Development of Recurrent Neural Networks for Thermal/Electrical Analysis of Non-Residential Buildings Based on Energy Consumptions Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Approach
- Brindisi, Trapani, Messina, and Catania—southern regions with a warm climate.
- Bolzano, Trieste, Aviano, Udine—northern regions with a typical cold mountain climate.
- Milano, Firenze, Piacenza, and Perugia—central regions with an intermediate climate.
2.2. Case Study Description and the EnergyPlus Model
2.3. RNN Model
2.4. Model Inversion for REC Applications
3. Results
3.1. EnergyPlus Simulations Results
3.2. RNN Model Validation and Results
4. Critical Discussion
5. Limitations, Potential, and Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Energy. Grid-Interactive Efficient Buildings Technical Report Series Overview of Research Challenges and Gaps. December 2019. Available online: https://www.energy.gov/eere/buildings/articles/grid-interactive-efficient-buildings-technical-report-series-overview (accessed on 3 April 2025).
- Martirano, L.; Rotondo, S. Modello di Microgrid per “Smart Building” Come Energy Community Con Gestione Ottimizzata Delle Risorse Energetiche Parte 1—Analisi di Modelli di Reti Energetiche per Smart Building e NZEB. Ricerca del Sistema Elettrico (RSE) e ENEA. Available online: https://www.ricercasistemaelettrico.enea.it/archivio-documenti/category/490-report-2019-progetto-1-5.html (accessed on 14 April 2025). (In Italian).
- Household Energy Consumption by Energy in the EU. Available online: https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/energy-consumption-eu.html (accessed on 3 April 2025).
- Ding, C.; Ke, J.; Levine, M.; Zhou, N. Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale. Nat. Commun. 2024, 15, 5916. [Google Scholar] [CrossRef] [PubMed]
- Brhane, G.Y.; Oh, E.; Son, S.Y. Virtual Energy Storage System Scheduling for Commercial Buildings with Fixed and Dynamic Energy Storage. Energies 2024, 17, 3292. [Google Scholar] [CrossRef]
- Rahman, A.; Srikumar, V.; Smith, A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Robinson, C.; Dilkina, B.; Hubbs, J.; Zhang, W.; Guhathakurta, S.; Brown, M.A.; Pendyala, R.M. Machine learning approaches for estimating commercial building energy consumption. Appl. Energy 2017, 208, 889–904. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Gkelios, S.; Kosmatopoulos, E. Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions. Energies 2024, 17, 570. [Google Scholar] [CrossRef]
- Chitalia, G.; Pipattanasomporn, M.; Garg, V.; Rahman, S. Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Appl. Energy 2020, 278, 115410. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hu, E. A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings. Energy Build. 2015, 97, 86–97. [Google Scholar] [CrossRef]
- Fu, H.; Baltazar, J.C.; Claridge, D.E. Review of developments in whole-building statistical energy consumption models for commercial buildings. Renew. Sustain. Energy Rev. 2021, 147, 111248. [Google Scholar] [CrossRef]
- Macarulla, M.; Casals, M.; Forcada, N.; Gangolells, M. Implementation of predictive control in a commercial building energy management system using neural networks. Energy Build. 2017, 151, 511–519. [Google Scholar] [CrossRef]
- Afzal, S.; Shokri, A.; Ziapour, B.M.; Shakibi, H.; Sobhani, B. Building energy consumption prediction and optimization using different neural network-assisted models; comparison of different networks and optimization algorithms. Energy 2023, 282, 128446. [Google Scholar] [CrossRef]
- Han, Y.; Fan, C.; Geng, Z.; Ma, B.; Cong, D.; Chen, K.; Yu, B. Energy efficient building envelope using novel RBF neural network integrated affinity propagation. Energy 2020, 209, 118414. [Google Scholar] [CrossRef]
- Severiche-Maury, Z.; Uc-Rios, C.E.; Arrubla-Hoyos, W.; Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Cama-Pinto, A. Forecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networks. Energies 2025, 18, 1247. [Google Scholar] [CrossRef]
