Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications
Abstract
:1. Introduction
Pretreatment, Anodization, and Sealing Procedures
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Surface Analysis Methods
2.2.2. Electrochemical Characterization
2.2.3. Environmental and Economic Study of Different Sealing Processes for Anodized Aluminum
3. Results
3.1. Pretreatment and Thin Sulfuric Anodization
3.2. Chromium-Free Sealing Development and Electrochemical Characterization
3.3. Surface Characterization via SEM/EDS and XPS
3.4. Sealing Comparison: Zr/F/Mo/Ce vs. Hot Water and CrIII/Zr
3.5. Environmental and Economic Study of SAA Anodization with Chromium-Free Sealing Based on Fluorozirconate, Molybdate, and Cerate Compared to CAA with Cr(VI) Sealing and SAA with Cr(III) Sealing
4. Discussion of the Results of Sealing Based on Fluorozirconate, Molybdate, with and Without Cerate
4.1. Discussion of the Results from Sealing with Mixture 1 Based on Fluorozirconate and Molybdate (Zr/F + Mo)
4.2. Discussion of the Results of Sealing with Mixture 2 Based on Fluorozirconate, Molybdate, and Cerate (Zr/F + Mo + Ce)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAA | Chromic acid anodizing |
CeCCs | Cerium-based coatings |
EASA | European Union Aviation Safety Agency |
Ecorr | Corrosion potential |
EDX | Energy-dispersive X-ray spectroscopy |
FAA | Federal Aviation Administration |
TSAA | Sulfuric acid and tartaric acid |
icorr | Corrosion current |
IMPs | Intermetallic compounds |
ipass | Current at passivity area |
ipitt | Current at breakdown potential |
REACH | Registration, evaluation, authorisation, and restriction of chemicals |
SAA | Sulfuric acid anodizing |
SEM/FIB | Scanning electron microscope/focused ion beam |
SST | Salt spray test |
XPS | X-ray photoelectron spectroscopy |
References
- The Boeing Company. Socio-Economic Analysis Complete Version; Boeing Distribution, Inc.: Miami, FL, USA, 2022. [Google Scholar]
- Li, S.; Yue, X.; Li, Y.; Peng, L. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Pantelakis, S.; Tserpes, K. Revolutionizing Aircraft Materials and Processes. Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Ofoegbu, S.U.; Fernandes, F.A.O.; Pereira, A.B. The Sealing Step in Aluminum Anodizing: A Focus on Sustainable Strategies for Enhancing both Energy Efficiency and Corrosion Resistance. Coatings 2020, 10, 226. [Google Scholar] [CrossRef]
- Donati, L.; Vincenzi, F.; Vincenzi, F.; Barba, W.D.; Tomesani, L. Borate Free Cleaners for Aluminum Alloys. Mater. Today Proc. 2015, 2, 5080–5087. [Google Scholar] [CrossRef]
- Gharbi, O. In-Situ Investigation of Elemental Corrosion Reactions During the Surface Treatment of Al-Cu and Al-Cu-Li Alloys. Ph.D. Thesis, Sorbonne University, Paris, France, 2018. Available online: https://theses.hal.science/tel-01535612 (accessed on 7 February 2025).
- Kosari, A.; Tichelaar, F.; Visser, P.; Zandbergen, H.; Terryn, H.; Mol, J.M.C. Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys. Corros. Sci. 2020, 177, 108947. [Google Scholar] [CrossRef]
- Abrahami, S.T.; Kok, J.M.M.D.; Terryn, H.; Mol, J.M.C. Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review. Front. Chem. Sci. Eng. 2017, 10, 465–482. [Google Scholar] [CrossRef]
- Beck, E. Performance Validation of Thin-Film Sulfuric Acid Anodization (TFSAA) on Aluminum Alloys. AESF/EPA Conf. Environ. Process Excell. 2003, 339–356. Available online: https://www.nmfrc.org/pdf/awk03/aw03o01.pdf (accessed on 11 February 2025).
