Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = complex line bundle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1279 KiB  
Article
Discovery of Germplasm Resources and Molecular Marker-Assisted Breeding of Oilseed Rape for Anticracking Angle
by Cheng Zhu, Zhi Li, Ruiwen Liu and Taocui Huang
Genes 2025, 16(7), 831; https://doi.org/10.3390/genes16070831 (registering DOI) - 17 Jul 2025
Abstract
Introduction: Scattering of kernels due to angular dehiscence is a key bottleneck in mechanized harvesting of oilseed rape. Materials and Methods: In this study, a dual-track “genotype–phenotype” screening strategy was established by innovatively integrating high-throughput KASP molecular marker technology and a standardized random [...] Read more.
Introduction: Scattering of kernels due to angular dehiscence is a key bottleneck in mechanized harvesting of oilseed rape. Materials and Methods: In this study, a dual-track “genotype–phenotype” screening strategy was established by innovatively integrating high-throughput KASP molecular marker technology and a standardized random collision phenotyping system for the complex quantitative trait of angular resistance. Results: Through the systematic evaluation of 634 oilseed rape hybrid progenies, it was found that the KASP marker S12.68, targeting the cleavage resistance locus (BnSHP1) on chromosome C9, achieved a 73.34% introgression rate (465/634), which was significantly higher than the traditional breeding efficiency (<40%). Phenotypic characterization screened seven excellent resources with cracking resistance index (SRI) > 0.6, of which four reached the high resistance standard (SRI > 0.8), including the core materials NR21/KL01 (SRI = 1.0) and YuYou342/KL01 (SRI = 0.97). Six breeding intermediate materials (44.7–48.7% oil content, mycosphaerella resistance MR grade or above) were created, combining high resistance to chipping and excellent agronomic traits. For the first time, it was found that local germplasm YuYou342 (non-KL01-derived line) was purely susceptible at the S12.68 locus (SRI = 0.86), but its angiosperm vascular bundles density was significantly increased by 37% compared with that of the susceptible material 0911 (p < 0.01); and the material 187308 (SRI = 0.78), although purely susceptible at S12.68, had a 2.8-fold downregulation in expression of the angiosperm-related gene, BnIND1, and a 2.8-fold downregulation of expression of the angiosperm-related gene, BnIND1. expression was significantly downregulated 2.8-fold (q < 0.05), indicating the existence of a novel resistance mechanism independent of the primary effector locus. Conclusions: The results of this research provide an efficient technical platform and breakthrough germplasm resources for oilseed rape crack angle resistance breeding, which is of great practical significance for promoting the whole mechanized production. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 294 KiB  
Article
On Convergence of Toeplitz Quantization of the Sphere
by Yanlin Li, Mohamed Lemine H. Bouleryah and Akram Ali
Mathematics 2024, 12(22), 3565; https://doi.org/10.3390/math12223565 - 14 Nov 2024
Cited by 7 | Viewed by 824
Abstract
In this paper, we give an explicit expression of the Toeplitz quantization of a C smooth function on the sphere and show that the sequence of spectra of Toeplitz quantization of the function determines its decreasing rearrangement. We also use Toeplitz quantization [...] Read more.
In this paper, we give an explicit expression of the Toeplitz quantization of a C smooth function on the sphere and show that the sequence of spectra of Toeplitz quantization of the function determines its decreasing rearrangement. We also use Toeplitz quantization to prove a version of Szegö’s Theorem. Full article
(This article belongs to the Special Issue Advances in Differential Geometry and Its Applications, 2nd Edition)
15 pages, 312 KiB  
Article
Spinor–Vector Duality and Mirror Symmetry
by Alon E. Faraggi
Universe 2024, 10(10), 402; https://doi.org/10.3390/universe10100402 - 19 Oct 2024
Viewed by 956
Abstract
Mirror symmetry was first observed in worldsheet string constructions, and was shown to have profound implications in the Effective Field Theory (EFT) limit of string compactifications, and for the properties of Calabi–Yau manifolds. It opened up a new field in pure mathematics, and [...] Read more.
Mirror symmetry was first observed in worldsheet string constructions, and was shown to have profound implications in the Effective Field Theory (EFT) limit of string compactifications, and for the properties of Calabi–Yau manifolds. It opened up a new field in pure mathematics, and was utilised in the area of enumerative geometry. Spinor–Vector Duality (SVD) is an extension of mirror symmetry. This can be readily understood in terms of the moduli of toroidal compactification of the Heterotic String, which includes the metric the antisymmetric tensor field and the Wilson line moduli. In terms of the toroidal moduli, mirror symmetry corresponds to mappings of the internal space moduli, whereas Spinor–Vector Duality corresponds to maps of the Wilson line moduli. In the past few of years, we demonstrated the existence of Spinor–Vector Duality in the effective field theory compactifications of string theories. This was achieved by starting with a worldsheet orbifold construction that exhibited Spinor–Vector Duality and resolving the orbifold singularities, hence generating a smooth, effective field theory limit with an imprint of the Spinor–Vector Duality. Just like mirror symmetry, the Spinor–Vector Duality can be used to study the properties of complex manifolds with vector bundles. Spinor–Vector Duality offers a top-down approach to the “Swampland” program, by exploring the imprint of the symmetries of the ultra-violet complete worldsheet string constructions in the effective field theory limit. The SVD suggests a demarcation line between (2,0) EFTs that possess an ultra-violet complete embedding versus those that do not. Full article
Show Figures

