Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (130)

Search Parameters:
Keywords = commercial building air conditioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 626
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

15 pages, 2544 KiB  
Article
Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces
by Tomomi Yamada, Kazunori Nozaki, Makoto Tsubokura, Mikako Hayashi and Chung-Gang Li
Appl. Sci. 2025, 15(15), 8187; https://doi.org/10.3390/app15158187 - 23 Jul 2025
Viewed by 190
Abstract
High-pitched noise generated by dental air turbine handpieces (ATHs) causes discomfort and anxiety, discouraging dental visits. Understanding the time-dependent noise generation mechanism associated with compressed airflow in ATHs is crucial for effective noise reduction. However, the direct investigation of airflow dynamics within ATHs [...] Read more.
High-pitched noise generated by dental air turbine handpieces (ATHs) causes discomfort and anxiety, discouraging dental visits. Understanding the time-dependent noise generation mechanism associated with compressed airflow in ATHs is crucial for effective noise reduction. However, the direct investigation of airflow dynamics within ATHs is challenging. The transient-state modeling of computational fluid dynamics (CFD) simulations remains unexplored owing to the complexities of high rotational speeds and air compressibility. This study develops a novel CFD framework for transient (time-dependent) modeling under high-speed rotational conditions. Simulations were performed using a three-dimensional model reconstructed from a commercial ATH. Simulations were conducted at 320,000 rpm using a novel framework that combines the immersed boundary and building cube methods. A fine 0.025 mm mesh spacing near the ATH, combined with supercomputing resources, enabled the simulation of hundreds of millions of cells. The simulation results were validated using experimental noise measurements. The CFD simulation revealed transient airflow and aeroacoustic behavior inside and around the ATH that closely matched the prominent frequency peaks from the experimental data. This study is the first to simulate the transient airflow of ATHs. The proposed CFD model can accurately predict aeroacoustics, contributing to the future development of quieter and more efficient dental devices. Full article
Show Figures

