Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = commodity futures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1161 KiB  
Article
In Pursuit of Samuelson for Commodity Futures: How to Parameterize and Calibrate the Term Structure of Volatilities
by Roza Galeeva
Commodities 2025, 4(3), 13; https://doi.org/10.3390/commodities4030013 - 18 Jul 2025
Viewed by 239
Abstract
The phenomenon of rising forward price volatility, both historical and implied, as maturity approaches is referred to as the Samuelson effect or maturity effect. Disregarding this effect leads to significant mispricing of early-exercise options, extendible options, or other path-dependent options. The primary objective [...] Read more.
The phenomenon of rising forward price volatility, both historical and implied, as maturity approaches is referred to as the Samuelson effect or maturity effect. Disregarding this effect leads to significant mispricing of early-exercise options, extendible options, or other path-dependent options. The primary objective of the research is to identify a practical way to incorporate the Samuelson effect into the evaluation of commodity derivatives. We choose to model the instantaneous variance employing the exponential decay parameterizations of the Samuelson effect. We develop efficient calibration techniques utilizing historical futures data and conduct an analysis of statistical errors to provide a benchmark for model performance. The study employs 15 years of data for WTI, Brent, and NG, producing excellent results, with the fitting error consistently inside the statistical error, except for the 2020 crisis period. We assess the stability of the fitted parameters via cross-validation techniques and examine the model’s out-of-sample efficacy. The approach is generalized to encompass seasonal commodities, such as natural gas and electricity. We illustrate the application of the calibrated model of instantaneous variance for the evaluation of commodity derivatives, including swaptions, as well as in the evaluation of power purchase agreements (PPAs). We demonstrate a compelling application of the Samuelson effect to a widely utilized auto-callable equity derivative known as the snowball. Full article
Show Figures

Figure 1

32 pages, 4535 KiB  
Article
A Novel Stochastic Copula Model for the Texas Energy Market
by Sudeesha Warunasinghe and Anatoliy Swishchuk
Risks 2025, 13(7), 137; https://doi.org/10.3390/risks13070137 - 16 Jul 2025
Viewed by 593
Abstract
The simulation of wind power, electricity load, and natural gas prices will allow commodity traders to see the future movement of prices in a more probabilistic manner. The ability to observe possible paths for wind power, electricity load, and natural gas prices enables [...] Read more.
The simulation of wind power, electricity load, and natural gas prices will allow commodity traders to see the future movement of prices in a more probabilistic manner. The ability to observe possible paths for wind power, electricity load, and natural gas prices enables traders to obtain valuable insights for placing their trades on electricity prices. Since the above processes involve a seasonality factor, the seasonality component was modeled using a truncated Fourier series, and the random component was modeled using stochastic differential equations (SDE). It is evident from the literature that all the above processes are mean-reverting processes; thus, three mean-reverting Ornstein–Uhlenbeck (OU) processes were considered the model for wind power, the electricity load, and natural gas prices. Industry experts believe there is a correlation between wind power, the electricity load, and natural gas prices. For example, when wind power is higher and the electricity load is lower, natural gas prices are relatively low. The novelty of this study is the incorporation of the correlation structure between processes into the mean-reverting OU process using a copula function. Thus, the study utilized a vine copula and integrated it into the simulation. The study was conducted for the Texas energy market and used daily time scales for the simulations, and it was able to conclude that the proposed novel mean-reverting OU process outperforms the classical mean-reverting process in the case of wind power and the electricity load. Full article
(This article belongs to the Special Issue Stochastic Modeling and Computational Statistics in Finance)
Show Figures