- Uba, F.; Apevienyeku, H.K.; Nsiah, F.D.; Akorli, A.; Adjignon, S. Energy Analysis of Commercial Buildings Using Artificial Neural Network. Model. Simul. Eng. 2021, 2021, 8897443. [Google Scholar] [CrossRef]
- Genkin, M.; McArthur, J.J. B-SMART: A reference architecture for artificially intelligent autonomic smart buildings. Eng. Appl. Artif. Intell. 2023, 121, 106063. [Google Scholar] [CrossRef]
- Kulathilaka, M.J.S.; Saravanan, S.; Kumarasiri, H.D.H.P.; Logeeshan, V.; Kumarawadu, S.; Wanigasekara, C. NILM for Commercial Buildings: Deep Neural Networks Tackling Nonlinear and Multi-Phase Loads. Energies 2024, 17, 3802. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Q.; Yu, M.; Wu, Z.; Huang, C.; Fu, J.; Yu, Z.; Yao, J. Exploring spatial and environmental heterogeneity affecting energy consumption in commercial buildings using machine learning. Sustain. Cities Soc. 2023, 95, 104586. [Google Scholar] [CrossRef]
- Liang, W.; Li, H.; Zhan, S.; Chong, A.; Hong, T. Energy flexibility quantification of a tropical net-zero office building using physically consistent neural network-based model predictive control. Adv. Appl. Energy 2024, 14, 100167. [Google Scholar] [CrossRef]
- Han, F.; Du, F.; Jiao, S.; Zou, K. Predictive Analysis of a Building’s Power Consumption Based on Digital Twin Platforms. Energies 2024, 17, 3692. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, S.; Yu, J.; Zhao, A. Hybrid forecasting model of building cooling load based on combined neural network. Energy 2024, 297, 131317. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Y.; Rezgui, Y.; Zhang, C.; Wang, P.; Zhao, T. Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings. Energy 2024, 299, 131467. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, Q.; Zhang, X. Short-Term Load Forecasting for Residential Buildings Based on Multivariate Variational Mode Decomposition and Temporal Fusion Transformer. Energies 2024, 17, 3061. [Google Scholar] [CrossRef]
- Wang, G.; Mukhtar, A.; Moayedi, H.; Khalilpoor, N.; Tt, Q. Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector. Energy 2024, 298, 131312. [Google Scholar] [CrossRef]
- Biswas, M.A.R.; Robinson, M.D.; Fumo, N. Prediction of residential building energy consumption: A neural network approach. Energy 2016, 117 Pt 1, 84–92. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Li, G.; Wang, X.; Ma, J.; Xu, C.; Mao, Q. A systematic review and comprehensive analysis of building occupancy prediction. Renew. Sustain. Energy Rev. 2024, 193, 114284. [Google Scholar] [CrossRef]
- Azar, E.; O’Brien, W.; Carlucci, S.; Hong, T.; Sonta, A.; Kim, J.; Andargie, M.S.; Abuimara, T.; Asmar, M.E.; Jain, R.K.; et al. Simulation-aided occupant-centric building design: A critical review of tools, methods, and applications. Energy Build. 2020, 224, 110292. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Zhou, W.; Ma, J.; Li, Y.; Gao, J.; Chen, M.; Mao, Q. Optimizing building energy consumption through synchronization and asynchronization of occupancy and air-conditioning behavior. Energy Build. 2025, 331, 115409. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Yu, Y.; Liu, Q.; Shi, L.; Xia, J.; Mao, Q. Performance simulation and energy efficiency analysis of multi-energy complementary HVAC system based on TRNSYS. Appl. Therm. Eng. 2024, 257 Pt B, 124378. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [Google Scholar] [CrossRef]
- Khalil, M.; McGough, A.S.; Pourmirza, Z.; Pazhoohesh, M.; Walker, S. Machine Learning, Deep Learning and Statistical Analysis for forecasting building energy consumption—A systematic review. Eng. Appl. Artif. Intell. 2022, 115, 105287. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Chun, D.; Zeeshan; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 109383. [Google Scholar] [CrossRef]
- EnergyPlus Program, 23.2.0 Version. Available online: https://energyplus.net/ (accessed on 14 April 2025).