Figure 1

13 pages, 3702 KiB  
Article
Ceramic Matrix Composite Cyclic Ablation Behavior under Oxyacetylene Torch
by Hailang Ge, Xianqing Chen, Guangyu Li and Lu Zhang
Materials 2024, 17(18), 4565; https://doi.org/10.3390/ma17184565 - 17 Sep 2024
Viewed by 1121
Abstract
To study the ablation properties and differences of plain-woven SiC/SiC composites under single and cyclic ablation. The ablation test of plain-woven SiC/SiC composites was conducted under an oxyacetylene torch. The results indicate that the mass ablation rate of cyclic ablation is lower than [...] Read more.
To study the ablation properties and differences of plain-woven SiC/SiC composites under single and cyclic ablation. The ablation test of plain-woven SiC/SiC composites was conducted under an oxyacetylene torch. The results indicate that the mass ablation rate of cyclic ablation is lower than that of single ablation, whereas the line ablation rate is higher. Macro-microstructural characterization revealed the presence of white oxide formed by silica on the surface of the ablation center region. The fibers in the central region of the ablation were ablated layer by layer, and the broken fiber bundles exhibited a spiky morphology with numerous silica particles attached. The oxide layer on the surface and the silica particles on the fibers, which are in the molten state formed in the high-temperature ablation environment, contribute to resisting ablation. Thermal shock during cyclic ablation also played a role in the ablation process. The thermal shock causes cracks in the fiber bundles and matrix of the SiC/SiC composites. This study helps to apply SiC/SiC composite to complex thermal shock environments. Full article
(This article belongs to the Special Issue Damage, Fracture and Fatigue of Ceramic Matrix Composites (CMCs))
Show Figures