Figure 1

22 pages, 2534 KiB  
Article
Impact of the Mean Radiant Temperature (Tmrt) on Outdoor Thermal Comfort Based on Urban Renewal: A Case Study of the Panjiayuan Antique Market in Beijing, China
by Chenxiao Liu, Yani Fang, Yanglu Shi, Mingli Wang, Mo Han and Xiaobing Chen
Buildings 2025, 15(14), 2398; https://doi.org/10.3390/buildings15142398 - 8 Jul 2025
Viewed by 233
Abstract
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the [...] Read more.
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the condition of the climate and environment itself, and pursue the goal of common health and development between humans and non-human beings. This study takes the Panjiayuan Antique Market as the research object. Unlike previous studies that focused on the behavior patterns of vendors and buyers, this study focuses on the increase in users’ expectation on environmental thermal comfort when the Panjiayuan Antique Market transforms from a conventional commercial market into an urban public space. This study aimed to find a minimal intervention strategy suitable for urban public space renewal from the perspective of the microclimate, encouraging people to use outdoor public spaces more, thereby promoting physical and mental health, as well as social well-being. We used a mixed-methods approach comprising microclimate measurements, questionnaires (n = 254), and field measurements. Our results show that the mean radiant temperature (Tmrt) is the key factor that affects thermal comfort, and it is a comprehensive concept that is associated with other microclimate factors. Linking the quantitative sun-related factors, such as the solar position angle (SAA), the shadow area ratio (SAR), and direct sun hours (DSHs), we also found that the correlation between the Tmrt and physical spatial characteristics, such as the ratio of the visible sky (SVF), the aspect ratio (H/W), and orientation of the building layout, helped us to generate design strategies oriented by regulating microclimate, such as controlling thermal mass/radiant heating, solar radiation, and air convection. One of the significances of this study is its development of a design method that minimizes intervention in urban public spaces from the perspective of regulating the microclimate. In addition, this study proposes a new perspective of promoting people’s health and well-being by improving outdoor thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 9395 KiB  
Article
Study on Piping Layout Optimization for Chiller-Plant Rooms Using an Improved A* Algorithm and Building Information Modeling: A Case Study of a Shopping Mall in Qingdao
by Xiaoliang Ma, Hongshe Cui, Yan Zhang and Xinyao Wang
Buildings 2025, 15(13), 2275; https://doi.org/10.3390/buildings15132275 - 28 Jun 2025
Viewed by 275
Abstract
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an [...] Read more.
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an enhanced A* search to produce collision-free, low-resistance pipelines while simultaneously guiding component selection. The algorithm embeds protective buffer zones around equipment, reserves maintenance corridors through an attention-based cost term, and prioritizes 135° elbows to cut local losses. Generated paths are exported as Industry Foundation Classes (IFC) objects for validation in a BIM digital twin, where hydraulic feedback drives iterative reselection of high-efficiency devices—including magnetic-bearing chillers, cartridge filters and tilted-disc valves—until global pressure drop and life-cycle cost are minimized. In a full-scale shopping-mall retrofit, the method significantly reduces pipeline resistance and operating costs, confirming its effectiveness and replicability for sustainable chiller-plant design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 4313 KiB  
Article
Development of Recurrent Neural Networks for Thermal/Electrical Analysis of Non-Residential Buildings Based on Energy Consumptions Data
by Elisa Belloni, Flavia Forconi, Gabriele Maria Lozito, Martina Palermo, Michele Quercio and Francesco Riganti Fulginei
Energies 2025, 18(12), 3031; https://doi.org/10.3390/en18123031 - 7 Jun 2025
Viewed by 422
Abstract
Extensive research has focused on optimizing energy consumption in residential buildings based on indoor thermal conditions. However, modeling the energy and thermal behavior of non-residential buildings presents greater challenges due to their complex geometries and the high computational cost of detailed simulations. Simplifying [...] Read more.
Extensive research has focused on optimizing energy consumption in residential buildings based on indoor thermal conditions. However, modeling the energy and thermal behavior of non-residential buildings presents greater challenges due to their complex geometries and the high computational cost of detailed simulations. Simplifying input variables can enhance the applicability of artificial intelligence techniques in predicting energy and thermal performance. This study proposes a neural network-based approach to characterize the thermal–energy relationship in commercial buildings, aiming to provide an efficient and scalable solution for performance prediction. Consumptions trends for a building are generated using the EnergyPlus™ dynamic simulation software over a timespan of a year in different locations, and the data are then used to train neural network models. Uncertainty analyses are carried out to evaluate the behavior effectiveness of the artificial neural networks (ANNs) in different weather conditions, and the root mean square error (RMSE) is calculated in terms of mean air temperatures. The results show that this approach can reproduce the functional relationship between input and output data. Three different ANNs are trained for the northern, central, and southern climatic zones of Italy. The southern region’s models achieved the highest accuracy, with an RMSE below 0.5 °C; whereas the model for the northern cities was less accurate, since no specific trend in plant management was present, but it still achieved an acceptable accuracy of 1.0 °C. This approach is computationally lightweight; inference time is below 5 ms, and can be easily embedded in optimization algorithms for load dispatch or in microcontroller applications for building automation systems. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

