Sustainable Production Systems in the Brazilian Amazon: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol for Article Retrieval
2.2. Research Questions
- What are the main sustainable production models implemented in the Amazon?Precepts: Identification and description of the most commonly used sustainable production models in the Amazon region, analysis of the principles, practices, and key characteristics of each sustainable production model.
- What are the main challenges encountered in applying these models?Precepts: Identification and analysis of the main barriers and challenges to implementing sustainable production models in the Amazon, including legal issues, lack of financial incentives, cultural resistance, limited access to resources, and inadequate infrastructure. Assessment of the impact of government policies, regulations, and external pressures on the development and adoption of sustainable production models.
- What are the opportunities observed in the Amazon region for consolidating the use of these production systems?Precepts: Identification and analysis of emerging opportunities to promote and consolidate the use of sustainable production systems in the Amazon region, such as incentive programs, specific financing, public-private partnerships, and development of sustainable value chains. Assessment of the role of local communities, non-governmental organizations, research institutions, and companies in the promotion and implementation of sustainable agricultural practices.
2.3. Article Selection and Exclusion Criteria
2.4. Research Limitations
3. Results
3.1. Quantitative Analysis
3.2. Qualitative Analysis
4. Discussion
4.1. Challenges for Implementing and Consolidating Sustainable Production Systems in the Amazon
4.2. Opportunities for Implementing and Consolidating Sustainable Production Systems in the Amazon
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Title | Author | Year | Production System | Database | Reference |
---|---|---|---|---|---|
Agroforestry transitions: The good, the bad and the ugly | Ollinaho, O.I.; Kröger, M. | 2021 | Agroforestry | Science Direct | [20] |
The economic impacts of the diffusion of agroforestry in Brazil | Maia et al. | 2021 | Agroforestry | Science Direct | [25] |
Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome | Monteiro et al. | 2024 | Agroforestry | Science Direct | [47] |
Reduction of Soil Erosion and Mercury Losses in Agroforestry Systems Compared to Forests and Cultivated Fields in the Brazilian Amazon. | Béliveau et al. | 2017 | Agroforestry | Science Direct | [39] |
The Microbial Community Structure in the Rhizosphere of Theobroma cacao L. and Euterpe oleracea Mart. Is Influenced by Agriculture System in the Brazilian Amazon | Sousa et al. | 2024 | Agroforestry | Science Direct | [38] |
Modelling biodiversity responses to land use in areas of cocoa cultivation | Maney, C.; Sassen, M.; Hill, S.L.L. | 2022 | Agroforestry | Science Direct | [27] |
Impact of Pasture, Agriculture and Crop-Livestock Systems on Soil C Stocks in Brazil. | Carvalho, J.L.N. | 2010 | Agroforestry | Science Direct | [48] |
Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil | Gil, J.; Siebold, M.; Berger, T. | 2015 | Agroforestry | Science Direct | [23] |
Soil mineral and microbial nitrogen in oil palm-based agroforestry systems in eastern Amazon | Santiago et al. | 2013 | Agroforestry | Scopus | [37] |
Growth and Yield of Schizolobium parahyba var. amazonicum According to Soil Management in Agroforestry Systems: A Case Study in the Brazilian Amazon | Sales et al. | 2021 | Agroforestry | Scopus | [55] |
