3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption
Abstract
1. Introduction
2. Results and Discussion
2.1. Microtopography of Hydrogels
2.2. Chemical Structure of the Hydrogel
2.3. Anti-Freezing Properties of Hydrogels
2.4. Mechanical Property of Hydrogels
2.5. Photochromic and Fading Properties of Hydrogels
2.5.1. Light Transmission of Hydrogels
2.5.2. The Influence of LiCl Concentration and UV Irradiation Time
2.5.3. Fading Property of PSML Hydrogel
2.6. 3D Printing of the PSML Hydrogels
2.7. Electronic Skin
3. Conclusions
4. Experiments
4.1. Materials
4.2. Preparation of the PSML Hydrogels
4.3. 3D Printing of Hydrogels
4.4. Characterization
4.4.1. Constituent Analysis
4.4.2. Morphological Characterization
4.4.3. Mechanical Performance
4.4.4. Differential Scanning Calorimetry (DSC) Measurement
4.4.5. Transmittance Measurement
4.4.6. Photochromic Exhibition of Hydrogels
4.4.7. Conductive Properties
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Hydrogels | Aam (g) | SA (g) | Mo7 (g) | LiCl (g) | H2O (g) | MBA (mg) | APS (mg) | LAP (g) |
---|---|---|---|---|---|---|---|---|
PAAm | 9 | 0 | 0 | 0 | 50.95 | 6 | 45 | 0 |
PAAm/SA | 9 | 2 | 0 | 0 | 48.95 | 6 | 45 | 0 |
PAAm/SA/Mo7 | 9 | 2 | 0.7 | 0 | 48.25 | 6 | 45 | 0 |
PSML-1 | 9 | 2 | 0.7 | 3 | 45.25 | 6 | 45 | 0 |
PSML-2 | 9 | 2 | 0.7 | 6 | 42.25 | 6 | 45 | 0 |
PSML-3 | 9 | 2 | 0.7 | 9 | 39.25 | 6 | 45 | 0 |
PSML ink | 9 | 2 | 0.7 | 6 | 42.12 | 56.26 | 0 | 0.12 |
References
- Shen, J.; Yang, Y.; Zhang, J.; Lin, W.; Gu, H. Carbon Quantum Dot-Functionalized Dermis-Derived Transparent Electronic Skin for Multimodal Human Motion Signal Monitoring and Construction of Self-Powered Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2024, 16, 46771–46788. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Lu, Y.; Takei, K. Multifunctional Skin-Inspired Flexible Sensor Systems for Wearable Electronics. Adv. Mater. Technol.-Adv. Intell. Syst. 2019, 4, 1800628. [Google Scholar] [CrossRef]
- Zarei, M.; Lee, G.; Lee, S.G.; Cho, K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Adv. Mater. 2023, 35, 2203193. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liang, K.; Liu, H.; Liu, R.; Liu, Y.; Zeng, S.; Tian, Y. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human–Machine Interaction. Nano-Micro Lett. 2023, 15, 102. [Google Scholar] [CrossRef]
- Yang, Y.; Song, B.; Zhang, J.; Dan, N.; Gu, H. Multifunctional, High-Strength Electronic Skin Based on the Natural Sheepskin Fiber Network for Multifaceted Human Health Monitoring and Management. Biomacromolecules 2024, 25, 5359–5373. [Google Scholar] [CrossRef]
- Yang, X.; Chen, W.; Fan, Q.; Chen, J.; Chen, Y.; Lai, F.; Liu, H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. Adv. Mater. 2024, 36, 2402542. [Google Scholar] [CrossRef]
- Yue, O.; Wang, X.; Hou, M.; Zheng, M.; Bai, Z.; Cui, B.; Cha, S.; Liu, X. Skin-Inspired Wearable Self-Powered Electronic Skin with Tunable Sensitivity for Real-Time Monitoring of Sleep Quality. Nano Energy 2022, 91, 106682. [Google Scholar] [CrossRef]