- Martinez-Viademonte, M.P.; Abrahami, S.T.; Havigh, M.D.; Marcoen, K.; Hack, T.; Burchardt, M.; Terryn, H. The Role of Anodising Parameters in the Performance of Bare and Coated Aerospace Anodic Oxide Films. Coatings 2022, 12, 908. [Google Scholar] [CrossRef]
- Jo, H.; Lee, S.; Kim, D.; Lee, J. Low Temperature Sealing of Anodized Aluminum Alloy for Enhancing Corrosion Resistance. Materials 2020, 13, 4904. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H. Study on anodic oxidation of 2099 aluminum lithium alloy and sealing treatment in environmental friendly solutions. Int. J. Electrochem. Sci. 2023, 18, 100186. [Google Scholar] [CrossRef]
- Yang, K.; Yang, F. Enhancing Corrosion Resistance of Anodic Oxide Films through Zirconium and Titanium Salts Composite Sealing Process: An Optimization and Morphological Study. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Zhan, W.; Li, Y.; Wang, W.; Wang, D.; Liu, X.; Ding, Y.; Qian, X. Study of titanium/zirconium with low polymerization water-based epoxysilane composite chemical conversion coatings on multi-metals bodies of new energy vehicles. Prog. Org. Coat. 2025, 200, 109023. [Google Scholar] [CrossRef]
- Peltier, F. Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys. Coatings 2022, 12, 518. [Google Scholar] [CrossRef]
- Frankel, G.S.; Buchheit, R.G.; Jaworowski, M.; Greg, S. Scientific Understanding of Non-Chromated Corrosion Inhibitors Function; SERDP Project WP-1620; 2013. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA582500.pdf (accessed on 11 February 2025).
- Chidambaram, D.; Clayton, C.R.; Halada, G.P. The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys. Electrochim. Acta 2006, 51, 2862–2871. [Google Scholar] [CrossRef]
- Hao, X.-L. Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature. Rare Met. 2020, 40, 968–974. [Google Scholar] [CrossRef]
- Záchenská, J.; Jorík, V.; Madejová, J.; Zemanová, M. Fluorozirconate sealing of anodic alumina in alkaline environment. Solid State Ion. 2023, 391, 126126. [Google Scholar] [CrossRef]
- Zhu, P.; Ma, Y.; Li, K.; Liang, Z.; Yang, B.; Huang, W.; Liao, Y. Sealing of anodized AA2099-T83 Al-Cu-Li alloy with layered double hydroxides for high corrosion resistance at reduced anodic fi lm thickness. Surf. Coat. Technol. 2020, 394, 125852. [Google Scholar] [CrossRef]
- Wei, H.; Chen, D.; Hu, H.; Chang, M.; Ye, X.; Wang, M. Insights into energy-efficient and eco-friendly sealing of anodic aluminum oxide film holes with alkaline earth metal salts. RCS Adv. 2017, 7, 55653–55667. [Google Scholar] [CrossRef]
- Carrillo, I.; Valdez, B.; Zlatev, R.; Stoytcheva, M.; Carrillo, M.; Baffler, R. Electrochemical study of oxyanions effect on galvanic corrosion inhibition. Int. J. Electrochem. Sci. 2012, 7, 8688–8701. [Google Scholar] [CrossRef]
- Krishnan, C.V.; Garnett, M.; Hsiao, B.; Chu, B. Electrochemical Measurements of Isopolyoxomolybdates: 1. pH Dependent Behavior of Sodium Molybdate. Int. J. Electrochem. Sci. 2007, 2, 29–51. [Google Scholar] [CrossRef]
- Zhu, H.; Li, J. Advancements in corrosion protection for aerospace aluminum alloys through surface treatment. Int. J. Electrochem. Sci. 2024, 19, 100487. [Google Scholar] [CrossRef]
- Kendig, M.W.; Buchheit, R.G. Corrosion Inhibition of Aluminum and Aluminum Alloys by Soluble Chromates, Chromate Coatings, and Chromate-Free Coatings. Corrosion 2003, 59, 379–400. [Google Scholar] [CrossRef]
- Oleinik, S.V.; Kuznetsov, Y.I. Corrosion Inhibitors in Conversion Coatings. IV. Prot. Met. 2007, 43, 391–397. [Google Scholar] [CrossRef]