Physico-mechanical properties of the wood of freijó, Cordia goeldiana (Boraginacea), produced in a multi-stratified agroforestry system in the southwestern Amazon | Mascarenhas et al. | 2021 | Agroforestry | Scopus | [56] |
Aggregation, carbon, and total soil nitrogen in crop-livestock-forest integration in the Eastern Amazon | Silva et al. | 2018 | Agroforestry | Scopus | [41] |
Management Criteria for Ficus insipida Willd. (Moraceae) in Amazonian White-Water Floodplain Forests Defined by Tree-Ring Analysis | Schöngart et al. | 2007 | Agroforestry | Scopus | [57] |
Agroforestry systems: an alternative to intensify forage-based livestock in the Brazilian Amazon | Domiciano et al. | 2020 | Agroforestry | Springer | [43] |
Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon, Brazil | Celentano et al. | 2020 | Agroforestry | Springer | [26] |
Integrated Farming Systems for Improving Soil Carbon Balance in the Southern Amazon of Brazil. | Oliveira, J.D.M. | 2018 | Agroforestry | Springer | [40] |
Intensive cattle browsing did not prevent fallow recuperation on smallholder grass-capoeira pastures in the NE-Amazon | Hohnwald et al. | 2015 | Agroforestry | Springer | [51] |
Forage and animal production on palisadegrass pastures growing in monoculture or as a component of integrated crop–livestock–forestry systems | Carvalho et al. | 2019 | Agroforestry | Wiley | [44] |
Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon | Cortner et al. | 2019 | Silvopastoral | Science Direct | [24] |
The influence of trees on the thermal environment and behavior of grazing heifers in Brazilian Midwest | Lopes et al. | 2016 | Silvopastoral | Springer | [28] |
Shading Effects on Marandu Palisadegrass in a Silvopastoral System: Plant Morphological and Physiological Responses | Gomes et al. | 2019 | Silvopastoral | Wiley | [45] |
In vitro ruminal fermentation parameters and methane production of Marandu palisadegrass (Urochloa brizantha) in a silvopastoral system associated with levels of protein supplementation | Santos et al. | 2020 | Silvopastoral | Wiley | [50] |
Shading effects on canopy and tillering characteristics of continuously stocked palisadegrass in a silvopastoral system in the Amazon biome | Gomes et al. | 2020 | Silvopastoral | Wiley | [46] |
Agroecological principles for the redesign of integrated crop–livestock systems | Bonaudo et al. | 2014 | Agropastoral | Science Direct | [42] |
Integrating cattle into the slash-and-burn cycle on smallholdings in the Eastern Amazon, using grass-capoeira or grass-legume pastures | Hohnwald et al. | 2006 | Pasture Management | Science Direct | [52] |
Nitrous oxide emissions and forage accumulation in the Brazilian Amazon forage-livestock systems submitted to Ninput strategies | Nascimento et al. | 2021 | Pasture Management | Wiley | [49] |
Growth performance and health of juvenile tambaqui, Colossoma macropomum, in a biofloc system at different stocking densities | Santos et al. | 2021 | Aquaculture | Wiley | [29] |
Floristic impoverishment of Amazonian floodplain forests managed for açaí fruit production | Freitas et al. | 2015 | Forest Management | Science Direct | [34] |
How long does the Amazon rainforest take to grow commercially sized trees? An estimation methodology for Manilkara elata (Allemão ex Miq.) Monach | Ferreira et al. | 2020 | Forest Management | Science Direct | [59] |
Forestry control in the brazilian amazon III: anatomy of wood and charcoal of tree species from sustainable forest management | Silva et al. | 2024 | Forest Management | Science Direct | [60] |