Figure 1

49 pages, 1398 KiB  
Review
Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps
by László Vancsura, Tibor Tatay and Tibor Bareith
Forecasting 2025, 7(3), 36; https://doi.org/10.3390/forecast7030036 - 14 Jul 2025
Viewed by 1640
Abstract
This systematic literature review explores the application of artificial intelligence (AI) and machine learning (ML) in financial market forecasting, with a focus on four asset classes: equities, cryptocurrencies, commodities, and foreign exchange markets. Guided by the PRISMA methodology, the study identifies the most [...] Read more.
This systematic literature review explores the application of artificial intelligence (AI) and machine learning (ML) in financial market forecasting, with a focus on four asset classes: equities, cryptocurrencies, commodities, and foreign exchange markets. Guided by the PRISMA methodology, the study identifies the most widely used predictive models, particularly LSTM, GRU, XGBoost, and hybrid deep learning architectures, as well as key evaluation metrics, such as RMSE and MAPE. The findings confirm that AI-based approaches, especially neural networks, outperform traditional statistical methods in capturing non-linear and high-dimensional dynamics. However, the analysis also reveals several critical research gaps. Most notably, current models are rarely embedded into real or simulated trading strategies, limiting their practical applicability. Furthermore, the sensitivity of widely used metrics like MAPE to volatility remains underexplored, particularly in highly unstable environments such as crypto markets. Temporal robustness is also a concern, as many studies fail to validate their models across different market regimes. While data covering one to ten years is most common, few studies assess performance stability over time. By highlighting these limitations, this review not only synthesizes the current state of the art but also outlines essential directions for future research. Specifically, it calls for greater emphasis on model interpretability, strategy-level evaluation, and volatility-aware validation frameworks, thereby contributing to the advancement of AI’s real-world utility in financial forecasting. Full article
(This article belongs to the Section Forecasting in Computer Science)
Show Figures

Figure 1

16 pages, 808 KiB  
Article
Enhancing Stock Price Forecasting with CNN-BiGRU-Attention: A Case Study on INDY
by Madilyn Louisa, Gumgum Darmawan and Bertho Tantular
Mathematics 2025, 13(13), 2148; https://doi.org/10.3390/math13132148 - 30 Jun 2025
Viewed by 414
Abstract
The stock price of PT Indika Energy Tbk (INDY) reflects the dynamics of Indonesia’s energy sector, which is heavily influenced by global coal price fluctuations, national energy policies, and geopolitical conditions. This study aimed to develop an accurate forecasting model to predict the [...] Read more.
The stock price of PT Indika Energy Tbk (INDY) reflects the dynamics of Indonesia’s energy sector, which is heavily influenced by global coal price fluctuations, national energy policies, and geopolitical conditions. This study aimed to develop an accurate forecasting model to predict the movement of INDY stock prices using a hybrid machine learning approach called CNN-BiGRU-AM. The objective was to generate future forecasts of INDY stock prices based on historical data from 28 August 2019 to 24 February 2025. The method applied a hybrid model combining a Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and an Attention Mechanism (AM) to address the nonlinear, volatile, and noisy characteristics of stock data. The results showed that the CNN-BiGRU-AM model achieved high accuracy with a Mean Absolute Percentage Error (MAPE) below 3%, indicating its effectiveness in capturing long-term patterns. The CNN helped extract local features and reduce noise, the BiGRU captured bidirectional temporal dependencies, and the Attention Mechanism allocated weights to the most relevant historical information. The model remained robust even when stock prices were sensitive to external factors such as global commodity trends and geopolitical events. This study contributes to providing more accurate forecasting solutions for companies, investors, and stakeholders in making strategic decisions. It also enriches the academic literature on the application of deep learning techniques in financial data analysis and stock market forecasting within a complex and dynamic environment. Full article
Show Figures