- Chung, W.J.; Liu, C. Analysis of input parameters for deep learning-based load prediction for office buildings in different climate zones using eXplainable Artificial Intelligence. Energy Build. 2022, 276, 112521. [Google Scholar] [CrossRef]
- Si, B.; Wang, J.; Yao, X.; Shi, X.; Jin, X.; Zhou, X. Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms. Adv. Eng. Inform. 2019, 40, 93–109. [Google Scholar] [CrossRef]
- Edwards, R.E.; New, J.; Parker, L.E.; Cui, B.; Dong, J. Constructing large scale surrogate models from big data and artificial intelligence. Appl. Energy 2017, 202, 685–699. [Google Scholar] [CrossRef]
- Wong, S.L.; Wan, K.K.W.; Tony, N.T.L. Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 2010, 87, 551–557. [Google Scholar] [CrossRef]
- Saryazdi, S.M.E.; Etemad, A.; Shafaat, A.; Bahman, A.M. Data-driven performance analysis of a residential building applying artificial neural network (ANN) and multi-objective genetic algorithm (GA). Build. Environ. 2022, 225, 109633. [Google Scholar] [CrossRef]
- Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M. Development of surrogate models using artificial neural network for building shell energy labelling. Energy Policy 2014, 69, 457–466. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Mariuzzo, I.; Quercio, M.; Repetto, M. Economic, Energy, and Environmental Analysis of PV with Battery Storage for Italian Households. Electronics 2021, 10, 146. [Google Scholar] [CrossRef]
- Chou, J.S.; Bui, D.K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 2014, 82, 437–446. [Google Scholar] [CrossRef]
- Belloni, E.; Bianchini, G.; Casini, M.; Faba, A.; Intravaia, M.; Laudani, A.; Lozito, G.M. An overview on building-integrated photovoltaics: Technological solutions, modeling, and control. Energy Build. 2024, 324, 114867. [Google Scholar] [CrossRef]
- Lucaferri, V.; Quercio, M.; Laudani, A.; Riganti Fulginei, F. A Review on Battery Model-Based and Data-Driven Methods for Battery Management Systems. Energies 2023, 16, 7807. [Google Scholar] [CrossRef]
- Risi, B.; Riganti Fulginei, F.; Laudani, A.; Quercio, M. Compensation Admittance Load Flow: A Computational Tool for the Sustainability of the Electrical Grid. Sustainability 2023, 15, 14427. [Google Scholar] [CrossRef]
- Belloni, E.; Lozito, G.M.; Reatti, A. A Python Tool for Simulation and Optimal Sizing of a Storage Equipped Grid Connected Photovoltaic Power System. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 884–889. [Google Scholar] [CrossRef]
- Belloni, E.; Fulginei, F.R.; Lozito, G.M.; Poli, D. Direct and Inverse Neural Modelling of Buildings HVAC Systems. In Proceedings of the IEEE EUROCON 2023—20th International Conference on Smart Technologies, Torino, Italy, 6–8 July 2023; pp. 269–274. [Google Scholar] [CrossRef]
- Palermo, M.; Forconi, F.; Belloni, E.; Quercio, M.; Lozito, G.M.; Fulginei, F.R. Optimization of a feedforward neural network’s architecture for an HVAC system problem. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Spain, 19–21 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Belloni, E.; Grasso, F.; Lozito, G.M.; Poli, D.; Riganti Fulginei, F.; Talluri, G. Neural-assisted HVACs optimal scheduling for renewable energy communities. Energy Build. 2023, 301, 113658. [Google Scholar] [CrossRef]
- Liu, B.; Vu-Bac, N.; Zhuang, X.; Fu, X.; Rabczuk, T. Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites. Compos. Sci. Technol. 2022, 224, 109425. [Google Scholar] [CrossRef]
- Liu, B.; Vu-Bac, N.; Rabczuk, T. A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms. Compos. Struct. 2021, 273, 114269. [Google Scholar] [CrossRef]
- Ji, J.; Yu, H.; Wang, X.; Xu, X. Machine learning application in building energy consumption prediction: A comprehensive review. J. Build. Eng. 2025, 104, 112295. [Google Scholar] [CrossRef]
- Liu, B.; Vu-Bac, N.; Zhuang, X.; Liu, W.; Fu, X.; Rabczuk, T. Al-DeMat: A web-based expert system platform for computationally expensive models in materials design. Adv. Eng. Softw. 2023, 176, 103398. [Google Scholar] [CrossRef]
- EnergyPlus Weather Data File. Available online: https://energyplus.net/weather (accessed on 14 April 2025).
- Buratti, C.; Moretti, E.; Belloni, E. Nanogel Windows for Energy Building Efficiency. In Nano and Biotech Based Materials for Energy Building Efficiency; Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, C.G., Ivanov, V., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lozito, G.M.; Salvini, A. Swarm intelligence based approach for efficient training of regressive neural networks. Neural Comput. Appl. 2020, 32, 10693–10704. [Google Scholar] [CrossRef]
- MathWorks. MATLAB r2022. 2022. Available online: https://www.mathworks.com/products/new_products/release2022a.html (accessed on 3 April 2025).