24 pages, 6049 KiB  
Article
Bayesian Optimized of CNN-M-LSTM for Thermal Comfort Prediction and Load Forecasting in Commercial Buildings
by Chi Nghiep Le, Stefan Stojcevski, Tan Ngoc Dinh, Arangarajan Vinayagam, Alex Stojcevski and Jaideep Chandran
Designs 2025, 9(3), 69; https://doi.org/10.3390/designs9030069 - 4 Jun 2025
Viewed by 1386
Abstract
Heating, ventilation, and air conditioning (HVAC) systems account for 60% of the energy consumption in commercial buildings. Each year, millions of dollars are spent on electricity bills by commercial building operators. To address this energy consumption challenge, a predictive model named Bayesian optimisation [...] Read more.
Heating, ventilation, and air conditioning (HVAC) systems account for 60% of the energy consumption in commercial buildings. Each year, millions of dollars are spent on electricity bills by commercial building operators. To address this energy consumption challenge, a predictive model named Bayesian optimisation Convolution Neural Network Multivariate Long Short-term Memory (BO CNN-M-LSTM) is introduced in this research. The proposed model is designed to perform load forecasting, optimizing energy usage in commercial buildings. The CNN block extracts local features, whereas the M-LSTM captures temporal dependencies. The hyperparameter fine tuning framework applied Bayesian optimization to enhance output prediction by modifying model properties with data characteristics. Moreover, to improve occupant well-being in commercial buildings, the thermal comfort adaptive model developed by de Dear and Brager was applied to ambient temperature in the preprocessing stage. As a result, across all four datasets, the BO CNN-M-LSTM consistently outperformed other models, achieving an 8% improvement in mean percentage absolute error (MAPE), 2% in normalized root mean square error (NRMSE), and 2% in R2 score.This indicates the consistent performance of BO CNN-M-LSTM under varying environmental factors, highlight the model robustness and adaptability. Hence, the BO CNN-M-LSTM model is a highly effective predictive load forecasting tool for commercial building HVAC systems. Full article
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 674
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 5315 KiB  
Article
Correlating Indoor Environmental Quality Parameters with Human Physiological Responses for Adaptive Comfort Control in Commercial Buildings
by Haoyue Dai, Saba Imani and Joon-Ho Choi
Energies 2025, 18(9), 2280; https://doi.org/10.3390/en18092280 - 29 Apr 2025
Viewed by 743
Abstract
This study investigates the critical role of indoor environmental quality (IEQ) adaptations in influencing human physiological responses within commercial building settings. By integrating environmental engineering and human physiology, this research offers empirical insights into the relationship between IEQ modifications and occupant well-being, particularly [...] Read more.
This study investigates the critical role of indoor environmental quality (IEQ) adaptations in influencing human physiological responses within commercial building settings. By integrating environmental engineering and human physiology, this research offers empirical insights into the relationship between IEQ modifications and occupant well-being, particularly in the context of energy performance and efficiency. This study examines correlations between human physiological responses and key IEQ components, including indoor air quality (IAQ), thermal comfort, lighting, and acoustics, using data collected from two office areas with 14 participants. Sensors tracked environmental parameters, while wearable devices monitored physiological responses. Cross-correlation analysis revealed significant relationships between physiological indicators and environmental factors, with indoor temperature, PM2.5, and relative humidity showing the strongest impacts on electrodermal activity, skin temperature, and stress levels, respectively (p < 0.05). Furthermore, supervised machine learning techniques were employed to develop predictive models that evaluate IAQ and thermal comfort at both personal and general levels. Individual models achieved 84.76% accuracy for IAQ evaluation and 70.5% for thermal comfort prediction, outperforming the general model (69.7% and 64.3%, respectively). Males showed greater overall sensitivity to IEQ indicators, while females demonstrated higher sensitivity specifically to air quality and thermal comfort conditions. The findings underscore the potential of physiological signals to predict environmental satisfaction, providing a foundation for designing energy-efficient buildings that prioritize occupant health and comfort. This research bridges a critical gap in the literature by offering data-driven approaches to align sustainable building practices with human-centric needs. Future studies should expand participant diversity and explore broader demographics to enhance the robustness and applicability of predictive models. Full article
(This article belongs to the Special Issue Human-Centered Energy Optimization in Built Environment)
Show Figures

Figure 1

30 pages, 10670 KiB  
Article
Impact of Multiple HVAC Systems on Indoor Air VOC and Radon Concentrations from Vapor Intrusion During Seasonal Usage
by John H. Zimmerman, Alan Williams, Brian Schumacher, Christopher Lutes, Rohit Warrier, Brian Cosky, Ben Thompson, Chase W. Holton and Kate Bronstein
Atmosphere 2025, 16(4), 378; https://doi.org/10.3390/atmos16040378 - 27 Mar 2025
Viewed by 678
Abstract
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are [...] Read more.
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are significant factors in determining the reasonable maximum exposure (RME) to the occupants. RME is a semi-quantitative term that refers to the lower portion of the high end of the exposure distribution—conceptually, above the 90th percentile exposure but less than the 98th percentile exposure. Samples were collected between December 2020 and April 2022 at six non-residential commercial buildings in Fairbanks, Alaska. The types of samples collected included indoor air (IA); outdoor air; subslab soil gas; soil gas; indoor radon; differential pressure; indoor and outdoor temperature; heating, ventilation, and air conditioning (HVAC) parameters; and other environmental factors. The buildings in close proximity to the volatile organic compound (VOC) source/release points presented less variability in indoor air concentrations of trichloroethylene (TCE) and tetrachloroethylene (PCE) compared to the buildings farther down gradient in the contaminated groundwater plume. The VOC data pattern for the source area buildings shows an outdoor air temperature-dominated behavior for indoor air concentrations in the summer season. HVAC system operations had less influence on long-term indoor air concentration trends than environmental factors, which is supported by similar indoor air concentration patterns independent of location within the plume. The use of soil temperature and indoor/outdoor temperatures as indicators and tracers (I&Ts) across the plume as predictors of the sampling period could produce a good estimation of the RME for the building occupants. These results, which show the use of soil temperature and indoor/outdoor temperatures as I&Ts, will help advance investigative methods for evaluation of VI in similar settings and thereby improve the protection of human health in indoor environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