- Qian, X.; Huang, F.; Teng, X.; Wang, Y.; Fang, Y.; Pan, J.; Wang, W.; Li, Y.; Zhan, W. The Preparation, Corrosion Resistance and Formation Mechanism of a New-Type Mo-Based Composite Conversion Coating on 6061 Aluminum Alloy. Metals 2023, 13, 168. [Google Scholar] [CrossRef]
- Chidambaram, D.; Rodriguez, D. Molybdate-Based Conversion Coatings for Aluminum Alloys Part II: Coating Chemistry. Trans. E C S Soc. Electrochem. 2013, 45, 91–103. [Google Scholar] [CrossRef]
- Pinheiro, J.S.; Cardoso, H.R.P.; Pereira, K.R.; Radtke, C.; Kunst, S.; Oliveira, C.T.; Zoppas Ferreira, J. Chromium/nickel-free conversion coating as cold post-treatment to anodized AA2024-T3 for corrosion resistance increase. Surf. Coat. Technol. 2024, 480, 130566. [Google Scholar] [CrossRef]
- Li, Z.; Visser, P.; Hughes, A.E.; Homborg, A.; Gonzalez-garcia, Y.; Mol, A. Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloys. Surf. Coat. Technol. 2024, 478, 130441. [Google Scholar] [CrossRef]
- Milosev, I. Corrosion inhibition of aluminium alloys by molybdate ions: A critical review of the chemistry, mechanisms and applications. Corros. Sci. 2024, 229, 111854. [Google Scholar] [CrossRef]
- Lau, D.; Glenn, A.M.; Hughes, A.E.; Scholes, F.H.; Muster, T.H.; Hardin, S.G. Factors in fluencing the deposition of Ce-based conversion coatings, Part II: The role of localised reactions. Surf. Coat. Technol. 2009, 203, 2937–2945. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Mamidipally, S.B.; Schmutz, P.; Guan, H. Active Corrosion Protection in Chromate and Chromate-Free Conversion Coatings. Corrosion 2002, 58, 3–14. [Google Scholar] [CrossRef]
- Galvn, J.J.A.; Rovira, L.G.; Bethencourt, M.; Botana, F.J.; Amaya, J.M.S. Influence of aerospace standard surface pretreatment on the intermetallic phases and cecc of 2024-t3 al-cu alloy. Metals 2019, 9, 320. [Google Scholar] [CrossRef]
- Sainis, S.; Roșoiu, S.; Ghassemali, E.; Zanella, C. The role of microstructure and cathodic intermetallics in localised deposition mechanism of conversion compounds on Al (Si, Fe, Cu) alloy. Surf. Coat. Technol. 2020, 402, 126502. [Google Scholar] [CrossRef]
- Carangelo, A.; Curioni, M.; Acquesta, A.; Monetta, T.; Bellucci, F. Cerium-Based Sealing of Anodic Films on AA2024T3: Effect of Pore Morphology on Anticorrosion Performance. J. Electrochem. Soc. 2016, 163, C907. [Google Scholar] [CrossRef]
- Moutarlier, V.; Gigandet, M.P.; Richard, J.P.; Brault, C.; Pagetti, J. Utilisation de Molybdate Dans un Procede de Colmatage d’une Couche D’oxyde Obtenue Par Anodisation D’Aluminium. EP1464733A1, 6 October 2004. [Google Scholar]
- Rossignol, C.; Vialas, N. Process for Treating the Surface of a Part Made of Aluminium or Aluminium Alloy or of Magnesium or Magnesium Alloy. US2021262107A1, 14 June 2019. [Google Scholar]
- Yang, H.; Dong, Y.; Li, X.; Gao, Y.; He, W.; Liu, Y.; Mu, X.; Zhao, Y. Anti-corrosion superhydrophobic micro-TiB2/nano-SiO2 based coating with “multi-scale hard particles-embedding-soft membrane” structure fabricated by spray deposition. J. Ind. Eng. Chem. 2025, 144, 496–511. [Google Scholar] [CrossRef]
- Harscoet, E.; Froelich, D. Use of LCA to evaluate the environmental benefits of substituting chromic acid anodizing (CAA). J. Clean. Prod. 2008, 16, 1294–1305. [Google Scholar] [CrossRef]
- Schulte, S.R. Anodizing Emission Rates. Available online: https://www.pfonline.com/articles/anodizing-emission-rates (accessed on 14 March 2025).