Figure 1

13 pages, 7452 KiB  
Article
Exploring Cellular Dynamics in the Goldfish Bulbus Arteriosus: A Multifaceted Perspective
by Doaa M. Mokhtar, Enas A. Abd-Elhafez, Marco Albano, Giacomo Zaccone and Manal T. Hussein
Fishes 2024, 9(6), 203; https://doi.org/10.3390/fishes9060203 - 29 May 2024
Cited by 2 | Viewed by 1359
Abstract
The bulbus arteriosus of goldfish, Carassius auratus, possesses unique structural features. The wall of the bulbus arteriosus is exceptionally thick, with an inner surface characterized by longitudinally arranged finger-like ridges, resulting in an uneven luminal appearance. These ridges are covered by endocardium [...] Read more.
The bulbus arteriosus of goldfish, Carassius auratus, possesses unique structural features. The wall of the bulbus arteriosus is exceptionally thick, with an inner surface characterized by longitudinally arranged finger-like ridges, resulting in an uneven luminal appearance. These ridges are covered by endocardium and encased in an amorphous extracellular matrix. The inner surface of the bulbus arteriosus also contains rodlet cells at different developmental stages, often clustered beneath the endothelium lining the bulbar lumen. Ruptured rodlet cells release their contents via a holocrine secretion process. The high abundance of rodlet cells in the bulbus arteriosus suggests that this is the site of origin for these cells. Within the middle layer of the bulbus arteriosus, smooth muscle cells, branched telocytes (TCs), and collagen bundles coexist. TCs and their telopodes form complex connections within a dense collagen matrix, extending to rodlet cells and macrophages. Moreover, the endothelium makes direct contact with telopodes. The endocardial cells within the bulbus arteriosus display irregular, stellate shapes and numerous cell processes that establish direct contact with TCs. TEM reveals that they contain moderately dense bodies and membrane-bound vacuoles, suggesting a secretory activity. TCs exhibit robust secretory activity, evident from their telopodes containing numerous secretory vesicles. Furthermore, TCs release excretory vesicles containing bioactive molecules into the extracellular matrix, which strengthens evidence for telocytes as promising candidates for cellular therapies and regeneration in various heart pathologies. Full article
Show Figures

Figure 1

44 pages, 12238 KiB  
Perspective
Laser and Astrophysical Plasmas and Analogy between Similar Instabilities
by Stjepan Lugomer
Atoms 2024, 12(4), 23; https://doi.org/10.3390/atoms12040023 - 16 Apr 2024
Cited by 2 | Viewed by 2214
Abstract
Multipulse laser–matter interactions initiate nonlinear and nonequilibrium plasma fluid flow dynamics and their instability creating microscale vortex filaments, loop-soliton chains, and helically paired structures, similar to those at the astrophysical mega scale. We show that the equation with the Hasimoto structure describes both, [...] Read more.
Multipulse laser–matter interactions initiate nonlinear and nonequilibrium plasma fluid flow dynamics and their instability creating microscale vortex filaments, loop-soliton chains, and helically paired structures, similar to those at the astrophysical mega scale. We show that the equation with the Hasimoto structure describes both, the creation of loop solitons by torsion of vortex filaments and the creation of solitons by helical winding of magnetic field lines in the Crab Nebula. Our experiments demonstrate that the breakup of the loop solitons creates vortex rings with (i) quasistatic toroidal Kelvin waves and (ii) parametric oscillatory modes—i.e., with the hierarchical instability order. For the first time, we show that the same hierarchical instability at the micro- and the megascale establishes the conceptual frame for their unique classification based on the hierarchical order of Bessel functions. Present findings reveal that conditions created in the laser-target regions of a high filament density lead to their collective behavior and formation of helically paired and filament-braided “complexes”. We also show, for the first time, that morphological and topological characteristics of the filament-bundle “complexes” with the loop solitons indicate the analogy between similar laser-induced plasma instabilities and those of the Crab and Double-Helix Nebulas—thus enabling conceptualization of fundamental characteristics. These results reveal that the same rotating metric accommodates the complexity of the instabilities of helical filaments, vortex rings, and filament jets in the plasmatic micro- and megascale astrophysical objects. Full article
Show Figures

