Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Simple Drying: Investigation of the Precipitation/Polymerization of Monomolybdates
3.2. Washing of the Dried Film: Experimental Separation of OS/IS Contributions
3.3. Surface Speciation and Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bourikas, K.; Kordulis, C.; Lycourghiotis, A. The role of the liquid-solid interface in the preparation of supported catalysts. Catal. Rev. 2006, 48, 363–444. [Google Scholar] [CrossRef]
- Kaiser, M.; Kleber, M.; Berhe, A.A. How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biol. Biochem. 2015, 80, 324–340. [Google Scholar] [CrossRef]
- Yi, P.; Yan, Y.; Kong, Y.; Chen, Q.; Wu, M.; Liang, N.; Zhang, L.; Pan, B. The opposite influences of Cu and Cd cation bridges on sulfamethoxazole sorption on humic acids in wetting-drying cycles. Sci. Total Environ. 2023, 898, 165547. [Google Scholar] [CrossRef]
- Strawn, D.G. Sorption mechanisms of chemicals in soils. Soil Syst. 2021, 5, 13. [Google Scholar] [CrossRef]
- Kang, S.; Xing, B. Adsorption of Dicarboxylic Acids by Clay Minerals as Examined by in Situ ATR-FTIR and ex Situ DRIFT. Langmuir 2007, 23, 7024–7031. [Google Scholar] [CrossRef]
- Hug, S.J. In SituFourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions. J. Colloid Interface Sci. 1997, 188, 415–422. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Peak, D.; Tang, Y.; Feng, X.; Zhu, M. Quantification of coexisting inner-and outer-sphere complexation of sulfate on hematite surfaces. ACS Earth Space Chem. 2018, 2, 387–398. [Google Scholar] [CrossRef]
- Thrane, J.; Falholt Elvebakken, C.; Juelsholt, M.; Lindahl Christiansen, T.; Jensen, K.M.Ø.; Pilsgaard Hansen, L.; Fahl Lundegaard, L.; Vie Mentzel, U.; Thorhauge, M.; Degn Jensen, A.; et al. Highly stable apatite supported molybdenum oxide catalysts for selective oxidation of methanol to formaldehyde: Structure, activity and stability. Chemcatchem 2021, 13, 4054–4075. [Google Scholar]
- Das, S.; Hendry, M.J. Adsorption of molybdate by synthetic hematite under alkaline conditions: Effects of aging. Appl. Geochem. 2013, 28, 194–201. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed.; VCH: Vancouver, BC, Canada, 2000. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Water-Resources Investigations Report; U.S. Geological Survey: Reston, VA, USA, 1999. [Google Scholar] [CrossRef]
- Botella, R.; Lefèvre, G. A deep look into the diverse surface speciation of the mono-molybdate/lepidocrocite system by ATR-IR and polarized ATR-IR spectroscopy. Colloid Surf. 2022, 647, 129065. [Google Scholar]
- Botella, R. Impact de l’Hydratation/Déshydratation sur la Spéciation de Surface d’Espèces Adsorbées. Ph.D. Thesis, Paris Sciences et Lettres University, Paris, France, 2020. [Google Scholar]
- Davantés, A.; Lefévre, G. In situ characterization of (poly)molybdate and (poly)tungstate ions sorbed onto iron (hydr)oxides by ATR-FTIR spectroscopy. Eur. Phys. J. Spec. Top. 2015, 224, 1977–1983. [Google Scholar] [CrossRef]
- Davantés, A.; Lefévre, G. In situ real time infrared spectroscopy of sorption of (poly) molybdate ions into layered double hydroxides. J. Phys. Chem. 2013, 117, 12922–12929. [Google Scholar] [CrossRef]
- Asay, D.B.; Kim, S.H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. 2005, 109, 16760–16763. [Google Scholar] [CrossRef]