Figure 1

22 pages, 1150 KiB  
Article
Risk-Sensitive Deep Reinforcement Learning for Portfolio Optimization
by Xinyao Wang and Lili Liu
J. Risk Financial Manag. 2025, 18(7), 347; https://doi.org/10.3390/jrfm18070347 - 22 Jun 2025
Viewed by 1184
Abstract
Navigating the complexity of petroleum futures markets—marked by extreme volatility, geopolitical uncertainty, and macroeconomic shocks—demands adaptive and risk-sensitive strategies. This paper explores an Adaptive Risk-sensitive Transformer-based Deep Reinforcement Learning (ART-DRL) framework to improve portfolio optimization in commodity futures trading. While deep reinforcement learning [...] Read more.
Navigating the complexity of petroleum futures markets—marked by extreme volatility, geopolitical uncertainty, and macroeconomic shocks—demands adaptive and risk-sensitive strategies. This paper explores an Adaptive Risk-sensitive Transformer-based Deep Reinforcement Learning (ART-DRL) framework to improve portfolio optimization in commodity futures trading. While deep reinforcement learning (DRL) has been applied in equities and forex, its use in commodities remains underexplored. We evaluate DRL models, including Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), and Deep Deterministic Policy Gradient (DDPG), integrating dynamic reward functions and asset-specific optimization. Empirical results show improvements in risk-adjusted performance, with an annualized return of 1.353, a Sharpe Ratio of 4.340, and a Sortino Ratio of 57.766. Although the return is below DQN (1.476), the proposed model achieves better stability and risk control. Notably, the models demonstrate resilience by learning from historical periods of extreme volatility, including the COVID-19 pandemic (2020–2021) and geopolitical shocks such as the Russia–Ukraine conflict (2022), despite testing commencing in January 2023. This research offers a practical, data-driven framework for risk-sensitive decision-making in commodities, showing how machine learning can support portfolio management under volatile market conditions. Full article
Show Figures

Figure 1

35 pages, 1553 KiB  
Article
Efficient Learning-Based Robotic Navigation Using Feature-Based RGB-D Pose Estimation and Topological Maps
by Eder A. Rodríguez-Martínez, Jesús Elías Miranda-Vega, Farouk Achakir, Oleg Sergiyenko, Julio C. Rodríguez-Quiñonez, Daniel Hernández Balbuena and Wendy Flores-Fuentes
Entropy 2025, 27(6), 641; https://doi.org/10.3390/e27060641 - 15 Jun 2025
Viewed by 749
Abstract
Robust indoor robot navigation typically demands either costly sensors or extensive training data. We propose a cost-effective RGB-D navigation pipeline that couples feature-based relative pose estimation with a lightweight multi-layer-perceptron (MLP) policy. RGB-D keyframes extracted from human-driven traversals form nodes of a topological [...] Read more.
Robust indoor robot navigation typically demands either costly sensors or extensive training data. We propose a cost-effective RGB-D navigation pipeline that couples feature-based relative pose estimation with a lightweight multi-layer-perceptron (MLP) policy. RGB-D keyframes extracted from human-driven traversals form nodes of a topological map; edges are added when visual similarity and geometric–kinematic constraints are jointly satisfied. During autonomy, LightGlue features and SVD give six-DoF relative pose to the active keyframe, and the MLP predicts one of four discrete actions. Low visual similarity or detected obstacles trigger graph editing and Dijkstra replanning in real time. Across eight tasks in four Habitat-Sim environments, the agent covered 190.44 m, replanning when required, and consistently stopped within 0.1 m of the goal while running on commodity hardware. An information-theoretic analysis over the Multi-Illumination dataset shows that LightGlue maximizes per-second information gain under lighting changes, motivating its selection. The modular design attains reliable navigation without metric SLAM or large-scale learning, and seamlessly accommodates future perception or policy upgrades. Full article
Show Figures