Tropical Forest Management and Silvicultural Practices by Small Farmers in the Brazilian Amazon: Recent Farm-Level Evidence from Rondônia | Summers, P.M.; Browder, J.O.; Pedlowski, M.A. | 2004 | Forest Management | Science Direct | [30] |
Community Forests for Forest Communities: Integrating Community-Defined Goals and Practices in the Design of Forestry Initiatives | Hajjar, R.; Kozak, R.A.; El-Lakany, H.; Innes, J.L. | 2013 | Forest Management | Science Direct | [31] |
New Allometric Equations to Support Sustainable Plantation Management of Rosewood (Aniba rosaeodora Ducke) in the Central Amazon | Krainovic; Almeida; Sampaio | 2017 | Forest Management | Scopus | [58] |
Sequential management of commercial rosewood (Aniba rosaeodora Ducke) plantations in central amazonia: seeking sustainable models for essential oil production | Krainovic et al. | 2017 | Forest Management | Scopus | [36] |
Novas Perspectivas Para a Gestão Sustentável Da Floresta Amazônica: Explorando Novos Caminhos. | Ros-Tonen, M. | 2007 | Forest Management | Scopus | [32] |
Technical Challenges to Sustainable Forest Management in Concessions on Public Lands in the Brazilian Amazon. | Schulze, M.; Grogan, J.; Vidal, E. | 2008 | Forest Management | Scopus | [33] |
Forest Conservation Maximises Açaí Palm Pollination Services and Yield in the Brazilian Amazon. | Campbell, A.J. | 2023 | Forest Management | Wiley | [35] |
Fire-Free Fallow Management by Mechanized Chopping of Biomass for Sustainable Agriculture in Eastern Amazon: Effects on Soil Compactness, Porosity, and Water Retention and Availability | Reichert, J.M. | 2006 | Conservation System | Wiley | [54] |
Physicochemical Properties of Soils in the Brazilian Amazon Following Fire-Free Land Preparation and Slash-and-Burn Practices | Comte, I. | 2012 | Conservation System | Science Direct | [53] |
References
- Osorio, R.M.L. A Produção de Soja no Oeste do Pará: A Tomada de Decisão do Produtor Rural e as Características da Atividade Produtiva Em Meio à Floresta Amazônica. Ph.D. Thesis, Universidade de Brasília, Centro de Desenvolvimento Sustentável, Brasília, Brazil, 2019. [Google Scholar]
- Domingues, M.S.; Bermann, C. O Arco de Desflorestamento Na Amazônia: Da Pecuária à Soja. Ambiente Soc. 2012, 15, 1–22. [Google Scholar] [CrossRef]
- Silva-Souza, K.J.P.; Souza, A.F. Woody Plant Subregions of the Amazon Forest. J. Ecol. 2020, 108, 2321–2335. [Google Scholar] [CrossRef]
- Kirby, K.R.; Laurance, W.F.; Albernaz, A.K.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Da Costa, C. The Future of Deforestation in the Brazilian Amazon. Futures 2006, 38, 432–453. [Google Scholar] [CrossRef]
- Vitel, C.S.M.N. Modelagem Da Dinâmica Do Desmatamento de Uma Fronteira Em Expansão, Lábrea, Amazonas. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://repositorio.inpa.gov.br/bitstream/1/5151/1/Claudia_Vitel.pdf&ved=2ahUKEwjj5oCR3LCLAxXjSGwGHZgUFJYQFnoECBIQAQ&usg=AOvVaw2oiK73TewdHMXCW6pba58d (accessed on 6 September 2024).
- do Fasiaben, M.C.R.; Andrade Andrade, D.C.; Reydon, B.P.; Garcia, J.R.; Romeiro, A.R. Estimativa de aporte de recursos para um sistema de Pagamento por Serviços Ambientais na floresta Amazônica brasileira. Ambient. Soc. 2009, 12, 223–239. [Google Scholar] [CrossRef]
- IBGE. Série Relatórios Metodológicos; IBGE, Coordenação de Recursos Naturais e Estudos Ambientais: Islamabad, Pakistan, 2009; p. 168. [Google Scholar]