- Regulation Containing Rules for the Design, Installation, Operation and Maintenance of Heating Systems in Buildings for the Purpose of Containing Energy Consumption. D.P.R 412/1993, Updated on 28 April 2022. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.del.presidente.della.repubblica:1993-08-26;412!vig= (accessed on 14 April 2025).
- Somu, N.; MR, G.R.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [Google Scholar] [CrossRef]
- Mtibaa, F.; Nguyen, K.K.; Azam, M.; Papachristou, A.; Venne, J.S.; Cheriet, M. LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings. Neural Comput. Appl. 2020, 32, 17569–17585. [Google Scholar] [CrossRef]
- Osman, A.; Abid, U.; Gemma, L.; Perotto, M.; Brunelli, D. Tinyml platforms benchmarking. In Proceedings of the International Conference on Applications in Electronics Pervading Industry, Environment and Society, Online, 21–22 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 139–148. [Google Scholar]
- Sudharsan, B.; Salerno, S.; Nguyen, D.D.; Yahya, M.; Wahid, A.; Yadav, P.; Breslin, J.G.; Ali, M.I. TinyML benchmark: Executing fully connected neural networks on commodity microcontrollers. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; IEEE: Piscataway, NJ, USA; pp. 883–884. [Google Scholar]
NORTH Climatic Zone 1 | CENTER Climatic Zone 2 | SOUTH Climatic Zone 3 | ||||
---|---|---|---|---|---|---|
Heating Period | Cooling Period | Heating Period | Cooling Period | Heating Period | Cooling Period | |
Annual ON period | 01/10–30/04 | 01/07–15/09 | 15/10–15/04 | 01/06–30/09 | 15/11–15/03 | 01/05–15/10 |
Design Temperatures | 20 ± 1 °C | 26 ± 1 °C | 20 ± 1 °C | 26 ± 1 °C | 20 ± 1 °C | 26 ± 1 °C |
Daily ON period | 8 a.m.–7 p.m. |
Parameter | Value or Description |
---|---|
Architecture | Layer Recurrent Neural Network (layrecnet) |
Number of Hidden Layers | 1 |
Activation Function | Tangent Sigmoid (tansig) |
Feedback Delays | 2 |
Sample Time | 1 |
Total Number of Weights | 91 |
Training Algorithm | Levenberg–Marquardt (trainlm) |
Performance Metric | Mean Squared Error (MSE) |
Data Division | Random by sample (dividerand) |
Training/Validation Split | 70%/30% |
Maximum Training Epochs | 10.000 |
Minimum Gradient | 1 × 10−7 |
Maximum Validation Failures | 250 |
Average Training Time | 93 s |
Average Inference Time | 4.4 ms |
Average Epochs for Training | 1500–2000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belloni, E.; Forconi, F.; Lozito, G.M.; Palermo, M.; Quercio, M.; Riganti Fulginei, F. Development of Recurrent Neural Networks for Thermal/Electrical Analysis of Non-Residential Buildings Based on Energy Consumptions Data. Energies 2025, 18, 3031. https://doi.org/10.3390/en18123031
Belloni E, Forconi F, Lozito GM, Palermo M, Quercio M, Riganti Fulginei F. Development of Recurrent Neural Networks for Thermal/Electrical Analysis of Non-Residential Buildings Based on Energy Consumptions Data. Energies. 2025; 18(12):3031. https://doi.org/10.3390/en18123031
Chicago/Turabian StyleBelloni, Elisa, Flavia Forconi, Gabriele Maria Lozito, Martina Palermo, Michele Quercio, and Francesco Riganti Fulginei. 2025. "Development of Recurrent Neural Networks for Thermal/Electrical Analysis of Non-Residential Buildings Based on Energy Consumptions Data" Energies 18, no. 12: 3031. https://doi.org/10.3390/en18123031
APA StyleBelloni, E., Forconi, F., Lozito, G. M., Palermo, M., Quercio, M., & Riganti Fulginei, F. (2025). Development of Recurrent Neural Networks for Thermal/Electrical Analysis of Non-Residential Buildings Based on Energy Consumptions Data. Energies, 18(12), 3031. https://doi.org/10.3390/en18123031