Figure 1

18 pages, 9581 KiB  
Article
Analysis and Basics of Improving the Process of Cutting Electrical Sheet Bundles with a High-Pressure Abrasive Water Jet
by Monika Edyta Szada-Borzyszkowska, Wojciech Kacalak, Łukasz Bohdal and Wiesław Szada-Borzyszkowski
Materials 2024, 17(7), 1666; https://doi.org/10.3390/ma17071666 - 4 Apr 2024
Cited by 4 | Viewed by 1404
Abstract
Electrical steels are widely used in the electrical industry in the construction of many devices, e.g., power transformer cores and distribution transformers. An important parameter of electrical components that determines the efficiency of devices is energy loss during remagnetization. These losses are influenced, [...] Read more.
Electrical steels are widely used in the electrical industry in the construction of many devices, e.g., power transformer cores and distribution transformers. An important parameter of electrical components that determines the efficiency of devices is energy loss during remagnetization. These losses are influenced, among other factors, by steel cutting processes. The common techniques for cutting electrical materials on industrial lines are mechanical cutting and laser cutting. High-pressure abrasive water jet (AWJ) cutting, unlike the technologies mentioned above, can ensure higher quality of the cut edge and limit the negative impact of the cutting process on the magnetic properties of sheet metal. However, the correct control of the process and the conditions of its implementation comprise a complex issue and require extensive scientific research. This work presents a new approach to cutting electric sheets, involving bundle cutting, which significantly increases the processing efficiency and the dimensional and shape accuracy of the cut details. The tests were carried out for bundles composed of a maximum of 30 sheets, ready to be joined in a stator and rotor in a motor. The influence of processing conditions on the quality of the cut edges of sheet metal, the width of the deformation zone, and the burr height were analyzed. The detailed analysis of the quality of the cut edges of electrical bundled sheets creates new possibilities for controlling the AWJ cutting process in order to obtain a product with the desired functional and operational properties. Full article
Show Figures

Figure 1

18 pages, 5119 KiB  
Article
Calculation of Transmission Line Worker Electric Field Induced Current Using Fourier-Enhanced Charge Simulation
by Jon T. Leman, Robert G. Olsen and David Renew
Energies 2023, 16(22), 7646; https://doi.org/10.3390/en16227646 - 18 Nov 2023
Cited by 1 | Viewed by 1328
Abstract
Exposure to quasi-electrostatic field induced currents is a hazard of live-line transmission work. These steady-state induced currents are typically less than 1 mA, and their sensory effects range from imperceptible to painful depending on the person and conditions such as contact area and [...] Read more.
Exposure to quasi-electrostatic field induced currents is a hazard of live-line transmission work. These steady-state induced currents are typically less than 1 mA, and their sensory effects range from imperceptible to painful depending on the person and conditions such as contact area and duration. Permanent injury from these currents is unlikely but they can distract workers, increasing the risk of injury from falls or other dangers. Identifying contact current severity and training workers can help reduce the risk of accidents. Measuring induced currents along a climbing route is time-consuming and simulation is challenging because of the geometric complexity of the worker, the transmission structure, conductor bundles, and electric fields in the climbing space. This research explores the suitability of a recently published adaptation of the charge simulation method for calculating worker-induced currents. The method uses Fourier principles to improve computational efficiency while explicitly modeling all bundle subconductors. The research also examines simplifications for modeling lattice structures and human geometry. Calculated currents compare well to measurements for a worker climbing a 400 kV lattice structure. This indicates the method is a practical option for calculating steady-state contact current severity. A simple calculation is suggested for estimating these currents. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