- Rau, S.M.; Hirsch, R.J.; Junige, M.; Cavanagh, A.S.; Rotondaro, A.L.; Paddubrouskaya, H.; Abel, K.H.; George, S.M. Strongly and Weakly Adsorbed H2O Layer Thicknesses on Hydroxylated SiO2 Surfaces versus H2O Pressure at Various Substrate Temperatures. J. Phys. Chem. 2025, 129, 1666–1677. [Google Scholar] [CrossRef]
- Connor, P.A.; McQuillan, A.J. Phosphate Adsorption onto TiO2 from Aqueous Solutions: An in Situ Internal Reflection Infrared Spectroscopic Study. Langmuir 1999, 15, 2916–2921. [Google Scholar] [CrossRef]
- Nie, J.; Ren, Z.; Xu, L.; Lin, S.; Zhan, F.; Chen, X.; Wang, Z.L. Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv. Mater. 2020, 32, 1905696. [Google Scholar] [CrossRef]
- Wu, C.H.; Kuo, C.Y.; Lin, C.F.; Lo, S.L. Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm. Chemosphere 2002, 47, 283–292. [Google Scholar] [CrossRef]
- Davantès, A.; Costa, D.; Lefèvre, G. Molybdenum(VI) Adsorption onto Lepidocrocite (γ-FeOOH): In Situ Vibrational Spectroscopy and DFT+U Theoretical Study. J. Phys. Chem. 2016, 120, 11871–11881. [Google Scholar] [CrossRef]
- Borowski, S.C.; Biswakarma, J.; Kang, K.; Schenkeveld, W.D.; Hering, J.G.; Kubicki, J.D.; Kraemer, S.M.; Hug, S.J. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments. Geochim. Cosmochim. Acta 2018, 226, 244–262. [Google Scholar] [CrossRef]
- Ritzhaupt, G.; Devlin, J.P. Infrared spectra of matrix isolated alkali metal perchlorate ion pairs. J. Chem. Phys. 1975, 62, 1982–1986. [Google Scholar] [CrossRef]
- Larmier, K.; Chizallet, C.; Cadran, N.; Maury, S.; Abboud, J.; Lamic-Humblot, A.F.; Marceau, E.; Lauron-Pernot, H. Mechanistic investigation of isopropanol conversion on alumina catalysts: Location of active sites for alkene/ether production. ACS Catal. 2015, 5, 4423–4437. [Google Scholar] [CrossRef]
- Vittadini, A.; Selloni, A.; Rotzinger, F.P.; Grätzel, M.J. Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations. Phys. Chem. 2000, 104, 1300–1306. [Google Scholar] [CrossRef]
- Müller, K.; Lefèvre, G. Vibrational characteristics of outer-sphere surface complexes: Example of sulfate ions adsorbed onto metal (hydr) oxides. Langmuir 2011, 27, 6830–6835. [Google Scholar] [CrossRef]
- Wang, L.; Giammar, D.E. Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite. J. Colloid Interface Sci. 2015, 448, 331–338. [Google Scholar] [CrossRef] [PubMed]
Wavenumbers (cm−1) | |||
---|---|---|---|
Polymolybdate Precipitate | Na2MoO4 Precipitate | 10−4 mol⋅L−1 MoO4 Solid/Solution Interface (Before Washing) | 10−3 mol⋅L−1 MoO4 Solid/Solution Interface (Before Washing) |
950 (s) | |||
919 (s) | |||
900 (vs) | 905 (s) | ||
880 (w) | |||
854 (m) | |||
830 (vs) | 825 (vw) | 827 (vs) | |
806 (w) | 802 (m) | ||
753 (m) | 750 (m) | ||
710 (w) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botella, R.; Lefèvre, G. Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations. Colloids Interfaces 2025, 9, 59. https://doi.org/10.3390/colloids9050059
Botella R, Lefèvre G. Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations. Colloids and Interfaces. 2025; 9(5):59. https://doi.org/10.3390/colloids9050059
Chicago/Turabian StyleBotella, Romain, and Grégory Lefèvre. 2025. "Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations" Colloids and Interfaces 9, no. 5: 59. https://doi.org/10.3390/colloids9050059
APA StyleBotella, R., & Lefèvre, G. (2025). Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations. Colloids and Interfaces, 9(5), 59. https://doi.org/10.3390/colloids9050059