- Eurostat. Electricity Prices for Non-Household Consumersa—Bi-Annual Data (from 2007 Onwards); European Commission: Brussels, Belgium; Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205/default/table?lang=en (accessed on 14 March 2025).
- Eurostat. NATURAL Gas Prices for Non-Household Consumers; European Commission: Brussels, Belgium; Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics#:~:text=The (accessed on 14 March 2025).
Control | Test Methods | Thin SAA Sealed |
---|---|---|
Aspect | Visual | No powdering, uniform |
Thickness | ISO 1463, ISO 2360 | 3–7 µm |
Weight | ASTM B 137 or MIL A 8625 | Thin SAA: >22 mg/dm2 |
Loss of absorbing power (control of sealing) | ISO 2143 | No persistence of the colorant patch |
(patch intensity: 0 or 1) * | ||
Corrosion resistance | NF EN ISO 9227 or | After 750 h salt spray test: five pits maximum |
ASTM B 117 | Each sample will not present more than five pits with diameters smaller than 0.78 mm on a surface of 120 × 80 mm2 as the standard | |
Samples are tilted between 15° and 25° as required by NF EN ISO 9227 | ||
Layer continuity | ISO 2085 | No black point |
Preparation of Work | Product Supplier | Parameters |
---|---|---|
Alkaline degreasing | Sococlean A3431 10% (Socomore, Vannes, France) | 20 min, 45 °C |
Intermediate rinsing | Water quality grade according to AIMS09-00-003 (grade A) | 5 min, RT |
Etching | Socosurf 1858 (40%) + Socosurf 1806 (10%) (Socomore, Vennes, France) | 10 min, 55 °C |
Intermediate rinsing | Water quality grade according to AIMS09-00-003 (grade A) | 5 min, RT |
Bad Composition | g/L | Rinse Time | Temperature (°C) | Voltage |
---|---|---|---|---|
H2SO4 | 200 | 5 min and 20 s | 18–20 Optimum 19 | Voltage during dwell time: 16 V Dwell time: 16 min Drop time: 1 min |
Parameters | Quality A+ | Quality A | Quality B | Quality C |
---|---|---|---|---|
Description | Pure water | Pure water | Industrial water I | Industrial water II |
pH at 25 °C | 5.5 to 7.0 | 5.0 to 7.0 | 5.0 to 8.5 | 5.0 to 9.0 |
Total residue (mg/L) | ≤20 | ≤20 | ≤400 | ≤400 |
Conductivity (μS/cm) | <2 | ≤20 | ≤400 | ≤750 |
Cl− (mg/L) | - | - | - | ≤100 |
Description | Pure water | Pure water | Industrial water I | Industrial water II |
Sample | Ecorr vs. Ag/Ag/Cl (3M KCl) (V) | Icorr (A/cm2) | P.E. % |
---|---|---|---|
AA 2024—cleaning, pickling | −0.590 | 5 × 10−4 | - |
SAA | −0.550 | 1 × 10−7 | 99.98 |
SAA with 0.5 g/L Ce(NO3)3 | −0.454 | 4 × 10−7 | 99.92 |
SAA with 10 g/Na2MoO4 | −0.828 | 7 × 10−8 | 99.99 |
SAA with 5 g/L K2ZrF6 | −0.540 | 9 × 10−8 | 99.98 |
SAA with 10 g/L K2ZrF6 | −0.660 | 4 × 10−9 | 100.00 |
SAA with 12 g/L K2ZrF6 | −0.780 | 2 × 10−9 | 100.00 |