- Filho, P.G.C.; de Souza, D.T.; Martinho, P.R.R.; Souza, M.O. De Evolução da agropecuária da Amazônia Brasileira. Revista de Política Agrícola 2023, 3, 51–68. [Google Scholar]
- da Correio, V.V.S.C.; da Correio, R.G.C.S.; Correio, L.A.P.L. Geographia Opportuno Tempore. Estruturação Front. Agríc. No Sul Estado Amazon 2019, 5, 67–82. [Google Scholar]
- Silva, L.M.; de Andrade, D.L.; Barbosa, K.L.S.; Rodrigues, L.S.; Milhomem, A.L.; Oliveira, J.S.; de Melo, L.F.S. Sistema bragantino: Um método inovador e alternativo de cultivo e produção agrícola que engloba rotação e consórcio de culturas com técnicas de plantio direto. Revista Craibeiras de Agroecologia. Sist. Bragantino um Método Inovador e Altern. Cultivo e Produção Agríc. Que Engloba Rotação e Consórcio cult. Com téc. Plantio Direto 2018, 2–6. [Google Scholar]
- Hanusch, M. Grupo Banco Mundial; Washington, NW, USA, 2023; p. 351. [Google Scholar]
- Homma, A.K.O. Sinergias de Mudança da Agricultura Amazônica: Conflitos e Oportunidades, 1st ed.; Embrapa Amazônia Oriental: Brasília, DF, USA, 2022; ISBN 978-65-89957-00-3. [Google Scholar]
- de Assis Costa, F. Ecologismo e Questão Agrária na Amazônia, 1st ed.; NAEA: Belém, Brazil, 1992. [Google Scholar]
- Garrett, R.D.; Rausch, L.L. Green for Gold: Social and Ecological Tradeoffs Influencing the Sustainability of the Brazilian Soy Industry. J. Peasant Stud. 2016, 43, 461–493. [Google Scholar] [CrossRef]
- Vieira, I.G.; Santos-Junior, R.A.O.; Toledo, P.M. Dinâmicas produtivas, transformações no uso da terra e sustentabilidade na Amazônia. In Um Olhar Territorial Para o Desenvolvimento: Amazônia; BNDES: Rio de Janeiro, Brazil, 2014; Volume 1, pp. 371–395. [Google Scholar]
- Oliveira, M.C.C.D.; Almeida, J.; Silva, L.M.S. Diversificação Dos Sistemas Produtivos Familiares: Reflexos Sobre as Relações Sociedade-Natureza Na Amazônia Oriental. Novos Cad. NAEA 2011, 14, 61–88. [Google Scholar] [CrossRef]
- de Mendonça, A.S.A.; de Oliveira, R.K.R.; de Oliveira, K.N.S.; do Souza, M.S.P.; de Bispo, J.A.S. Desafios da Produção Orgânica em Capitão Poço/PA. Anais do AGROECOL 2018 2018, 1–9. [Google Scholar]
- Hurtienne, T.P. Agricultura familiar e desenvolvimento rural sustentável na Amazônia. Novos Cad. NAEA 2005, 8, 19–71. [Google Scholar] [CrossRef]
- MapBiomas. Available online: https://plataforma.brasil.mapbiomas.org/cobertura (accessed on 6 September 2024).
- Ollinaho, O.I.; Kröger, M. Agroforestry Transitions: The Good, the Bad and the Ugly. J. Rural Stud. 2021, 82, 210–221. [Google Scholar] [CrossRef]
- Weis, T. The Accelerating Biophysical Contradictions of Industrial Capitalist Agriculture. J. Agrar. Chang. 2010, 10, 315–341. [Google Scholar] [CrossRef]
- Patel, R.; Moore, J.W. A History of the World in Seven Cheap Things: A Guide to Capitalism, Nature, and the Future of the Planet, 1st ed.; University of California Press: Oakland, CA, USA, 2017; ISBN 978-0-520-29313-7. [Google Scholar]
- Gil, J.; Siebold, M.; Berger, T. Adoption and Development of Integrated Crop–Livestock–Forestry Systems in Mato Grosso, Brazil. Agric. Ecosyst. Environ. 2015, 199, 394–406. [Google Scholar] [CrossRef]
- Cortner, O.; Garrett, R.D.; Valentim, J.F.; Ferreira, J.; Niles, M.T.; Reis, J.; Gil, J. Perceptions of Integrated Crop-Livestock Systems for Sustainable Intensification in the Brazilian Amazon. Land Use Policy 2019, 82, 841–853. [Google Scholar] [CrossRef]
- Maia, A.G.; Eusebio, G.D.S.; Fasiaben, M.D.C.R.; Moraes, A.S.; Assad, E.D.; Pugliero, V.S. The Economic Impacts of the Diffusion of Agroforestry in Brazil. Land Use Policy 2021, 108, 105489. [Google Scholar] [CrossRef]