Figure 1

25 pages, 1991 KiB  
Article
Crude Oil and Hot-Rolled Coil Futures Price Prediction Based on Multi-Dimensional Fusion Feature Enhancement
by Yongli Tang, Zhenlun Gao, Ya Li, Zhongqi Cai, Jinxia Yu and Panke Qin
Algorithms 2025, 18(6), 357; https://doi.org/10.3390/a18060357 - 11 Jun 2025
Viewed by 859
Abstract
To address the challenges in forecasting crude oil and hot-rolled coil futures prices, the aim is to transcend the constraints of conventional approaches. This involves effectively predicting short-term price fluctuations, developing quantitative trading strategies, and modeling time series data. The goal is to [...] Read more.
To address the challenges in forecasting crude oil and hot-rolled coil futures prices, the aim is to transcend the constraints of conventional approaches. This involves effectively predicting short-term price fluctuations, developing quantitative trading strategies, and modeling time series data. The goal is to enhance prediction accuracy and stability, thereby supporting decision-making and risk management in financial markets. A novel approach, the multi-dimensional fusion feature-enhanced (MDFFE) prediction method has been devised. Additionally, a data augmentation framework leveraging multi-dimensional feature engineering has been established. The technical indicators, volatility indicators, time features, and cross-variety linkage features are integrated to build a prediction system, and the lag feature design is used to prevent data leakage. In addition, a deep fusion model is constructed, which combines the temporal feature extraction ability of the convolution neural network with the nonlinear mapping advantage of an extreme gradient boosting tree. With the help of a three-layer convolution neural network structure and adaptive weight fusion strategy, an end-to-end prediction framework is constructed. Experimental results demonstrate that the MDFFE model excels in various metrics, including mean absolute error, root mean square error, mean absolute percentage error, coefficient of determination, and sum of squared errors. The mean absolute error reaches as low as 0.0068, while the coefficient of determination can be as high as 0.9970. In addition, the significance and stability of the model performance were verified by statistical methods such as a paired t-test and ANOVA analysis of variance. This MDFFE algorithm offers a robust and practical approach for predicting commodity futures prices. It holds significant theoretical and practical value in financial market forecasting, enhancing prediction accuracy and mitigating forecast volatility. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

41 pages, 686 KiB  
Review
Reinforcement Learning in Energy Finance: A Comprehensive Review
by Spyros Giannelos
Energies 2025, 18(11), 2712; https://doi.org/10.3390/en18112712 - 23 May 2025
Cited by 3 | Viewed by 890
Abstract
The accelerating energy transition, coupled with increasing market volatility and computational advances, has created an urgent need for sophisticated decision-making tools that can address the unique challenges of energy finance—a gap that reinforcement learning methodologies are uniquely positioned to fill. This paper provides [...] Read more.
The accelerating energy transition, coupled with increasing market volatility and computational advances, has created an urgent need for sophisticated decision-making tools that can address the unique challenges of energy finance—a gap that reinforcement learning methodologies are uniquely positioned to fill. This paper provides a comprehensive review of the application of reinforcement learning (RL) in energy finance, with a particular focus on option value and risk management. Energy markets present unique challenges due to their complex price dynamics, seasonality patterns, regulatory constraints, and the physical nature of energy commodities. Traditional financial modeling approaches often struggle to capture these intricacies adequately. Reinforcement learning, with its ability to learn optimal decision policies through interaction with complex environments, has emerged as a promising alternative methodology. This review examines the theoretical foundations of RL in financial applications, surveys recent literature on RL implementations in energy markets, and critically analyzes the strengths and limitations of these approaches. We explore applications ranging from electricity price forecasting and optimal trading strategies to option valuation, including real options and products common in energy markets. The paper concludes by identifying current challenges and promising directions for future research in this rapidly evolving field. Full article
(This article belongs to the Special Issue Energy Economics, Finance and Policy Towards Sustainable Energy)
Show Figures

