Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (259)

Search Parameters:
Keywords = comfort textiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1938 KiB  
Brief Report
Single-Component Silicon-Containing Polyurethane for High-Performance Waterproof and Breathable Nanofiber Membranes
by Dongxu Lu, Yanbing Li, Yake Chai, Ximei Wen, Liming Chen and Sanming Sun
Fibers 2025, 13(8), 105; https://doi.org/10.3390/fib13080105 - 5 Aug 2025
Abstract
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach [...] Read more.
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach by utilizing silicon-containing polyurethane (SiPU) as a single-component, fluorine-free raw material to prepare high-performance WBNMs via a simple one-step electrospinning process. The electrospinning technique enables the formation of SiPU nanofibrous membranes with a small maximum pore size (dmax) and high porosity, while the intrinsic hydrophobicity of SiPU imparts excellent water-repellent characteristics to the membranes. As a result, the single-component SiPU WBNM exhibits superior waterproofness and breathability, with a hydrostatic pressure of 52 kPa and a water vapor transmission rate (WVTR) of 5798 g m−2 d−1. Moreover, the optimized SiPU-14 WBNM demonstrates outstanding mechanical properties, including a tensile strength of 6.15 MPa and an elongation at break of 98.80%. These findings indicate that the single-component SiPU-14 WBNMs not only achieve excellent waterproof and breathable performance but also possess robust mechanical strength, thereby enhancing the comfort and expanding the potential applications of protective textiles, such as outdoor apparel and car seats. Full article
Show Figures

Graphical abstract

14 pages, 2649 KiB  
Article
Study on the Liquid Transport on the Twisted Profile Filament/Spun Combination Yarn in Knitted Fabric
by Yi Cui, Ruiyun Zhang and Jianyong Yu
Polymers 2025, 17(15), 2065; https://doi.org/10.3390/polym17152065 - 29 Jul 2025
Viewed by 214
Abstract
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport [...] Read more.
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport properties primarily compares the wicking results, without considering the varying requirements of testing conditions due to differences in human sweating rates during daily activities. Moreover, the understanding of moisture transport mechanisms in yarns within fabrics under different testing conditions remains insufficient. In this study, two types of twisted combination yarns, composed of hydrophobic profiled polyester filaments and hydrophilic spun yarns to form a hydrophobic-hydrophilic gradient along the axial direction of the yarn, were developed and compared with profiled polyester filaments to understand the liquid migration behaviors in the knitted fabrics formed by these yarns. Results showed that hydrophobic profiled polyester filament yarn demonstrated superior liquid transport performance with infinite saturated liquid supply (vertical wicking test). In contrast, the twisted combination yarns exhibited better moisture diffusion properties under limited liquid droplet supply conditions (droplet diffusion test and moisture management test). These contradictory findings indicated that the amount of liquid moisture supply in testing conditions significantly affected the moisture transport performance of yarns within fabrics. It was revealed that the liquid moisture in the twisted combination yarns migrated through capillary wicking for moisture transfer. Under an infinite saturated liquid supply condition, the higher the content of hydrophilic fibers in the spun yarns, the greater the amount of moisture transferred, demonstrating an excellent liquid transport performance. Under the limited liquid droplet supply conditions, both the volume of liquid water and the moisture absorption capacity of the yarn jointly influence internal moisture migration within the yarn. It provided a theoretical reference for testing the internal moisture wicking performance of fabrics under different states of human sweating. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

41 pages, 1835 KiB  
Review
A Comprehensive Review of Vertical Forest Buildings: Integrating Structural, Energy, Forestry, and Occupant Comfort Aspects in Renovation Modeling
by Vachan Vanian, Theodora Fanaradelli and Theodoros Rousakis
Fibers 2025, 13(8), 101; https://doi.org/10.3390/fib13080101 - 25 Jul 2025
Viewed by 139
Abstract
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the [...] Read more.
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the use of retrofitting modeling techniques, including textile-reinforced mortar (TRM), fiber-reinforced polymer (FRP), seismic joints, and green concrete applications. The energy system modeling methods are reviewed, taking into account the complexity of incorporating vegetation and seasonal variations. During forestry integration, three main design parameters are identified, namely, root systems, trunks, and crowns, for their critical role in the structural stability and optimal environmental performance. The comfort models are identified evolving from static to adaptive models incorporating thermal, acoustic, visual and air quality parameters. The current review consists of more than one hundred studies indicating that the integration of natural systems to buildings requires a multidimensional and multidisciplinary approach with sophisticated systems. The findings of this review provide the basis for implementing VF models to RC buildings, while highlighting areas requiring further research and validation. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