8 pages, 203 KiB  
Perspective
Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution
by Yevgen Nazarenko and Chitra Narayanan
Atmosphere 2025, 16(3), 309; https://doi.org/10.3390/atmos16030309 - 7 Mar 2025
Viewed by 1205
Abstract
Indoor air quality (IAQ) impacts human health, productivity, and well-being. As buildings become more energy-efficient and tightly sealed, the need for effective ventilation systems that maintain adequate IAQ grows. Energy Recovery Ventilators (ERVs) ensure adequate IAQ by bringing fresh outdoor air indoors while [...] Read more.
Indoor air quality (IAQ) impacts human health, productivity, and well-being. As buildings become more energy-efficient and tightly sealed, the need for effective ventilation systems that maintain adequate IAQ grows. Energy Recovery Ventilators (ERVs) ensure adequate IAQ by bringing fresh outdoor air indoors while minimizing costly energy wastage. ERVs provide major economic, health, and well-being benefits and are a critical technology in the fight against climate change. However, little is known about the impact of ERV operation on the generation and fate of particulate and gaseous indoor air pollutants, including toxic, carcinogenic, allergenic, and infectious air pollutants. Specifically, the air pollutant crossover, aerosol deposition within ERVs, the chemical identity and composition of aerosols and volatile organic compounds emitted by ERVs themselves and by the accumulated pollutants within them, and the effects on bioaerosols must be investigated. To fill these research gaps, both field and laboratory-based experimental research that closely mimics real-life conditions within a controlled environment is needed to explore critical aspects of ERVs’ effects on indoor air pollution. Filling the research gaps identified herein is urgently needed to alert and inform the industry about how to optimize ERVs to help prevent air pollutant generation and recirculation from these systems and enhance their function of pollutant removal from residential and commercial buildings. Addressing these knowledge gaps related to ERV design and operation will enable evidence-based recommendations and generate valuable insights for engineers, policymakers, and heating, ventilation and air conditioning (HVAC) professionals to create healthier indoor environments. Full article
(This article belongs to the Topic Indoor Air Quality and Built Environment)
15 pages, 3461 KiB  
Article
Fabrication of Thermally Stable Heat-Shielding Coated Glass for Solar Glazing via Direct Calcination in Air
by Guangrui Zhang, Xiaoting Qin, Dinghui Wang, Jinqing Li, Wenlong Pan and Jian Yin
Coatings 2025, 15(2), 239; https://doi.org/10.3390/coatings15020239 - 17 Feb 2025
Viewed by 708
Abstract
The utilization of heat-shielding glazing technologies can efficiently promote carbon emission reductions and energy savings by decreasing solar irradiation into buildings. Although a variety of glazing technologies have been created for solar glazing, either the heat-shielding performance is low, the thermal stability is [...] Read more.
The utilization of heat-shielding glazing technologies can efficiently promote carbon emission reductions and energy savings by decreasing solar irradiation into buildings. Although a variety of glazing technologies have been created for solar glazing, either the heat-shielding performance is low, the thermal stability is poor, or the cost is high. Here, we report a thermally stable heat-shielding coated glass for solar glazing in a simple way via direct calcination of Ce and Sb co-doped SnO2 nanoparticles with polysilazane (PSZ) coatings in air. The resulting coated glass has transmittances of 4.7% at 250–380 nm, 59.3% at 380–780 nm, and 9.7% at 780–2500 nm; excellent environment stability under accelerated aging conditions over 350 h; and also a ca. 50-fold lower fixed cost than commercial low-E glass. Moreover, a coated glass with a high pencil hardness of 9H was also fabricated via further spraying and calcinating of a PSZ coating as the cover layer, which is also the hardest coated solar glaze to our knowledge. The high solar-shielding performance and unprecedented low cost of the Ce and Sb co-doped SnO2-coated glass, as well as the simplicity of its fabrication, exhibit great potential in energy-saving buildings and cars. Full article
Show Figures