53 pages, 1751 KiB  
Article
Generalized Finsler Geometry and the Anisotropic Tearing of Skin
by John D. Clayton
Symmetry 2023, 15(10), 1828; https://doi.org/10.3390/sym15101828 - 26 Sep 2023
Cited by 3 | Viewed by 1980
Abstract
A continuum mechanical theory with foundations in generalized Finsler geometry describes the complex anisotropic behavior of skin. A fiber bundle approach, encompassing total spaces with assigned linear and nonlinear connections, geometrically characterizes evolving configurations of a deformable body with the microstructure. An internal [...] Read more.
A continuum mechanical theory with foundations in generalized Finsler geometry describes the complex anisotropic behavior of skin. A fiber bundle approach, encompassing total spaces with assigned linear and nonlinear connections, geometrically characterizes evolving configurations of a deformable body with the microstructure. An internal state vector is introduced on each configuration, describing subscale physics. A generalized Finsler metric depends on the position and the state vector, where the latter dependence allows for both the direction (i.e., as in Finsler geometry) and magnitude. Equilibrium equations are derived using a variational method, extending concepts of finite-strain hyperelasticity coupled to phase-field mechanics to generalized Finsler space. For application to skin tearing, state vector components represent microscopic damage processes (e.g., fiber rearrangements and ruptures) in different directions with respect to intrinsic orientations (e.g., parallel or perpendicular to Langer’s lines). Nonlinear potentials, motivated from soft-tissue mechanics and phase-field fracture theories, are assigned with orthotropic material symmetry pertinent to properties of skin. Governing equations are derived for one- and two-dimensional base manifolds. Analytical solutions capture experimental force-stretch data, toughness, and observations on evolving microstructure, in a more geometrically and physically descriptive way than prior phenomenological models. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
Show Figures

Figure 1

17 pages, 4608 KiB  
Article
Robust Visual Odometry Leveraging Mixture of Manhattan Frames in Indoor Environments
by Huayu Yuan, Chengfeng Wu, Zhongliang Deng and Jiahui Yin
Sensors 2022, 22(22), 8644; https://doi.org/10.3390/s22228644 - 9 Nov 2022
Cited by 3 | Viewed by 2070
Abstract
We propose a robust RGB-Depth (RGB-D) Visual Odometry (VO) system to improve the localization performance of indoor scenes by using geometric features, including point and line features. Previous VO/Simultaneous Localization and Mapping (SLAM) algorithms estimate the low-drift camera poses with the Manhattan World [...] Read more.
We propose a robust RGB-Depth (RGB-D) Visual Odometry (VO) system to improve the localization performance of indoor scenes by using geometric features, including point and line features. Previous VO/Simultaneous Localization and Mapping (SLAM) algorithms estimate the low-drift camera poses with the Manhattan World (MW)/Atlanta World (AW) assumption, which limits the applications of such systems. In this paper, we divide the indoor environments into two different scenes: MW and non-MW scenes. The Manhattan scenes are modeled as a Mixture of Manhattan Frames, in which each Manhattan Frame in itself defines a Manhattan World of a specific orientation. Moreover, we provide a method to detect Manhattan Frames (MFs) using the dominant directions extracted from the parallel lines. Our approach is designed with lower computational complexity than existing techniques using planes to detect Manhattan Frame (MF). For MW scenes, we separately estimate rotational and translational motion. A novel method is proposed to estimate the drift-free rotation using MF observations, unit direction vectors of lines, and surface normal vectors. Then, the translation part is recovered from point-line tracking. In non-MW scenes, the tracked and matched dominant directions are combined with the point and line features to estimate the full 6 degree of freedom (DoF) camera poses. Additionally, we exploit the rotation constraints generated from the multi-view dominant directions observations. The constraints are combined with the reprojection errors of points and lines to refine the camera pose through local map bundle adjustment. Evaluations on both synthesized and real-world datasets demonstrate that our approach outperforms state-of-the-art methods. On synthesized datasets, average localization accuracy is 1.5 cm, which is equivalent to state-of-the-art methods. On real-world datasets, the average localization accuracy is 1.7 cm, which outperforms the state-of-the-art methods by 43%. Our time consumption is reduced by 36%. Full article
(This article belongs to the Special Issue Feature Papers in Navigation and Positioning)
Show Figures