18 pages, 2062 KiB  
Article
Measuring Blink-Related Brainwaves Using Low-Density Electroencephalography with Textile Electrodes for Real-World Applications
by Emily Acampora, Sujoy Ghosh Hajra and Careesa Chang Liu
Sensors 2025, 25(14), 4486; https://doi.org/10.3390/s25144486 - 18 Jul 2025
Viewed by 359
Abstract
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after [...] Read more.
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after spontaneous blinking, and indexes neural processes as the brain evaluates new visual information appearing after eye re-opening. Prior studies have reported BRO utility as both a clinical and non-clinical biomarker of cognition, but no study has demonstrated BRO measurement using textile-based EEG devices that facilitate user comfort for real-world applications. Methods: We investigated BRO measurement using a four-channel EEG system with textile electrodes by extracting BRO responses using existing, publicly available EEG data (n = 9). We compared BRO effects derived from textile-based electrodes with those from standard dry Ag/Ag-Cl electrodes collected at the same locations (i.e., Fp1, Fp2, F7, F8) and using the same EEG amplifier. Results: Results showed that BRO effects measured using textile electrodes exhibited similar features in both time and frequency domains compared to dry Ag/Ag-Cl electrodes. Data from both technologies also showed similar performance in artifact removal and signal capture. Conclusions: These findings provide the first demonstration of successful BRO signal capture using four-channel EEG with textile electrodes, providing compelling evidence toward the development of a comfortable and user-friendly EEG technology that uses the simple activity of blinking for objective brain function assessment in a variety of settings. Full article
Show Figures

Figure 1

12 pages, 3755 KiB  
Article
Effects of Processing Parameters on the Structure and Mechanical Property of PVDF/BN Nanofiber Yarns
by Jincheng Gui, Xu Liu and Hao Dou
Polymers 2025, 17(14), 1931; https://doi.org/10.3390/polym17141931 - 13 Jul 2025
Viewed by 349
Abstract
The increasing demand for light and comfort smart wearable devices has promoted the cross-integration of textile technology with nanomaterials and nanotechnology. As a potential candidate with excellent piezoelectricity, PVDF has been processed into different forms used for flexible sensors but shows limited practicality [...] Read more.
The increasing demand for light and comfort smart wearable devices has promoted the cross-integration of textile technology with nanomaterials and nanotechnology. As a potential candidate with excellent piezoelectricity, PVDF has been processed into different forms used for flexible sensors but shows limited practicality due to their discomfort and stiffness from non-yarn level. In this study, PVDF/BN nanofiber yarns (NFYs) were successfully fabricated via conjugated electrospinning. The effects of BN concentration, stretching temperature, and stretching ratio on the structural morphology and mechanical performance of the NFYs were systematically investigated. The results show that under the stretching temperature of 140 °C and stretching ratios of 3.5, smooth 1% PVDF/BN NFYs with highly oriented inner nanofibers can be successfully fabricated, and the breaking strength and elongation of composite NFYs reached 129.5 ± 8.1 MPa and 22.4 ± 3.8%, respectively, 667% higher than the breaking strength of pure PVDF nanoyarns. Hence, with the selection of appropriate nanofiller amounts and optimized post-treatment process, the structure and mechanical property of PVDF NFYs can be significantly improved, and this study provides an effective strategy to fabricate high-performance nanoyarns, which is favorable to potential applications in wearable electronic devices and flexible piezoelectric sensors. Full article
(This article belongs to the Special Issue Electrospinning Techniques and Advanced Polymer Textile Products)
Show Figures