Sealing | Sample No. | Samples Description | Sealing Parameters |
---|---|---|---|
- | 1 | AA2024—according ASTM B 211 | - |
- | 2 | AA2024 after pretreatment | - |
- | 3 | Pretreatment + SAA without sealing | - |
Mixture 1 (Zr/F, Mo) | 4 | K2[ZrF6] (12 g/L) + Na2MoO4·2H2O (10 g/L) | RT, 15 min, pH value of 6.25 |
Mixture 2 (Zr/F, Ce) | 7 | K2[ZrF6] (12 g/L) + Ce(NO3)3·6H2O (0.2 g/L) | RT, 15 min, pH value of 4.84 |
Mixture 3 (Zr/F, Mo, Ce) | 10 | K2[ZrF6] (12 g/L) + Na2MoO4·2H2O (10 g/L) + Ce(NO3)3·6H2O (0.2 g/L) | RT, 15 min, pH value of 5.96 |
Specimen | E1 (V) | Ecorr (V) | icorr (A.cm−2) | Epitt (V) | ipitt (A.cm−2) | Epass (V) | ipass (A.cm−2) | ΔE = Ecorr−Epitt | P.E. % |
---|---|---|---|---|---|---|---|---|---|
AA 2024 after cleaning and pickling | −0.661 | −0.653 | 1 × 10−5 | −0.480 | 4 × 10−4 | −0.615 | 5 × 10−9 | 0.173 | - |
SAA 2024 without sealing | −0.593 | −0.625 | 6 × 10−8 | −0.400 | 3 × 10−5 | 0.225 | 99.40 | ||
SAA 2024 with sealing in (Zr/F + Mo) | 0.980 | −0.923 | 2 × 10−9 | −0.617 | 1 × 10−8 | −0.850 | 2 × 10−8 | 0.306 | 99.98 |
SAA 2024 with sealing in (Zr/F + Ce) | −0.646 | −0.702 | 6 × 10−9 | −0.702 | − | 0 | 99.94 | ||
SAA 2024 with sealing in (Zr/F + Mo + Ce) | −1.042 | −0.958 | 2 × 10−8 | −0.677 | 3.x10−7 | −0.864 | 1 × 10−7 | 0.281 | 99.80 |
Element/wt% | AB458 | AB459 | AB460 | AB461 | AB462 | AB463 | AB464 | AB465 |
---|---|---|---|---|---|---|---|---|
Cu | 33.5 | 44.2 | 32.8 | 11.7 | 30.6 | 33.2 | 19.2 | 32.3 |
Mg | 0.3 | 13.6 | 10 | 0.9 | 0.5 | 0.3 | 0.5 | 10.0 |
Al | 50.5 | 42.1 | 57.2 | 71.7 | 52.1 | 51.2 | 60.7 | 57.6 |
Mn | 4.8 | 15.7 | 5.3 | 3.9 | 16.6 | |||
Fe | 10.9 | 11.52 | 11.4 | 2.9 |
Detection of the EDS Spectra of the Studied Samples (wt%) | Al | Fe | Si | Cu | Mg | Mn | Cl |
---|---|---|---|---|---|---|---|
AA2024—according to the ASTM B211 | 92.4 | 0.5 | 0.5 | 4.4 | 1.6 | 0.6 | |
AA2024—substrate after pretreatment operations only | 91.7 | 4.7 | 2.7 | 0.9 | |||
AA2024—the same substrate after chronoamperometry at Epitt (−480 mV), spectrum in white point | 82.6 | 0.6 | 14.1 | 1.9 | 0.7 | 0.1 | |
AA2024—the same substrate after chronoamperometry at Epitt (−480 mV), spectrum in black hole | 8.9 | 86.3 | 4.8 | ||||
AA2024—the same substrate after chronoamperometry at Epitt (−480 mV), spectrum in non-cracked surface | 92.6 | 0.2 | 4.1 | 2.5 | 0.5 | 0.1 |
Detection of the EDS Spectra of the Studied Samples (wt%) | Al | Fe | Cu | Mg | Mn |
---|---|---|---|---|---|
Only SAA of the AA2024 sample, without sealing; integral spectrum | 90.5 | 5.1 | 2.5 | 0.8 | |
The same SAA of the AA2024 sample, without sealing after chronoamperometry at Epitt (−400 mV); spectrum in the hole | 86.4 | 1.2 | 9.7 | 1.2 | 1.5 |
