R.; Tan, B.; Tian, C.; Nie, S. The effect of TiC addition on the microstructure and mechanical properties of Al0.6CrFe2Ni2 high entropy alloys. SN Appl. Sci. 2020, 2, 493. [Google Scholar] [CrossRef]
- Shu, R. Nonstoichiometric Multicomponent Nitride Thin Films; Linkoping University Electronic Press: Linkoping, Sweden, 2020. [Google Scholar]
- Lang, S.M.; Bernhardt, T.M.; Kiawi, D.M.; Bakker, J.M.; Barnett, R.N.; Landman, U. The Interaction of Water with Free Mn4O4+ Clusters: Deprotonation and Adsorption-Induced Structural Transformations. Angew. Chem. Int. Ed. 2015, 54, 15113–15117. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Wu, L.; Long, Y.; Li, J.; Song, S.; Zhang, H. Nanoporous Carbon-Coated Bimetallic Phosphides for Efficient Electrochemical Water Splitting. Cryst. Growth Des. 2018, 18, 3404–3410. [Google Scholar] [CrossRef]
- Osterloh, F.E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20, 35–54. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, H.; Sun, Z.; Han, A.; Du, P. Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation. ACS Catal. 2015, 5, 1530–1538. [Google Scholar] [CrossRef]
- Roohi, P.; Alizadeh, R.; Fatehifar, E. Thermodynamic Study of Transformation of Methane to Synthesis Gas Over Metal Oxides. Int. J. Thermophys. 2015, 36, 88–103. [Google Scholar] [CrossRef]
- Chatterjee, K.; Bueno, S.; Skrabalak, S.; Dravid, V.; dos Reis, R. Nanoscale Investigation of Layered Oxychloride Intergrowth Photocatalysts for Visible Light Driven Water Splitting. Microsc. Microanal. 2020, 26, 376–379. [Google Scholar] [CrossRef]
- Abanades, S. Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy. Chemengineering 2019, 3, 63. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. Angew. Chem. 2016, 128, 6398–6402. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chang, H.-E.; Wang, C.-Y.; Kurioka, T.; Chen, C.-Y.; Chang, T.-F.M.; Sone, M.; Hsu, Y.-J. Manipulation of interfacial charge dynamics for metal–organic frameworks toward advanced photocatalytic applications. Nanoscale Adv. 2023, 6, 1039–1058. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Wang, Y.-T.; Moon, H.S.; Yong, K.; Hsu, Y.-J. Yolk–shell nanostructures: Synthesis, photocatalysis and interfacial charge dynamics. RSC Adv. 2021, 11, 12288–12305. [Google Scholar] [CrossRef]
- Chakraborty, D.; Shyamal, S.; Bhaumik, A. A New Porous Ni-W Mixed Metal Phosphonate Open Framework Material for Efficient Photoelectrochemical OER. ChemCatChem 2020, 12, 1504–1511. [Google Scholar] [CrossRef]
- Vijayakumar, A.U.; Aloni, N.; Veettil, V.T.; Rahamim, G.; Hardisty, S.S.; Zysler, M.; Tirosh, S.; Zitoun, D. Combinatorial Synthesis and Screening of a Ternary NiFeCoOx Library for the Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2022, 5, 4017–4024. [Google Scholar] [CrossRef]
- Ni, B.; Shi, Y.; Wang, X. The Sub-Nanometer Scale as a New Focus in Nanoscience. Adv. Mater. 2018, 30, e1802031. [Google Scholar] [CrossRef]
- Ahmed, J.; Ahamad, T.; Alshehri, S.M. rGO supported CuMoO4 nanoparticles: Synthesis, characterization, and electrocatalytic oxygen evolution reaction. New J. Chem. 2023, 47, 13903–13910. [Google Scholar] [CrossRef]
- Ganguli, S.; Ghosh, S.; Das, S.; Mahalingam, V. Inception of molybdate as a “pore forming additive” to enhance the bifunctional electrocatalytic activity of nickel and cobalt based mixed hydroxides for overall water splitting. Nanoscale 2019, 11, 16896–16906. [Google Scholar] [CrossRef]
- Gu, M.; Deng, X.; Lin, M.; Wang, H.; Gao, A.; Huang, X.; Zhang, X. Ultrathin NiCo Bimetallic Molybdate Nanosheets Coated CuOx Nanotubes: Heterostructure and Bimetallic Synergistic Optimization of the Active Site for Highly Efficient Overall Water Splitting. Adv. Energy Mater. 2021, 11, 2102361. [Google Scholar] [CrossRef]
- Moura, J.V.B.; de Souza, A.A.G.; de Tarso Cavalcante Freire, P.; Da Luz Lima, C.; Oliveira, T.M.B.F. Blue-light-excited NaCe(MoO4)2 microcrystals for photoelectrochemical water splitting. Int. J. Appl. Ceram. Technol. 2021, 18, 615–621. [Google Scholar] [CrossRef]
- Yao, R.; Li, Y.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Rare-Earth Elements Can Structurally and Energetically Replace the Calcium in a Synthetic Mn4CaO4-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. J. Am. Chem. Soc. 2021, 143, 17360–17365. [Google Scholar] [CrossRef] [PubMed]
- Dalai, N.; Dash, B.; Jena, B. Bifunctional Activity of PVP K-30 Assisted Cobalt Molybdate for Electrocatalytic Water Splitting**. ChemistrySelect 2022, 7, e202202270. [Google Scholar] [CrossRef]
- Nundy, S.; Tatar, D.; Kojcinovic, J.; Ullah, H.; Ghosh, A.; Mallick, T.K.; Meinusch, R.; Smarsly, B.M.; Tahir, A.A.; Djerdj, I. Bandgap Engineering in Novel Fluorite-Type Rare Earth High-Entropy Oxides (RE-HEOs) with Computational and Experi-mental Validation for Photocatalytic Water Splitting Applications. Adv. Sustain. Syst. 2022, 6, 2200067. [Google Scholar] [CrossRef]
- Zhang, L.; Cong, M.; Wang, Y.; Ding, X.; Liu, A.; Gao, Y. V4P6.98/VO(PO3)2 as an Efficient Non-Noble Metal Catalyst for Electrochemical Hydrogen Evolution in Alkaline Electrolyte. ChemElectroChem 2019, 6, 1329–1332. [Google Scholar] [CrossRef]
- Nichols, E.M.; Gallagher, J.J.; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.; Chang, M.C.Y.; Chang, C.J. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl. Acad. Sci. USA 2015, 112, 11461–11466. [Google Scholar] [CrossRef]
- Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295. [Google Scholar] [CrossRef]
- Jüstel, T. Energy Conversion System. DE102014107268 A1, WO2015177216 A1, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Exeler, J.; Jüstel, T. Advances in Functional Ceramics for Water Splitting: A Comprehensive Review. Photochem 2024, 4, 271-284. https://doi.org/10.3390/photochem4020016
Exeler J, Jüstel T. Advances in Functional Ceramics for Water Splitting: A Comprehensive Review. Photochem. 2024; 4(2):271-284. https://doi.org/10.3390/photochem4020016
Chicago/Turabian StyleExeler, Julia, and Thomas Jüstel. 2024. "Advances in Functional Ceramics for Water Splitting: A Comprehensive Review" Photochem 4, no. 2: 271-284. https://doi.org/10.3390/photochem4020016
APA StyleExeler, J., & Jüstel, T. (2024). Advances in Functional Ceramics for Water Splitting: A Comprehensive Review. Photochem, 4(2), 271-284. https://doi.org/10.3390/photochem4020016