- Miao, J.; Tian, M.; Qu, L.; Zhang, X. Flexible, transparent and conductive wearable electronic skin based on 2D titanium carbide (MXene) ink. Carbon 2024, 222, 118950. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Liu, Y.; Wang, J.; Chen, J.; Chang, X.; Zhu, Y. Flexible and Transparent Electronic Skin Sensor with Sensing Capabilities for Pressure, Temperature, and Humidity. ACS Appl. Mater. Interfaces 2023, 15, 24923–24932. [Google Scholar] [CrossRef]
- Li, W.-D.; Ke, K.; Jia, J.; Pu, J.-H.; Zhao, X.; Bao, R.-Y.; Liu, Z.-Y.; Bai, L.; Zhang, K.; Yang, M.-B.; et al. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. Small 2022, 18, 2103734. [Google Scholar] [CrossRef]
- Omidian, H.; Chowdhury, S.D. High-Performing Conductive Hydrogels for Wearable Applications. Gels 2023, 9, 549. [Google Scholar] [CrossRef] [PubMed]
- Ultrastretchable and Highly Sensitive Ionic Conductive Hydrogel for Environmentally Resistant All-in-One Human-Motion Sensors. Int. J. Biol. Macromol. 2025, 287, 138567. [CrossRef]
- Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Adv. Funct. Mater. 2019, 29, 1806220. [Google Scholar] [CrossRef]
- Sharma, G.; García-Peñas, A.; Verma, Y.; Kumar, A.; Dhiman, P.; Stadler, F.J. Tailoring Homogeneous Hydrogel Nanospheres by Facile Ultra-Sonication Assisted Cross-Linked Copolymerization for Rhodamine B Dye Adsorption. Gels 2023, 9, 770. [Google Scholar] [CrossRef]
- Lu, Y.-N.; Mo, K.; Liang, X.-H.; Xie, J.-S.; Yang, Y.; Zheng, L.; Gu, M.; Liu, X.-R.; Lu, Y.; Ge, J. High Ion-Conductive Hydrogel: Soft, Elastic, with Wide Humidity Tolerance and Long-Term Stability. ACS Appl. Mater. Interfaces 2024, 16, 60992–61003. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Hedenqvist, M.S.; Chen, C.; Cai, C.; Li, H.; Liu, H.; Fu, J. Multifunctional Conductive Hydrogels and Their Applications as Smart Wearable Devices. J. Mater. Chem. B 2021, 9, 2561–2583. [Google Scholar] [CrossRef]
- Xue, S.; Lu, Y.; Geng, J.; Yang, J.; Zhu, M.; Bai, X.; Liu, S. Polyoxometalate-Based Self-Adhesive Hydrogels with Both Proton Conductive and Photochromic Functions. J. Mater. Chem. C 2025, 13, 11319–11329. [Google Scholar] [CrossRef]
- Hong, Y.; Lin, Z.; Luo, Z.; Jiang, T.; Shang, J.; Yang, Y. Development of Conductive Hydrogels: From Design Mechanisms to Frontier Applications. Bio-des. Manuf. 2022, 5, 729–756. [Google Scholar] [CrossRef]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef]
- Wang, F.; Maimaitiyiming, X. High-Strength Polyvinyl Alcohol/Gelatin/LiCl Dual-Network Conductive Hydrogel for Multifunctional Sensors and Supercapacitors. Int. J. Biol. Macromol. 2024, 282, 137293. [Google Scholar] [CrossRef]
- Afshar, H.; Kamran, F.; Shahi, F. Advances in Smart Chromogenic Hydrogel Composites for Next-Generation Digital Applications. Polym. Adv. Technol. 2025, 36, e70179. [Google Scholar] [CrossRef]
- Sun, Y.; Le, X.; Zhou, S.; Chen, T. Recent Progress in Smart Polymeric Gel-based Information Storage for Anti-counterfeiting. Adv. Mater. 2022, 34, 2201262. [Google Scholar] [CrossRef] [PubMed]
- Pardo, R.; Zayat, M.; Levy, D. Photochromic Organic–Inorganic Hybrid Materials. Chem. Soc. Rev. 2011, 40, 672–687. [Google Scholar] [CrossRef] [PubMed]
- Mollick, S.; Tan, J.-C. Organic Solid-State Photochromism Using Porous Scaffolds. Nat. Rev. Mater. 2025, 10, 519–535. [Google Scholar] [CrossRef]
- Supian, A.B.M.; Asyraf, M.R.M.; Syamsir, A.; Najeeb, M.I.; Alhayek, A.; Al-Dala’ien, R.N.; Manar, G.; Atiqah, A. Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers 2024, 16, 1545. [Google Scholar] [CrossRef]