Figure 1

33 pages, 14301 KiB  
Article
Enhancing Agricultural Futures Return Prediction: Insights from Rolling VMD, Economic Factors, and Mixed Ensembles
by Yiling Ye, Xiaowen Zhuang, Cai Yi, Dinggao Liu and Zhenpeng Tang
Agriculture 2025, 15(11), 1127; https://doi.org/10.3390/agriculture15111127 - 23 May 2025
Viewed by 434
Abstract
The prediction of agricultural commodity futures returns is crucial for understanding global economic trends, alleviating inflationary pressures, and optimizing investment portfolios. However, current research that uses full-sample decomposition to predict agricultural futures returns suffers from data leakage, and the resulting forecast bias leads [...] Read more.
The prediction of agricultural commodity futures returns is crucial for understanding global economic trends, alleviating inflationary pressures, and optimizing investment portfolios. However, current research that uses full-sample decomposition to predict agricultural futures returns suffers from data leakage, and the resulting forecast bias leads to overly optimistic outcomes. Additionally, previous studies have lacked a comprehensive consideration of key economic variables that influence agricultural prices. To address these issues, this study proposes the “Rolling VMD-LASSO-Mixed Ensemble” forecasting framework and compares its performance with “Rolling VMD” against univariate models, “Rolling VMD-LASSO” against “Rolling VMD”, and “Rolling VMD-LASSO-Mixed Ensemble” against “Rolling VMD-LASSO”. Empirical results show that, on average, “Rolling VMD” improved MSE, MAE, Theil U, ARV, and DA by 3.05%, 1.09%, 1.52%, 2.96%, and 11.11%, respectively, compared to univariate models. “Rolling VMD-LASSO” improved these five indicators by 2.11%, 1.15%, 1.09%, 2.13%, and 1.00% over “Rolling VMD”. The decision tree-based “Rolling VMD-LASSO-Mixed Ensemble” outperformed “Rolling VMD-LASSO” by 1.98%, 0.96%, 1.28%, 2.55%, and 4.18% in the five metrics. Furthermore, the daily average return, maximum drawdown, Sharpe ratio, Sortino ratio, and Calmar ratio based on prediction results also show that “Rolling VMD” outperforms univariate forecasting, “Rolling VMD-LASSO” outperforms “Rolling VMD”, and “Rolling VMD-LASSO-Mixed Ensemble” outperforms “Rolling VMD-LASSO”. This study provides a more accurate and robust forecasting framework for the global agricultural futures market, offering significant practical value for investor risk management and policymakers in stabilizing prices. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 449 KiB  
Article
New Functional Extruded Products Based on Corn and Lentil Flour Formulated with Winemaking By-Products
by Mario Cotacallapa-Sucapuca, José de J. Berrios, James Pan, Priscila Alves, Claudia Arribas, Mercedes M. Pedrosa, Patricia Morales and Montaña Cámara
Processes 2025, 13(6), 1635; https://doi.org/10.3390/pr13061635 - 22 May 2025
Viewed by 615
Abstract
To enhance the nutritional value of food products, new functional extruded products have been developed based on combinations of corn and lentil flour (70:30), with added salt (1.25%), sugar (5%), and resistant starch V (5–20%), and fortified winemaking by-products (fermented and unfermented pomace/pomace [...] Read more.
To enhance the nutritional value of food products, new functional extruded products have been developed based on combinations of corn and lentil flour (70:30), with added salt (1.25%), sugar (5%), and resistant starch V (5–20%), and fortified winemaking by-products (fermented and unfermented pomace/pomace seeds) (5–20%). The formulations were processed through a 32 mm twin screw extruder. The developed extrudates were analyzed for bioactive content. The findings show that among the experimental formulations, those with the highest concentration (20%) presented the greatest amounts of the following functional compound total dietary fiber, total arabinoxylans, resistant starch, total phenols, total flavonols, and total anthocyanins, and the lowest content of raffinose and stachyose. These study results indicate that extrusion is an effective method for adding value to underutilized commodities, such as winemaking by-products. A future sensory evaluation study will be conducted on the extruded products with the highest amount of winemaking by-products of 20%. Full article
Show Figures

Figure 1

18 pages, 1925 KiB  
Review
Sustainable Production Systems in the Brazilian Amazon: A Systematic Review
by Matheus de Miranda Ribeiro Borges, Liliane Marques de Sousa and Giovana Ghisleni Ribas
Sustainability 2025, 17(11), 4745; https://doi.org/10.3390/su17114745 - 22 May 2025
Viewed by 871
Abstract
The integration of the Amazon into the global commodities market requires ensuring the rational use of resources to meet market and socio-political demands, such as the UN’s 2030 Agenda. Responsible production practices are essential to address the current demand for sustainable land use [...] Read more.
The integration of the Amazon into the global commodities market requires ensuring the rational use of resources to meet market and socio-political demands, such as the UN’s 2030 Agenda. Responsible production practices are essential to address the current demand for sustainable land use and resource management. This study reviewed the literature (2004–2024) on the opportunities and challenges of implementing and consolidating sustainable production systems in the Amazon. It found a low distribution of studies across Brazilian Amazon states and a surge in publications since 2015, focusing on agroforestry systems and forest management. Challenges include socio-political limitations that hinder public decision-making, leading to inefficient policies, as well as economic issues, lack of know-how, inadequate infrastructure, poor logistics, and cultural resistance. Nevertheless, these systems offer opportunities such as intensified and diversified production, carbon sequestration, and soil and forest conservation. Finally, future research should consider political, social, and economic aspects to facilitate the transition from traditional to sustainable models, supporting strategies for consolidating these systems in the Amazon. Full article
Show Figures