The same SAA of the AA2024 sample, without sealing after chronoamperometry at Epitt (−400 mV); spectrum in non-cracked surface | 92.4 | 0.2 | 4.3 | 2.5 | 0.6 |
Sample | Si 2p | F 1s | S 2p | O 1s | C 1s | Al 2p | Fe 2p | Cu 2p | Na 1s | Mo 3d | Zr 3d | K 2p | Ce 3d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA2024—substrate after pretreatment operations only and after Rp measurements (sample 2) | 3.37 | 0.63 | 56.6 | 6.23 | 33.17 | ||||||||
AA2024 + SAA, without sealing (sample 3) | 2.08 | 2.38 | 2.13 | 45.87 | 12.53 | 28.98 | 6.03 | ||||||
AA2024 + SAA, without sealing (sample 3) after Rp measurements | 3.24 | 0.57 | 63.79 | 4.87 | 27.54 | ||||||||
AA2024 + SAA + sealing in (Zr/F + Mo) | 0.96 | 26.72 | 6.96 | 16.01 | 4.66 | 8.55 | 4.46 | 3.69 | 11.12 | 16.88 | |||
AA2024 + SAA + sealing in (Zr/F + Mo) after Rp measurements | 1.11 | 43.11 | 12 | 23 | 20.77 | ||||||||
AA2024 + SAA + sealing in (Zr/F + Ce) | 21.6 | 15.95 | 12.39 | 4.29 | 4.16 | 30.39 | |||||||
AA2024 + SAA + sealing in (Zr/F + Ce) after Rp measurements | 1.97 | 7.07 | 32.83 | 31.78 | 9.34 | 17.01 | |||||||
AA2024 + SAA + sealing in (Zr/F + Mo + Ce) | 19.54 | 8.3 | 8.97 | 4.87 | 5.12 | 3.67 | 2.71 | 12.6 | 2.3 | ||||
AA2024 + SAA + sealing in (Zr/F + Mo + Ce) after Rp measurements | 10.89 | 32.89 | 13.69 | 12.56 | 0.22 | 1.55 | 14.81 |
Detection of the EDS Spectra of the Studied Samples (wt%) | Al | Fe | Cu | Mg | Zr | Mn | K | Mo | F | Na | Ce | S |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AA2024 + sealing in (Zr/F + Mo) | 12.2 | 0.2 | 0.9 | 11.6 | 16.8 | 2.9 | 48.3 | 7.1 | ||||
AA2024 + sealing in (Zr/F + Mo) after chronoamperometry at Epitt (−700 mV); integral spectrum | 26.8 | 0.1 | 0.9 | 25.6 | 16.3 | 6.3 | 19 | 4.1 | 0.9 | |||
AA2024 + sealing in (Zr/F + Mo) after chronoamperometry at Epitt (−700 mV; in point | 3.8 | 0.5 | 2.1 | 5 | 1.0 | 0.0 | 87.6 | 0 | 0.0 | |||
SAA + sealing (Zr/F + Ce) | 17.2 | 0.9 | 57.8 | 1.7 | 2.8 | 19.2 | 2.8 | 0.4 | ||||
The same sample SAA + sealing (Zr/F + Ce) after chronoamperometry at Epitt (−0.700 V) | 18.8 | 1 | 59.5 | 0.4 | 2.9 | 17 | 2.9 | 0.4 | ||||
AA2024 + sealing in (Zr/F + Mo + Ce) | 7.7 | 0.2 | 1 | 0.1 | 10.8 | 0.1 | 17.7 | 1.8 | 52.6 | 8 | 0.1 | 0.2 |
AA2024 + sealing in (Zr/F + Mo + Ce) after chronoamperometry at Epitt (−700 mV); integral spectrum | 13.8 | 0.1 | 1.2 | 0.1 | 22.9 | 0.1 | 15.6 | 4.4 | 34.9 | 5.9 | 0.1 | 1.1 |
Ranking | Surface Examination | Sealing Composition |
---|---|---|
1 | No pits | - |
2 | One to five pits | SAA + (Zr/F + Mo + Ce) SAA + (Cr(III)/Zr) |
3 | Six to ten pits | - |
4 | 11–30 pits | SAA + (HTS 98 °C) |
Pretreatment | Anodization | Sealing |
---|---|---|
Pretreatment A | CAA | Cr(VI) |
Degreasing: 60 °C, 20 min | 40 °C | 100 °C |