Figure 1

10 pages, 2481 KiB  
Communication
Successes and Challenges of Implementing Tobacco Dependency Treatment in Health Care Institutions in England
by Sanjay Agrawal, Zaheer Mangera, Rachael L. Murray, Freya Howle and Matthew Evison
Curr. Oncol. 2022, 29(5), 3738-3747; https://doi.org/10.3390/curroncol29050299 - 20 May 2022
Cited by 7 | Viewed by 3731
Abstract
There is a significant body of evidence that delivering tobacco dependency treatment within acute care hospitals can deliver high rates of tobacco abstinence and substantial benefits for both patients and the healthcare system. This evidence has driven a renewed investment in the UK [...] Read more.
There is a significant body of evidence that delivering tobacco dependency treatment within acute care hospitals can deliver high rates of tobacco abstinence and substantial benefits for both patients and the healthcare system. This evidence has driven a renewed investment in the UK healthcare service to ensure all patients admitted to hospital are provided with evidence-based interventions during admission and after discharge. An early-implementer of this new wave of hospital-based tobacco dependency treatment services is “the CURE project” in Greater Manchester, a region in the North West of England. The CURE project strives to change the culture of a hospital system, to medicalise tobacco dependency and empower front-line hospital staff to deliver an admission bundle of care, including identification of patients that smoke, provision of very brief advice (VBA), protocolised prescription of pharmacotherapy, and opt-out referral to the specialist CURE practitioners. This specialist team provides expert treatment and behaviour change support during the hospital admission and can agree a support package after discharge, with either hospital-led or community-led follow-up. The programme has shown exceptional clinical effectiveness, with 22% of all smokers admitted to hospital abstinent from tobacco at 12 weeks, and exceptional cost-effectiveness with a public value return on investment ratio of GBP 30.49 per GBP 1 invested and a cost per QALY of GBP 487. There have been many challenges in implementing this service, underpinned by the system-wide culture change and ensuring the good communication and engagement of all stakeholders across the complex networks of the tobacco control and healthcare system. The delivery of hospital-based tobacco dependency services across all NHS acute care hospitals represents a substantial step forward in the fight against the tobacco epidemic. Full article
(This article belongs to the Special Issue Smoking Cessation after a Cancer Diagnosis)
Show Figures

Figure 1

10 pages, 1623 KiB  
Article
Study of the Combined Severe Plastic Deformation Techniques Applied to Produce Contact Wire for High-Speed Railway Lines
by Rashid N. Asfandiyarov, Georgy I. Raab and Denis A. Aksenov
Metals 2020, 10(11), 1476; https://doi.org/10.3390/met10111476 - 5 Nov 2020
Cited by 9 | Viewed by 2650
Abstract
This work considers the development and the application of combined severe plastic deformation (SPD) techniques to produce contact wire with an enhanced complex of physical, mechanical, and service properties used for high-speed railway lines. This type of processing can be used as an [...] Read more.
This work considers the development and the application of combined severe plastic deformation (SPD) techniques to produce contact wire with an enhanced complex of physical, mechanical, and service properties used for high-speed railway lines. This type of processing can be used as an alternative to most conventional production methods, including rolling and drawing. The proposed technique is based on the combination of radial swaging and equal-channel angular pressing, bundled with the wire-forming process. Laboratory contact wire samples with an enhanced complex of physical, mechanical, and service properties were produced during physical experiments. The composition of processed alloy samples meets modern requirements for contact wires for high-speed railways. Ultimate tensile strength of 560 ± 20 MPa, electrical conductivity of 76 ± 2% IACS, and relative tensile elongation of 20 ± 2% are achieved through the formation of a band structure. Fragments of 300 ± 20 nm were formed inside strips with the precipitation of secondary phase particles of 20–100 nm along the fragment boundaries, mainly during the aging process. Full article
(This article belongs to the Special Issue Application of Alloys in Transport)
Show Figures