- Celentano, D.; Rousseau, G.X.; Paixão, L.S.; Lourenço, F.; Cardozo, E.G.; Rodrigues, T.O.; E Silva, H.R.; Medina, J.; De Sousa, T.M.C.; Rocha, A.E.; et al. Carbon Sequestration and Nutrient Cycling in Agroforestry Systems on Degraded Soils of Eastern Amazon, Brazil. Agrofor. Syst. 2020, 94, 1781–1792. [Google Scholar] [CrossRef]
- Maney, C.; Sassen, M.; Hill, S.L.L. Modelling Biodiversity Responses to Land Use in Areas of Cocoa Cultivation. Agric. Ecosyst. Environ. 2022, 324, 107712. [Google Scholar] [CrossRef]
- Lopes, L.B.; Eckstein, C.; Pina, D.S.; Carnevalli, R.A. The Influence of Trees on the Thermal Environment and Behaviour of Grazing Heifers in Brazilian Midwest. Trop. Anim. Health Prod. 2016, 48, 755–761. [Google Scholar] [CrossRef]
- Santos, R.B.; Izel-Silva, J.; Fugimura, M.M.S.; Suita, S.M.; Ono, E.A.; Affonso, E.G. Growth Performance and Health of Juvenile Tambaqui, Colossoma Macropomum, in a Biofloc System at Different Stocking Densities. Aquac. Res. 2021, 52, 3549–3559. [Google Scholar] [CrossRef]
- Summers, P.M.; Browder, J.O.; Pedlowski, M.A. Tropical Forest Management and Silvicultural Practices by Small Farmers in the Brazilian Amazon: Recent Farm-Level Evidence from Rondônia. For. Ecol. Manag. 2004, 192, 161–177. [Google Scholar] [CrossRef]
- Hajjar, R.; Kozak, R.A.; El-Lakany, H.; Innes, J.L. Community Forests for Forest Communities: Integrating Community-Defined Goals and Practices in the Design of Forestry Initiatives. Land Use Policy 2013, 34, 158–167. [Google Scholar] [CrossRef]
- Ros-Tonen, M. Novas Perspectivas Para a Gestão Sustentável Da Floresta Amazônica: Explorando Novos Caminhos. Ambiente Soc. 2007, 10, 11–25. [Google Scholar] [CrossRef]
- Schulze, M.; Grogan, J.; Vidal, E. Technical Challenges to Sustainable Forest Management in Concessions on Public Lands in the Brazilian Amazon. J. Sustain. For. 2008, 26, 61–76. [Google Scholar] [CrossRef]
- Freitas, M.A.B.; Vieira, I.C.G.; Albernaz, A.L.K.M.; Magalhães, J.L.L.; Lees, A.C. Floristic Impoverishment of Amazonian Floodplain Forests Managed for Açaí Fruit Production. For. Ecol. Manag. 2015, 351, 20–27. [Google Scholar] [CrossRef]
- Campbell, A.J.; Silva, F.D.D.S.E.; Maués, M.M.; Leão, K.L.; Carvalheiro, L.G.; Moreira, E.F.; Mertens, F.; Konrad, M.L.D.F.; De Queiroz, J.A.L.; Menezes, C. Forest Conservation Maximises Açaí Palm Pollination Services and Yield in the Brazilian Amazon. J. Appl. Ecol. 2023, 60, 1964–1976. [Google Scholar] [CrossRef]
- Krainovic, P.; Almeida, D.; Desconci, D.; Veiga-Júnior, V.; Sampaio, P. Sequential Management of Commercial Rosewood (Aniba Rosaeodora Ducke) Plantations in Central Amazonia: Seeking Sustainable Models for Essential Oil Production. Forests 2017, 8, 438. [Google Scholar] [CrossRef]
- Santiago, W.R.; Vasconcelos, S.S.; Kato, O.R.; Bispo, C.J.C.; Rangel-Vasconcelos, L.G.T.; Castellani, D.C. Nitrogênio Mineral e Microbiano Do Solo Em Sistemas Agroflorestais Com Palma de Óleo Na Amazônia Oriental. Acta Amaz. 2013, 43, 395–405. [Google Scholar] [CrossRef]
- Sousa, R.D.S.D.R.D.; Lima, G.V.S.; Garcias, J.T.; Gomes, G.D.O.; Mateus, J.R.; Madeira, L.D.P.D.S.; Seldin, L.; Rogez, H.L.G.; Marques, J.M. The Microbial Community Structure in the Rhizosphere of Theobroma cacao L. and Euterpe oleracea Mart. Is Influenced by Agriculture System in the Brazilian Amazon. Microorganisms 2024, 12, 398. [Google Scholar] [CrossRef]
- Béliveau, A.; Lucotte, M.; Davidson, R.; Paquet, S.; Mertens, F.; Passos, C.J.; Romana, C.A. Reduction of Soil Erosion and Mercury Losses in Agroforestry Systems Compared to Forests and Cultivated Fields in the Brazilian Amazon. J. Environ. Manage. 2017, 203, 522–532. [Google Scholar] [CrossRef]