Pickling: 55 °C, 7 min | 45 min | 30 min |
Pretreatment C | SAA | Cr(III) |
Degreasing: 55 °C, 20 min | 19 °C | Step 1: 45 °C, 12 min |
Pickling: 55 °C, 10 min | 22 min | Step2: 35 °C, 7 min |
Pretreatment C | SAA | Cr-free |
Degreasing: 45 °C, 20 min | 19 °C | 25 °C |
Pickling: 55 °C, 10 min | 22 min | 15 min |
Cr(VI)—Sealing EC/List No. 231-906-6 | K2Zr2F6 EC/List No.: 240-985-6 | Na2MoO4·2H2O | Ce(NO3)3·6H2O EC/List No.: 600-370-9 |
---|---|---|---|
Danger! According to the harmonized classification and labeling (CLP00) approved by the European Union, this substance is fatal if inhaled, toxic if swallowed, causes severe skin burns and eye damage, may cause genetic defects, may cause cancer, may damage fertility and may damage the unborn child, causes damage to organs through prolonged or repeated exposure, is very toxic to aquatic life, with long lasting effects, may intensify fire (oxidizer), is harmful in contact with the skin, may cause an allergic skin reaction, and may cause allergy or asthma symptoms or breathing difficulties if inhaled. Additionally, the classification provided by companies to ECHA in REACH registrations identifies that this substance may damage fertility or the unborn child, is suspected of causing genetic defects, is suspected of causing cancer, and may cause respiratory irritation. | Danger! According to the classification provided by companies to ECHA in REACH registrations this substance is toxic if swallowed and causes serious eye damage. | Not an hazardous substance | Danger! According to the classification provided by companies to ECHA in CLP notifications this substance is very toxic to aquatic life with long lasting effects, causes serious eye damage, may intensify fire (oxidizer), and causes skin irritation. |
Included in Annex VI of REACh 024-002-00-6 | Not included in Annex VI of REACh data | Not included in Annex VI of REACh | Not included in Annex VI of REACh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godja, N.; Munteanu, F.-D. Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications. Coatings 2025, 15, 439. https://doi.org/10.3390/coatings15040439
Godja N, Munteanu F-D. Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications. Coatings. 2025; 15(4):439. https://doi.org/10.3390/coatings15040439
Chicago/Turabian StyleGodja, Norica, and Florentina-Daniela Munteanu. 2025. "Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications" Coatings 15, no. 4: 439. https://doi.org/10.3390/coatings15040439
APA StyleGodja, N., & Munteanu, F.-D. (2025). Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications. Coatings, 15(4), 439. https://doi.org/10.3390/coatings15040439