Figure 1

21 pages, 12342 KiB  
Article
Field Measurements of Building Air-Conditioning Heat Rejection and the Thermal Environment in Urban Areas
by Kang Mu, Qiong Suo, Fangliang Ding, Changwei Jiang, Xiaofeng Zhang and Jing Ye
Atmosphere 2025, 16(1), 100; https://doi.org/10.3390/atmos16010100 - 17 Jan 2025
Viewed by 1003
Abstract
In recent years, the surge in air-conditioning ownership and usage has led to significant heat rejection, impacting the surrounding atmosphere. Despite this, studies examining the spatiotemporal effects of air-conditioning heat rejection at a block scale remain limited. Additionally, comparative studies on the role [...] Read more.
In recent years, the surge in air-conditioning ownership and usage has led to significant heat rejection, impacting the surrounding atmosphere. Despite this, studies examining the spatiotemporal effects of air-conditioning heat rejection at a block scale remain limited. Additionally, comparative studies on the role of building areas with air-conditioning systems versus natural underlying surfaces in the urban thermal environment are relatively scarce. This study employs field measurements and ArcGIS technology to investigate the local thermal and humidity environments, as well as the spatiotemporal distribution of heat rejection from air-conditioning systems in Wuyi Square, Changsha. Results show that cooling tower exhausts in commercial buildings maintain relative humidity levels of 95.2% to 99.8% during the day, enhancing surrounding humidity. At night, the humidity aligns with atmospheric levels (from 50.3% to 62.5%). The cooling tower exhaust temperature is approximately 2.2 °C lower during the day and 2.4 °C higher at night compared to the surrounding temperatures. In contrast, exhausts from split-type air-conditioning units in residential buildings have an average relative humidity about 14.2% lower than the atmosphere humidity, with temperature averages being 5.2 °C higher during the day and 6.5 °C higher at night, raising surrounding temperatures. The study also finds that natural surface areas are up to 3.1 °C cooler and 9.6% more humid compared to built environment surfaces. Furthermore, residential areas have air temperatures about 0.3 °C higher than commercial zones, with a humidity distribution approximately 0.5% lower. These findings offer a theoretical foundation for enhancing urban thermal environments and informing urban planning and design. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

17 pages, 3230 KiB  
Article
Evaluating the Effectiveness of Regulatory Frameworks for Transitioning to Net-Zero Energy Buildings in a Tropical Desert Climate
by Motaz Mestarehi and Osama Omar
Energies 2025, 18(2), 367; https://doi.org/10.3390/en18020367 - 16 Jan 2025
Viewed by 924
Abstract
Domestic electricity consumption in the Kingdom of Bahrain accounts for 48% of total national electricity consumption, increasing between 1.5 and 3.5% annually. This increase is due to indoor cooling electricity accounting for up to 80% of domestic electricity consumption. The Kingdom is aiming [...] Read more.
Domestic electricity consumption in the Kingdom of Bahrain accounts for 48% of total national electricity consumption, increasing between 1.5 and 3.5% annually. This increase is due to indoor cooling electricity accounting for up to 80% of domestic electricity consumption. The Kingdom is aiming for a reduction in carbon emissions of 30% by 2035 and to achieve carbon neutrality by 2060. Hence, reducing electricity consumption is necessary. Recently, the Kingdom’s Electricity and Water Authority has issued updated building regulations regarding the maximum thermal transmittance allowed for residential buildings. This study employed a quantitative simulation of a typical housing unit (T8) in the Kingdom of Bahrain, assessing building envelope materials and air conditioning efficacy following the updated building regulations via DesignBuilder V. 7.0.2.006 software. Additionally, this study examined the potential of building regulations to facilitate the transition to net-zero energy buildings by comparing electricity consumption with renewable energy generated from rooftop photovoltaic panels. It was determined that electricity consumption could be reduced by up to 52% by following building regulations and relying on current materials in the residential sector. Furthermore, this reduction may facilitate the Kingdom’s attainment of net-zero energy status through onsite power generation of 12,500 kWh/year. This study concluded that achieving net-zero energy status is possible by following building regulations and relying on commercially accessible construction materials; however, guidelines for energy storage or a feed-in tariff for the residential sector must be established. Full article
(This article belongs to the Topic Net Zero Energy and Zero Emission Buildings)
Show Figures