- Oliveira, J.D.M.; Madari, B.E.; Carvalho, M.T.D.M.; Assis, P.C.R.; Silveira, A.L.R.; De Leles Lima, M.; Wruck, F.J.; Medeiros, J.C.; Machado, P.L.O.D.A. Integrated Farming Systems for Improving Soil Carbon Balance in the Southern Amazon of Brazil. Reg. Environ. Chang. 2018, 18, 105–116. [Google Scholar] [CrossRef]
- Silva, J.C.N.; Silva, A.R.; Veloso, C.A.C.; Dantas, E.F.; Sacramento, J.A.A.S.D. Aggregation, Carbon, and Total Soil Nitrogen in Crop-Livestock-Forest Integration in the Eastern Amazon. Rev. Bras. Eng. Agríc. E Ambient. 2018, 22, 837–842. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological Principles for the Redesign of Integrated Crop–Livestock Systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Domiciano, L.F.; Pedreira, B.C.; Da Silva, N.M.F.; Mombach, M.A.; Chizzotti, F.H.M.; Batista, E.D.; Carvalho, P.; Cabral, L.S.; Pereira, D.H.; Do Nascimento, H.L.B. Agroforestry Systems: An Alternative to Intensify Forage-Based Livestock in the Brazilian Amazon. Agrofor. Syst. 2020, 94, 1839–1849. [Google Scholar] [CrossRef]
- De Carvalho, P.; Domiciano, L.F.; Mombach, M.A.; Do Nascimento, H.L.B.; Cabral, L.D.S.; Sollenberger, L.E.; Pereira, D.H.; Pedreira, B.C. Forage and Animal Production on Palisadegrass Pastures Growing in Monoculture or as a Component of Integrated Crop–Livestock–Forestry Systems. Grass Forage Sci. 2019, 74, 650–660. [Google Scholar] [CrossRef]
- Gomes, F.J.; Pedreira, C.G.S.; Bosi, C.; Cavalli, J.; Holschuch, S.G.; Mourão, G.B.; Pereira, D.H.; Pedreira, B.C. Shading Effects on Marandu Palisadegrass in a Silvopastoral System: Plant Morphological and Physiological Responses. Agron. J. 2019, 111, 2332–2340. [Google Scholar] [CrossRef]
- Gomes, F.J.; Pedreira, B.C.; Santos, P.M.; Bosi, C.; Pedreira, C.G.S. Shading Effects on Canopy and Tillering Characteristics of Continuously Stocked Palisadegrass in a Silvopastoral System in the Amazon Biome. Grass Forage Sci. 2020, 75, 279–290. [Google Scholar] [CrossRef]
- Monteiro, A.; Barreto-Mendes, L.; Fanchone, A.; Morgavi, D.P.; Pedreira, B.C.; Magalhães, C.A.S.; Abdalla, A.L.; Eugène, M. Crop-Livestock-Forestry Systems as a Strategy for Mitigating Greenhouse Gas Emissions and Enhancing the Sustainability of Forage-Based Livestock Systems in the Amazon Biome. Sci. Total Environ. 2024, 906, 167396. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Raucci, G.S.; Cerri, C.E.P.; Bernoux, M.; Feigl, B.J.; Wruck, F.J.; Cerri, C.C. Impact of Pasture, Agriculture and Crop-Livestock Systems on Soil C Stocks in Brazil. Soil Tillage Res. 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Do Nascimento, A.F.; De Oliveira, C.M.; Pedreira, B.C.; Pereira, D.H.; Rodrigues, R.R.D.A. Nitrous Oxide Emissions and Forage Accumulation in the Brazilian Amazon Forage-livestock Systems Submitted to N Input Strategies. Grassl. Sci. 2021, 67, 63–72. [Google Scholar] [CrossRef]
- Santos, A.R.M.D.; Barros, L.V.D.; Abreu, M.L.C.; Pedreira, B.C. In Vitro Ruminal Fermentation Parameters and Methane Production of Marandu Palisadegrass (Urochloa Brizantha) in a Silvopastoral System Associated with Levels of Protein Supplementation. Grass Forage Sci. 2020, 75, 339–350. [Google Scholar] [CrossRef]
- Hohnwald, S.; Rischkowsky, B.; King, J.M.; Camarão, A.P.; Rodrigues Filho, J.A.; Zeppenfeld, T. Intensive Cattle Browsing Did Not Prevent Fallow Recuperation on Smallholder Grass-Capoeira Pastures in the NE-Amazon. Agrofor. Syst. 2015, 89, 813–828. [Google Scholar] [CrossRef]