Figure 1

15 pages, 3428 KiB  
Article
An Enhanced Circularly Polarized Textile Antenna Using a Metasurface and Slot-Patterned Ground for Off-Body Communications
by Yong-Deok Kim, Tu Tuan Le and Tae-Yeoul Yun
Micromachines 2025, 16(7), 799; https://doi.org/10.3390/mi16070799 - 9 Jul 2025
Viewed by 334
Abstract
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an [...] Read more.
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an orthogonal direction with equal magnitude and a 90° phase difference, converts the linearly polarized (LP) wave, radiated from the fundamental radiator with a corner-truncated slot square-patch configuration, into being CP. The SPG, consisting of periodic slots with two different sizes of corner-truncated slots, redistributes the surface current on the ground plane, enhancing the axial ratio bandwidth (ARBW) of the proposed antenna. The novel combination of MS and SPG not only enables the generation and enhancement of CP characteristics but also significantly improves the impedance bandwidth (IBW), gain, and radiation efficiency by introducing additional surface wave resonances. The proposed antenna is composed of a conductive textile and a felt substrate, offering comfort and flexibility for applications where the antenna is placed in close proximity to the human body. The proposed antenna is simulated under bending in various directions, showing exceptionally similar characteristics to a flat condition. The proposed antenna is fabricated and is then verified by measurements in both free space and a human body environment. The measured IBW is 36.3%, while the ARBW is 18%. The measured gain and radiation efficiency are 6.39 dBic and 64.7%, respectively. The specific absorption rate (SAR) is simulated, and the results satisfy both US and EU safety standards. Full article
(This article belongs to the Special Issue Metasurface-Based Devices and Systems)
Show Figures

Figure 1

15 pages, 5527 KiB  
Article
Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment
by Julia Guérineau, Jollan Ton and Mariia Zhuldybina
Sensors 2025, 25(13), 4240; https://doi.org/10.3390/s25134240 - 7 Jul 2025
Viewed by 405
Abstract
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, [...] Read more.
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, such as comfort, breathability, and flexibility, are meant to be preserved. This article investigates screen printing as a textile post-processing technique for electronic integration, and highlights its versatility, cost-effectiveness, and adaptability in terms of design and customization. The study examines two silver-based inks screen-printed on an Oxford polyester textile substrate with a focus on substrate preparation and treatment. Before printing, the textile samples were cleaned with nitrogen gas and then subjected to low-pressure oxygen plasma treatment. For comparative analysis, two samples printed on polyethylene terephthalate (PET) serve as a reference. The findings highlight the importance of plasma treatment in optimizing the printability of textiles and demonstrate that it notably improves the electrical properties of conductive inks. Despite some remaining challenges, the study indicates that screen-printed electronics show promising potential for advancing the development of e-textiles and sensor-integrated wearables. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

16 pages, 1234 KiB  
Article
A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator
by Janeth Arias Guadalupe, Alejandro Pereira-Cabral Perez, Dolores Blanco Rojas and Dorin Copaci
Actuators 2025, 14(7), 337; https://doi.org/10.3390/act14070337 - 6 Jul 2025
Viewed by 465
Abstract
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. [...] Read more.
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. In response to these challenges, this work presents the development and validation of a novel soft exosuit designed for elbow flexion rehabilitation, incorporating a multi-wire Shape Memory Alloy (SMA) actuator capable of both position and force control. The proposed system features a lightweight and ergonomic textile-based design, optimized for user comfort, ease of use, and low manufacturing cost. A sequential activation strategy was implemented to improve the dynamic response of the actuator, particularly during the cooling phase, which is typically a major limitation in SMA-based systems. The performance of the multi-bundle actuator was compared with a single-bundle configuration, demonstrating superior trajectory tracking and reduced thermal accumulation. Surface electromyography tests confirmed a decrease in muscular effort during assisted flexion, validating the device’s assistive capabilities. With a total weight of 0.6 kg and a fabrication cost under EUR 500, the proposed exosuit offers a promising solution for accessible and effective home-based rehabilitation. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