- Lei, D.; Xiao, Y.; Shao, L.; Xi, M.; Jiang, Y.; Li, Y. Dual-Stimuli-Responsive and Anti-Freezing Conductive Ionic Hydrogels for Smart Wearable Devices and Optical Display Devices. ACS Appl. Mater. Interfaces 2023, 15, 24175–24185. [Google Scholar] [CrossRef]
- Chen, X.; Cui, J.; Liu, Z.; Wang, Y.; Li, M.; Zhang, J.; Pan, S.; Wang, M.; Bao, C.; Wei, Q. Polyacrylamide/Sodium Alginate/Sodium Chloride Photochromic Hydrogel with High Conductivity, Anti-Freezing Property and Fast Response for Information Storage and Electronic Skin. Int. J. Biol. Macromol. 2024, 268, 131972. [Google Scholar] [CrossRef]
- Wu, X.; Deng, X.; Song, Y.; Zhang, Z.; Su, H.; Han, Y.; Shen, Y.; Liu, S.; Sun, K.; Yao, H.; et al. Polyacrylamide/Sodium Alginate Photochromic Hydrogels with Enhanced Toughness and Fast Response for Optical Display and Rewritable Information Record. Dye. Pigment. 2023, 210, 111009. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, M.; Su, Y.; Wu, W.; Wang, S.; Yang, R.; Xu, C.; Yin, H.; Xu, J.; Wang, X. Photochromic Ionogel with a Wide Temperature Range and Fatigue Resistance for High-Resolution Rewritable Information Record. Chem. Eng. J. 2024, 495, 153263. [Google Scholar] [CrossRef]
- Zuo, W.; Chen, Q.; Xie, Z.; Habib, S.; Jing, Y.; Zhang, X.; Yu, N.; Su, S.; Zhu, J. Synthesis of Sodium Alginate/Polyacrylamide Photochromic Hydrogels with Quadruple Crosslinked Networks. J. Mater. Chem. B 2023, 11, 6952–6960. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Li, N.; Zhang, H.; Wei, J. Programmable Photo-Responsive Self-Healing Hydrogels for Optical Information Coding and Encryption. Eur. Polym. J. 2022, 166, 111025. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, L.; Zhang, X.; Hao, J. Environmentally Stable, Photochromic and Thermotropic Organohydrogels for Low Cost on-Demand Optical Devices. J. Colloid Interface Sci. 2020, 578, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Tian, H.; Zhao, H.; Ke, L.; Wu, H.; Liu, Y.; Hao, J. An Optically Modulated Hydrogel Synapse for Multilevel Information Decryption. Adv. Funct. Mater. 2025, 35, 2502784. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Lyu, Y.; Wu, T.; Zhai, F.; Zhang, Y.; Ji, Z.; Wang, X. Grayscale Stereolithography 3D Printing of Shape Memory Polymers for Dual Information Encryption Based on Reconfigurable Geometry and Tunable Optics. Chem. Eng. J. 2024, 487, 150552. [Google Scholar] [CrossRef]
- Heidari, M.; Shahi, F.; Afshar, H.; Nobre, M.A.L.; Dawi, E.A.; Khonakdar, H.A. Emerging Applications of Smart Hydrogel Nanocomposites in 3D Printing. Polym. Adv. Technol. 2024, 35, e70021. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, J.; Feng, S.; Cui, J.; Guo, Y.; Liang, C.; Gao, W.; Lu, Z.; Liu, F.; Zhang, B. Projection Stereolithography 3D Printing High-Conductive Hydrogel for Flexible Passive Wireless Sensing. Adv. Mater. 2024, 36, 2400103. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Q.; Wang, S.; Tao, J.; Gou, M. Digital Light Processing Based Three-Dimensional Printing for Medical Applications. Int. J. Bioprint 2019, 6, 242. [Google Scholar] [CrossRef]