Figure 1

21 pages, 1198 KiB  
Article
Modeling the Ningbo Container Freight Index Through Deep Learning: Toward Sustainable Shipping and Regional Economic Resilience
by Haochuan Wu and Chi Gong
Sustainability 2025, 17(10), 4655; https://doi.org/10.3390/su17104655 - 19 May 2025
Cited by 1 | Viewed by 736
Abstract
With the expansion of global trade, China’s commodity futures market has become increasingly intertwined with regional maritime logistics. The Ningbo Containerized Freight Index (NCFI), as a key regional indicator, reflects freight rate fluctuations and logistics efficiency in real time. However, limited research has [...] Read more.
With the expansion of global trade, China’s commodity futures market has become increasingly intertwined with regional maritime logistics. The Ningbo Containerized Freight Index (NCFI), as a key regional indicator, reflects freight rate fluctuations and logistics efficiency in real time. However, limited research has explored how commodity futures data can enhance NCFI forecasting accuracy. This study aims to bridge that gap by proposing a hybrid deep learning model that combines recurrent neural networks (RNNs) and gated recurrent units (GRUs) to predict NCFI trends. A comprehensive dataset comprising 28,830 daily observations from March 2017 to August 2022 is constructed, incorporating the futures prices of key commodities (e.g., rebar, copper, gold, and soybeans) and market indices, alongside Clarksons containership earnings. The data undergo standardized preprocessing, feature selection via Pearson correlation analysis, and temporal partitioning into training (80%) and testing (20%) sets. The model is evaluated using multiple metrics—mean absolute Error (MAE), mean squared error (MSE), root mean square error (RMSE), and R2—on both sets. The results show that the RNN–GRU model outperforms standalone RNN and GRU architectures, achieving an R2 of 0.9518 on the test set with low MAE and RMSE values. These findings confirm that integrating cross-market financial indicators with deep sequential modeling enhances the interpretability and accuracy of regional freight forecasting. This study contributes to sustainable shipping strategies and provides decision-making tools for logistics firms, port operators, and policymakers seeking to improve resilience and data-driven planning in maritime transport. Full article
Show Figures

Figure 1

18 pages, 3889 KiB  
Article
A Deep Learning-Based Prediction and Forecasting of Tomato Prices for the Cape Town Fresh Produce Market: A Model Comparative Analysis
by Emmanuel Ekene Okere and Vipin Balyan
Forecasting 2025, 7(2), 19; https://doi.org/10.3390/forecast7020019 - 13 May 2025
Viewed by 1553
Abstract
The fresh produce supply chain sector is a vital pillar of any society and an indispensable part of the national economic structure. As a significant segment of the agricultural market, accurately forecasting vegetable prices holds significant importance. Vegetable market pricing is subject to [...] Read more.
The fresh produce supply chain sector is a vital pillar of any society and an indispensable part of the national economic structure. As a significant segment of the agricultural market, accurately forecasting vegetable prices holds significant importance. Vegetable market pricing is subject to a myriad of complex influences, resulting in nonlinear patterns that conventional time series methodologies often struggle to decode. Future planning for commodity pricing is achievable by forecasting the future price anticipated by the current circumstances. This paper presents a price forecasting methodology for tomatoes which uses price and production data taken from 2008 to 2021 and analyzed by means of advanced deep learning-based Long Short-Term Memory (LSTM) networks. A comparative analysis of three models based on Root Mean Square Error (RMSE) identifies LSTM as the most accurate model, achieving the lowest RMSE (0.2818), while SARIMA performs relatively well. The proposed deep learning-based method significantly improved the results versus other conventional machine learning and statistical time series analysis methods. Full article
(This article belongs to the Section Forecasting in Economics and Management)
Show Figures