14 pages, 2778 KiB  
Article
The Effect of Orientation Angle of Center Facing Arm on Elongation of 3D-Printed Auxetic-Structure Textiles
by Shahbaj Kabir, Yu Li and Young-A Lee
Textiles 2025, 5(3), 25; https://doi.org/10.3390/textiles5030025 - 30 Jun 2025
Viewed by 336
Abstract
This study aimed to examine the effect of the orientation angle of center facing arms on the elongation and strength of 3D-printed textiles with two different re-entrant cellular auxetic structures. An experimental research design, consisting of 6 (auxetic-structure textiles) × 3 (repetition), was [...] Read more.
This study aimed to examine the effect of the orientation angle of center facing arms on the elongation and strength of 3D-printed textiles with two different re-entrant cellular auxetic structures. An experimental research design, consisting of 6 (auxetic-structure textiles) × 3 (repetition), was employed. Star-shaped re-entrant auxetic structures (star re-entrant) with orientation angles of 25°, 30°, and 35° and floral-based star-shaped re-entrant auxetic structures (floral re-entrant) with orientation angles of 55°, 60°, and 65° were developed using the fused deposition modeling 3D-printing method through identifying commonly used auxetic structures in the 3D-printed textiles’ development. A statistically significant relationship was found between load and elongation of both star re-entrant and floral re-entrant. The findings indicated that 3D-printed textiles with both star re-entrant and floral re-entrant structures exhibited an enhanced elongation with the increase in orientation angle, making the textile products more flexible and potentially providing better wear comfort. However, the strength of both star re-entrant and floral re-entrant textiles was not significantly affected by the orientation angle of center facing arms. The findings demonstrated the potential to enhance the elongation of 3D-printed auxetic-structure textiles without compromising their strength for ensuing comfort by adjusting the orientation angle of center facing arms. Full article
Show Figures

Graphical abstract

12 pages, 2221 KiB  
Article
Development of Knitted Strain Sensor Optimized for Dumbbell Exercise and Evaluation of Its Electrical Characteristics
by Hee-Ji Choi and Youn-Hee Kim
Sensors 2025, 25(12), 3685; https://doi.org/10.3390/s25123685 - 12 Jun 2025
Viewed by 411
Abstract
With growing interest in wearable technologies, the development of flexible sensors and products that can monitor the human body while being comfortable to wear is gaining momentum. While various textile-based strain sensors have been proposed, their implementation in practical, exercise-specific applications remains limited. [...] Read more.
With growing interest in wearable technologies, the development of flexible sensors and products that can monitor the human body while being comfortable to wear is gaining momentum. While various textile-based strain sensors have been proposed, their implementation in practical, exercise-specific applications remains limited. In this study, we developed a knitted strain sensor that monitors elbow angles, focusing on dumbbell exercise, which is a basic exercise in sports, and verified its performance. The material of the developed knitted strain sensor with a plain stitch structure comprised a silver-coated nylon conductive yarn and an acrylic/wool blended yarn. To evaluate the electrical and physical characteristics of the developed sensor, a textile folding tester was used to conduct 100 repeated bending experiments at three angles of 30°, 60°, 90° and speeds of 10, 30, 60 cpm. The system demonstrated excellent elasticity, high sensitivity (gauge factor = 698), fast responsiveness, and reliable performance under repeated stress, indicating its potential for integration into wearable fitness or rehabilitation platforms. Full article
(This article belongs to the Special Issue Advances in Wearable Sensors for Continuous Health Monitoring)
Show Figures

Figure 1

27 pages, 1091 KiB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Viewed by 1648
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

13 pages, 1955 KiB  
Article
Thermochromic Behaviour and Comfort Properties of Printed Woven Fabric
by Nursyafawani Idris, Nor Dalila Nor Affandi, Intan Zulaikha Borhan, Muhammad Ismail Ab Kadir, Ridwan Yahaya and Liliana Indrie
Coatings 2025, 15(6), 692; https://doi.org/10.3390/coatings15060692 - 7 Jun 2025
Viewed by 638
Abstract
Thermochromic materials have attracted interest in textile applications, particularly in printing and dyeing processes. However, their thermochromic properties and impact on fabric comfort remain underexplored. This study aimed to investigate the thermochromic properties of printed fabrics with green-to-brown transitions and evaluates their comfort [...] Read more.
Thermochromic materials have attracted interest in textile applications, particularly in printing and dyeing processes. However, their thermochromic properties and impact on fabric comfort remain underexplored. This study aimed to investigate the thermochromic properties of printed fabrics with green-to-brown transitions and evaluates their comfort attributes. In the present study, a thermochromic dye paste was applied to nylon/cotton medium-weight fabric via screen printing process. The brown pigment paste was applied first, followed by the thermochromic olive green dye. The printed fabrics were tested for thermochromism, morphology, Fourier Transform Infrared Spectroscopy (FTIR), and comfort properties. Comfort properties were assessed via air permeability, water vapour permeability, and moisture management tests. The results show reversible colour changes from green (25 °C) to brown (40 °C), with increasing lightness (L*) and shifting green–red coordinates (−a*). The scanning electron microscopy (SEM) confirmed uniform dye dispersion, and the FTIR validated the presence of thermochromic pigments. The printed fabrics showed a reduction in air permeability from 40.2 mm/s to 0 mm/s, while water vapour permeability decreased by 62.50% compared to the pristine fabric due to the coating layers. The overall moisture management properties of the printed fabric remained similar to those of the unprinted fabric, with a grade of 1. These findings highlight the potential of thermochromic textiles for adaptive camouflage, particularly in military uniforms, contributing to the advancement of intelligent textiles with enhanced thermal responsiveness. Full article
(This article belongs to the Special Issue Functional Coatings for Textile Applications)
Show Figures