- Yi, J.; Yang, S.; Yue, L.; Lei, I.M. Digital Light Processing 3D Printing of Flexible Devices: Actuators, Sensors and Energy Devices. Microsyst Nanoeng 2025, 11, 51. [Google Scholar] [CrossRef]
- Lu, G.; Tang, R.; Nie, J.; Zhu, X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol. Rapid Commun. 2024, 45, 2300661. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, Y.; Chen, Y.; Li, C.; Qiu, R.; Liu, W. Photocurable 3D Printing of High Toughness and Self-Healing Hydrogels for Customized Wearable Flexible Sensors. Adv. Funct. Mater. 2021, 31, 2107202. [Google Scholar] [CrossRef]
- Di, R.; Song, Z.; Li, M.; Lian, M.; Wang, Y.; Guo, J.; Miao, H.; Yuan, T.; Liu, J.; Zhou, J. Temperature-Switch-Based Light-Responsive Smart Hydrogel for Reversible Message Encryption and Decryption. Sci. China Mater. 2024, 67, 2123–2134. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Li, S.; Zou, X.; Yin, H.; Huang, Y.; Dong, F.; Li, P.; Song, Y. Construction and Characterization of Highly Stretchable Ionic Conductive Hydrogels for Flexible Sensors with Good Anti-Freezing Performance. Eur. Polym. J. 2023, 186, 111827. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, Z.; Quan, L.; Wu, Y.; Hu, D.; Cheng, J.; Zheng, Y.; Cheng, F. Reversible Fluorescence/Photochromic Switching of Repeated-Response Cellulose-Based Hydrogels for Information Encryption. J. Colloid Interface Sci. 2025, 679, 393–402. [Google Scholar] [CrossRef]
- Wen, G.-Y.; Zhou, X.-L.; Tian, X.-Y.; Hu, T.-Y.; Xie, R.; Ju, X.-J.; Liu, Z.; Pan, D.-W.; Wang, W.; Chu, L.-Y. Real-Time Quantitative Detection of Ultraviolet Radiation Dose Based on Photochromic Hydrogel and Photo-Resistance. Chem. Mater. 2022, 34, 7947–7958. [Google Scholar] [CrossRef]
- Hu, C.; He, Y.; Wei, C.; Tang, X.; Peng, Y.; Zhang, M. A High-Strength Ionic Conductive Hydrogel with Antifreezing and Moisturizing Properties for Flexible Strain Sensors and Triboelectric Nanogenerator. ACS Appl. Polym. Mater. 2025, 7, 8653–8663. [Google Scholar] [CrossRef]
- Ge, W.; Cao, S.; Yang, Y.; Rojas, O.J.; Wang, X. Nanocellulose/LiCl Systems Enable Conductive and Stretchable Electrolyte Hydrogels with Tolerance to Dehydration and Extreme Cold Conditions. Chem. Eng. J. 2021, 408, 127306. [Google Scholar] [CrossRef]
- Miao, C.; Li, P.; Yu, J.; Xu, X.; Zhang, F.; Tong, G. Dual Network Hydrogel with High Mechanical Properties, Electrical Conductivity, Water Retention and Frost Resistance, Suitable for Wearable Strain Sensors. Gels 2023, 9, 224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhao, Y.; Zeng, H.; Chen, X.; Chen, C.; Cui, J.; Wang, Y. 3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption. Gels 2025, 11, 703. https://doi.org/10.3390/gels11090703
Wang Q, Zhao Y, Zeng H, Chen X, Chen C, Cui J, Wang Y. 3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption. Gels. 2025; 11(9):703. https://doi.org/10.3390/gels11090703
Chicago/Turabian StyleWang, Qinglin, Yinghao Zhao, Hao Zeng, Xiaohu Chen, Chunliang Chen, Jiashu Cui, and Yanen Wang. 2025. "3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption" Gels 11, no. 9: 703. https://doi.org/10.3390/gels11090703
APA StyleWang, Q., Zhao, Y., Zeng, H., Chen, X., Chen, C., Cui, J., & Wang, Y. (2025). 3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption. Gels, 11(9), 703. https://doi.org/10.3390/gels11090703