Figure 1

25 pages, 1609 KiB  
Review
Biodegradable Carbohydrate-Based Films for Packaging Agricultural Products—A Review
by Kshanaprava Dhalsamant, Asutosh Dalai, Falguni Pattnaik and Bishnu Acharya
Polymers 2025, 17(10), 1325; https://doi.org/10.3390/polym17101325 - 13 May 2025
Cited by 2 | Viewed by 1378
Abstract
Carbohydrate-based biodegradable films offer an eco-friendly alternative to conventional petroleum-derived packaging for agricultural commodities. Derived from renewable polysaccharides such as starch, cellulose, chitosan, pectin, alginate, pullulan, and xanthan gum, these films exhibit favorable biodegradability, film-forming ability, and compatibility with food systems. This review [...] Read more.
Carbohydrate-based biodegradable films offer an eco-friendly alternative to conventional petroleum-derived packaging for agricultural commodities. Derived from renewable polysaccharides such as starch, cellulose, chitosan, pectin, alginate, pullulan, and xanthan gum, these films exhibit favorable biodegradability, film-forming ability, and compatibility with food systems. This review presents a comprehensive analysis of recent developments in the preparation, functionalization, and application of these polysaccharide-based films for agricultural packaging. Emphasis is placed on emerging fabrication techniques, including electrospinning, extrusion, and layer-by-layer assembly, which have significantly enhanced the mechanical, barrier, and antimicrobial properties of these materials. Furthermore, the incorporation of active compounds such as antioxidants and antimicrobials has improved the performance and shelf-life of packaged goods. Despite notable advancements, key limitations such as moisture sensitivity, poor mechanical durability, and high production costs persist. Strategies including polymer blending, nanofiller incorporation, and surface modification are explored as potential solutions. The applicability of these films in packaging fruits, vegetables, dairy, grains, and meat products is also discussed. By assessing current progress and future prospects, this review underscores the importance of carbohydrate-based films in promoting sustainable agricultural packaging systems, reducing environmental impact through the advancement of circular bioeconomy principles and sustainable development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 1231 KiB  
Review
Detection of Mycotoxins in Cereal Grains and Nuts Using Machine Learning Integrated Hyperspectral Imaging: A Review
by Md. Ahasan Kabir, Ivan Lee, Chandra B. Singh, Gayatri Mishra, Brajesh Kumar Panda and Sang-Heon Lee
Toxins 2025, 17(5), 219; https://doi.org/10.3390/toxins17050219 - 27 Apr 2025
Cited by 2 | Viewed by 1710
Abstract
Cereal grains and nuts are the world’s most produced food and the economic backbone of many countries. Food safety in these commodities is crucial, as they are highly susceptible to mold growth and mycotoxin contamination in warm, humid environments. This review explores hyperspectral [...] Read more.
Cereal grains and nuts are the world’s most produced food and the economic backbone of many countries. Food safety in these commodities is crucial, as they are highly susceptible to mold growth and mycotoxin contamination in warm, humid environments. This review explores hyperspectral imaging (HSI) integrated with machine learning (ML) algorithms as a promising approach for detecting and quantifying mycotoxins in cereal grains and nuts. This study aims to (1) critically evaluate current non-destructive techniques for processing these foods and the applications of ML in identifying mycotoxins through HSI, and (2) highlight challenges and potential future research directions to enhance the reliability and efficiency of these detection systems. The ML algorithms showed effectiveness in classifying and quantifying mycotoxins in grains and nuts, with HSI systems increasingly adopted in industrial settings. Mycotoxins exhibit heightened sensitivity to specific spectral bands within HSI, facilitating accurate detection. Additionally, selecting only relevant spectral features reduces ML model complexity and enhances reliability in the detection process. This review contributes to a deeper understanding of the integration of HSI and ML for food safety applications in cereal grains and nuts. By identifying current challenges and future research directions, it provides valuable insights for advancing non-destructive mycotoxin detection methods in the food industry using HSI. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
Show Figures

Figure 1

Back to TopTop