Graphical abstract

27 pages, 18725 KiB  
Article
Automatic Extraction of High-Voltage Bundle Subconductors Using Airborne LiDAR Data
by Nosheen Munir, Mohammad Awrangjeb and Bela Stantic
Remote Sens. 2020, 12(18), 3078; https://doi.org/10.3390/rs12183078 - 20 Sep 2020
Cited by 15 | Viewed by 3896
Abstract
Overhead high-voltage conductors are the chief components of power lines and their safety has a strong influence on social and daily life. In the recent decade, the airborne laser scanning (ALS) technique has been widely used to capture the three-dimensional (3D) information of [...] Read more.
Overhead high-voltage conductors are the chief components of power lines and their safety has a strong influence on social and daily life. In the recent decade, the airborne laser scanning (ALS) technique has been widely used to capture the three-dimensional (3D) information of power lines and surrounding objects. Most of the existing methods focused on extraction of single conductors or extracted all conductors as one object class by applying machine learning techniques. Nevertheless, power line corridors (PLCs) are built with multi-loop, multi-phase structures (bundle conductors) and exist in intricate environments (e.g., mountains and forests), and thus raise challenges to process ALS data for extraction of individual conductors. This paper proposes an automated method to extract individual subconductors in bundles from complex structure of PLCs using a combined image- and point-based approach. First, the input point cloud data are grouped into 3D voxel grid and PL points and separated from pylon and tree points using the fact that pylons and trees are vertical objects while power lines are non-vertical objects. These pylons are further separated from trees by employing a statistical analysis technique and used to extract span points between two consecutive pylons; then, by using the distribution properties of power lines in each individual span, the bundles located at different height levels are extracted using image-based processing; finally, subconductors in each bundle are detected and extracted by introducing a window that slides over the individual bundle. The orthogonal plane transformation and recursive clustering procedures are exploited in each window position and a point-based processing is conducted iteratively for extraction of complete individual subconductors in each bundle. The feasibility and validity of the proposed method are verified on two Australian sites having bundle conductors in high-voltage transmission lines. Our experiments show that the proposed method achieves a reliable result by extracting the real structure of bundle conductors in power lines with correctness of 100% and 90% in the two test sites, respectively. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

14 pages, 2253 KiB  
Article
Optimization of Radio Interference Levels for 500 and 600 kV Bipolar HVDC Transmission Lines
by Carlos Tejada-Martinez, Fermin P. Espino-Cortes, Suat Ilhan and Aydogan Ozdemir
Energies 2019, 12(16), 3187; https://doi.org/10.3390/en12163187 - 20 Aug 2019
Cited by 3 | Viewed by 4220
Abstract
In this work, a method to compute the radio interference (RI) lateral profiles generated by corona discharge in high voltage direct current (HVDC) transmission lines is presented. The method is based on a transmission line model that considers the skin effect, through the [...] Read more.
In this work, a method to compute the radio interference (RI) lateral profiles generated by corona discharge in high voltage direct current (HVDC) transmission lines is presented. The method is based on a transmission line model that considers the skin effect, through the concept of complex penetration depth, in the conductors and in the ground plane. The attenuation constants are determined from the line parameters and the bipolar system is decoupled by using modal decomposition theory. As application cases, ±500 and ±600 kV bipolar transmission lines were analyzed. Afterwards, parametric sweeps of five variables that affect the RI levels are presented. Both the RI and the maximum electric field were calculated as a function of sub-conductor radius, bundle spacing, and the number of sub-conductors in the bundle. Additionally, the RI levels were also calculated as a function of the soil resistivity, and the RIV (radio interference voltage) frequency. Following this, vector optimization was applied to minimize the RI levels produced by the HVDC lines and differences between the designs with nominal and optimal values are discussed. Full article
Show Figures

Figure 1

21 pages, 16238 KiB  
Article
Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data
by Xinyan Qin, Gongping Wu, Jin Lei, Fei Fan and Xuhui Ye
Sensors 2018, 18(4), 1284; https://doi.org/10.3390/s18041284 - 22 Apr 2018
Cited by 41 | Viewed by 7292
Abstract
Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being [...] Read more.
Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from “layer” to “block” according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection. Full article
(This article belongs to the Special Issue Automatic Target Recognition of High Resolution SAR/ISAR Images)
Show Figures

Figure 1

Back to TopTop