- Hohnwald, S.; Rischkowsky, B.; Camarão, A.P.; Schultze-Kraft, R.; Rodrigues Filho, J.A.; King, J.M. Integrating Cattle into the Slash-and-Burn Cycle on Smallholdings in the Eastern Amazon, Using Grass-Capoeira or Grass-Legume Pastures. Agric. Ecosyst. Environ. 2006, 117, 266–276. [Google Scholar] [CrossRef]
- Comte, I.; Davidson, R.; Lucotte, M.; De Carvalho, C.J.R.; De Assis Oliveira, F.; Da Silva, B.P.; Rousseau, G.X. Physicochemical Properties of Soils in the Brazilian Amazon Following Fire-Free Land Preparation and Slash-and-Burn Practices. Agric. Ecosyst. Environ. 2012, 156, 108–115. [Google Scholar] [CrossRef]
- Reichert, J.M.; Rodrigues, M.F.; Bervald, C.M.P.; Kato, O.R. Fire-Free Fallow Management by Mechanized Chopping of Biomass for Sustainable Agriculture in Eastern Amazon: Effects on Soil Compactness, Porosity, and Water Retention and Availability. Land Degrad. Dev. 2016, 27, 1403–1412. [Google Scholar] [CrossRef]
- Sales, A.; De Oliveira Neto, S.N.; De Paiva, H.N.; Leite, H.G.; Siviero, M.A.; Vieira, S.B. Growth and Yield of Schizolobium Parahyba Var. Amazonicum According to Soil Management in Agroforestry Systems: A Case Study in the Brazilian Amazon. Diversity 2021, 13, 511. [Google Scholar] [CrossRef]
- Mascarenhas, A.R.P.; Sccoti, M.S.V.; Melo, R.R.D.; Corrêa, F.L.D.O.; Souza, E.F.M.D.; Pimenta, A.S. Physico-Mechanical Properties of the Wood of Freijó, Cordia Goeldiana (Boraginacea), Produced in a Multi-Stratified Agroforestry System in the Southwestern Amazon. Acta Amaz. 2021, 51, 171–180. [Google Scholar] [CrossRef]
- Schöngart, J.; Wittmann, F.; Worbes, M.; Piedade, M.T.F.; Krambeck, H.-J.; Junk, W.J. Management Criteria for Ficus insipida Willd. (Moraceae) in Amazonian White-Water Floodplain Forests Defined by Tree-Ring Analysis. Ann. For. Sci. 2007, 64, 657–664. [Google Scholar] [CrossRef]
- Krainovic, P.; Almeida, D.; Sampaio, P. New Allometric Equations to Support Sustainable Plantation Management of Rosewood (Aniba Rosaeodora Ducke) in the Central Amazon. Forests 2017, 8, 327. [Google Scholar] [CrossRef]
- Ferreira, T.M.C.; De Carvalho, J.O.P.; Emmert, F.; Ruschel, A.R.; Nascimento, R.G.M. How Long Does the Amazon Rainforest Take to Grow Commercially Sized Trees? An Estimation Methodology for Manilkara Elata (Allemão Ex Miq.) Monach. For. Ecol. Manag. 2020, 473, 118333. [Google Scholar] [CrossRef]
- da Silva, A.A.; de Sousa, K.C.; de Souza, F.I.B.; Nobre, J.R.C.; de Paula Protásio, T.; de Lima Melo, L.E. Forestry Control in the Brazilian Amazon III: Anatomy of Wood and Charcoal of Tree Species from Sustainable Forest Management. IAWA J. 2024, 45, 297–334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, M.d.M.R.; de Sousa, L.M.; Ribas, G.G. Sustainable Production Systems in the Brazilian Amazon: A Systematic Review. Sustainability 2025, 17, 4745. https://doi.org/10.3390/su17114745
Borges MdMR, de Sousa LM, Ribas GG. Sustainable Production Systems in the Brazilian Amazon: A Systematic Review. Sustainability. 2025; 17(11):4745. https://doi.org/10.3390/su17114745
Chicago/Turabian StyleBorges, Matheus de Miranda Ribeiro, Liliane Marques de Sousa, and Giovana Ghisleni Ribas. 2025. "Sustainable Production Systems in the Brazilian Amazon: A Systematic Review" Sustainability 17, no. 11: 4745. https://doi.org/10.3390/su17114745
APA StyleBorges, M. d. M. R., de Sousa, L. M., & Ribas, G. G. (2025). Sustainable Production Systems in the Brazilian Amazon: A Systematic Review. Sustainability, 17(11), 4745. https://doi.org/10.3390/su17114745