Figure 1

25 pages, 4644 KiB  
Review
Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors
by Tingting Wu and Guozhen Liu
Biosensors 2025, 15(6), 351; https://doi.org/10.3390/bios15060351 - 1 Jun 2025
Viewed by 1669
Abstract
Quantifying inflammation plays a critical role in understanding the progression and development of various diseases. Non-invasive or minimally invasive wearable biosensors have garnered significant attention in recent years due to their convenience, comfort, and ability to provide continuous monitoring of biomarkers, particularly in [...] Read more.
Quantifying inflammation plays a critical role in understanding the progression and development of various diseases. Non-invasive or minimally invasive wearable biosensors have garnered significant attention in recent years due to their convenience, comfort, and ability to provide continuous monitoring of biomarkers, particularly in infectious diseases and chronic diseases. However, there are still areas for improvement in developing reliable biosensing devices to detect key inflammatory biomarkers in clinically relevant biofluids. This review first introduces common biofluids with a focus on the most clinically significant inflammatory biomarkers. Specifically, it discusses the challenges encountered in extracting and detecting analytes in these biofluids. Subsequently, we review three popular types of non-invasive wearable biosensors for inflammation monitoring (microneedle patches, flexible electronic skins, and textile-based sensors). The design and operational considerations of these devices are analyzed, followed by an exploration of the information processing approaches employed during data processing. Finally, we envision future opportunities by guiding the development and refinement of non-invasive or minimally invasive wearable biosensors for continuous inflammation monitoring in chronic diseases. Full article
Show Figures

Figure 1

15 pages, 1295 KiB  
Article
Fabric Tactile Prediction Method Based on Spider Diagram
by Ruifeng Xie, Shuyang Ding, Zeyu Cheng, Luowei Ma and Yanzhu Yang
Sensors 2025, 25(10), 3187; https://doi.org/10.3390/s25103187 - 19 May 2025
Viewed by 406
Abstract
The detection and quantification of fabric tactile sensations are crucial in textile production and marketing as they are closely linked to textile comfort and serve as key criteria for consumers when selecting fabrics. Previous studies have predominantly focused on measuring the physical properties [...] Read more.
The detection and quantification of fabric tactile sensations are crucial in textile production and marketing as they are closely linked to textile comfort and serve as key criteria for consumers when selecting fabrics. Previous studies have predominantly focused on measuring the physical properties of fabrics, often neglecting correlations between these parameters and tactile sensations. This oversight complicates customers’ ability to assess the tactile experience of fabrics during online purchasing. This study first obtained subjective evaluations of three types of fabric tactile sensations through experiments involving volunteer participants. Subsequently, five objective physical properties that characterize fabric tactile properties were proposed and experimentally tested on 15 fabric samples categorized by yarn weight, weave pattern, and material. A fabric tactile spider diagram was created by normalizing the values of the five physical properties across the 15 fabric samples. The grading of the physical properties was then performed based on the proposed evaluation index. These spider diagrams were compared with the subjective evaluation results to analyze the physical properties that most significantly influenced subjective perception, ultimately leading to the development of a highly reliable fabric touch prediction model. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 5598 KiB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 369
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

Back to TopTop