Figure 1

15 pages, 3977 KiB  
Article
Effects of Providing Enrichment to Broilers in an Animal Welfare Environment on Productivity, Litter Moisture, Gas Concentration (CO2 and NH3), Animal Welfare Indicators, and Stress Level Concentration
by Chan-Ho Kim, Woo-Do Lee, Ji-Seon Son, Jung-Hwan Jeon, Se-Jin Lim and Su-Mi Kim
Agriculture 2025, 15(2), 182; https://doi.org/10.3390/agriculture15020182 - 15 Jan 2025
Viewed by 1643
Abstract
As animal welfare becomes more active in livestock industry, research is being conducted on ways to improve poor housing environments, reduce stress, and meet welfare standards. Among these, environmental enrichment methods are effective in reducing stress and creating a welfare-friendly rearing environment, but [...] Read more.
As animal welfare becomes more active in livestock industry, research is being conducted on ways to improve poor housing environments, reduce stress, and meet welfare standards. Among these, environmental enrichment methods are effective in reducing stress and creating a welfare-friendly rearing environment, but there are few cases of actual application to farms. Therefore, we aimed to investigate the effect of providing pecking materials (grain blocks), known as one of the environmental enrichment methods, to commercial broiler farms. This study used two facilities that could accommodate 32,000 one-day-old broilers (Arbor acres) per building, and two groups (control and treatment groups) were designed after creating two identical areas within each building (total two treatments, two replicates, 16,000 birds per replicate). Two identical zones within the house were created by installing a partition in the center; one side was provided with grain blocks (one grain block per 1000 birds), and the other side was not. Analysis items included productivity (body weight, uniformity), environmental variables (litter and air), welfare indicators (leg, gait score, feather cleanliness score), and serum corticosterone levels. Analysis of all items was conducted twice, on the 19th and 27th, taking into account the farm’s feed change date and slaughter schedule. Other environmental conditions (density, lighting, ventilation, temperature, humidity, feed, and water) were the same. As a result, no difference in productivity was observed according to enrichment, and the quality of litter and air was similar. Also, there was no significant difference in welfare indicators. Interestingly, however, provision of the environment enrichment lowered serum corticosterone levels (p < 0.05). The implications of our study are that grain blocks as a pecking material are an effective way to reduce stress without adversely affecting broiler performance and rearing environment. However, it is still necessary to explore optimal enrichment materials that can help not only the welfare level but also the broiler performance. Full article
Show Figures

Figure 1

21 pages, 7511 KiB  
Article
Comparison of the Heat Transfer Efficiency of Selected Counterflow Air-to-Air Heat Exchangers Under Unbalanced Flow Conditions
by Kazimierz Kaminski, Pawel Znaczko, Ewa Kardas-Cinal, Norbert Chamier-Gliszczynski, Krzysztof Koscielny and Krzysztof Cur
Energies 2025, 18(1), 117; https://doi.org/10.3390/en18010117 - 31 Dec 2024
Cited by 1 | Viewed by 1602
Abstract
This study investigates the thermal performance of various counterflow air-to-air heat exchangers under unbalanced flow conditions, aiming to enhance the efficiency of heat recovery systems. Mechanical ventilation with heat recovery is critical in energy-efficient buildings to reduce heat loss, which can reach up [...] Read more.
This study investigates the thermal performance of various counterflow air-to-air heat exchangers under unbalanced flow conditions, aiming to enhance the efficiency of heat recovery systems. Mechanical ventilation with heat recovery is critical in energy-efficient buildings to reduce heat loss, which can reach up to 60% in air exchange processes. This research focuses on the effects of flow imbalance on the heat transfer efficiency of three specific heat exchangers: two commercially available models (Recair Sensitive RS160 and Core ERV366) and a custom 3D-printed prototype (GV PROTO). Experimental tests measured temperature efficiency under both balanced and unbalanced flow conditions, with results indicating that flow imbalance significantly impacts thermal efficiency. Among the exchangers, the RS160 displayed the highest temperature efficiency, maintaining performance better than the others as flow rates increased. The results of the study show that even small differences in the thermal efficiency of different heat exchangers under balanced airflow conditions transform into significant differences under unbalanced conditions. These findings contribute to a better understanding of how real-world ventilation imbalances affect heat exchanger performance, offering insights to optimize energy efficiency in ventilation systems. Full article
(This article belongs to the Special Issue Recent Developments in Heat Transfer: Towards Climate Neutrality)
Show Figures

Figure 1

Back to TopTop