Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors
Abstract
1. Introduction
2. Inflammation and Inflammatory Biomarkers
3. Inflammatory Biomarkers in Different Biofluids
3.1. Interstitial Fluid
3.2. Sweat
3.3. Saliva
3.4. Tears
3.5. Vaginal Fluids or Semen
3.6. Exhaled Breath Condensate
4. Non-Invasive or Minimally Invasive Biosensing Devices for Inflammation Monitoring
4.1. Microneedle Patches
4.2. Flexible Electronics
4.3. Textile-Based Sensors
5. Challenges and Perspectives in Quantifying Inflammation by Wearable Biosensors
5.1. Sensitivity and Collecting Capability
5.2. Integration with Complex Biological Contexts
5.3. Lack of Standardization
5.4. Real-Time Data Processing
5.5. Durability and Reliability of Sensors
5.6. User Compliance and Comfort
5.7. Combination with Artificial Intelligence (AI)
5.8. Cost
5.9. Clinical Translation
6. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Macovei, D.G.; Irimes, M.B.; Hosu, O.; Cristea, C.; Tertis, M. Point-of-care electrochemical testing of biomarkers involved in inflammatory and inflammatory-associated medical conditions. Anal. Bioanal. Chem. 2023, 415, 1033–1063. [Google Scholar] [CrossRef] [PubMed]
- Munn, L.L. Cancer and inflammation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1370. [Google Scholar] [CrossRef]
- Kumar, R.; Clermont, G.; Vodovotz, Y.; Chow, C.C. The dynamics of acute inflammation. J. Theor. Biol. 2004, 230, 145–155. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Vijayalekshmi, R.V.; Sung, B. Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin. Cancer Res. 2009, 15, 425–430. [Google Scholar] [CrossRef]
- Germolec, D.R.; Shipkowski, K.A.; Frawley, R.P.; Evans, E. Markers of inflammation. Immunotoxicity Test. Methods Protoc. 2018, 1803, 57–79. [Google Scholar]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, M.H.; Liu, D.; Lin, Y.; Song, S.J.; Chu, E.S.H.; Liu, D.; Singh, S.; Berman, M.; Lau, H.C.H.; et al. A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis. Cell Metab. 2025, 37, 59–68. [Google Scholar] [CrossRef]
- West, H.W.; Dangas, K.; Antoniades, C. Advances in clinical imaging of vascular inflammation: A state-of-the-art review. Basic Transl. Sci. 2024, 9, 710–732. [Google Scholar]
- Chavannes, M.; Dolinger, M.T.; Cohen-Mekelburg, S.; Abraham, B. AGA Clinical Practice Update on the Role of Intestinal Ultrasound in Inflammatory Bowel Disease: Commentary. Clin. Gastroenterol. Hepatol. 2024, 22, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cheng, R.; Wu, Y.; Lin, H.; Gan, H.; Zhang, H. Diagnosis and management of inflammatory bowel disease. J. Evid. Based Med. 2024, 17, 409–433. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.; Wang, Y.; Chen, L.; Wang, Y.; Luo, C. Nanotechnology in inflammation: Cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024, 14, 2490. [Google Scholar] [CrossRef]
- Kamišalić, A.; Fister, I., Jr.; Turkanović, M.; Karakatič, S. Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors 2018, 18, 1714. [Google Scholar] [CrossRef]
- Kim, T.Y.; De, R.; Choi, I.; Kim, H.; Hahn, S.K. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024, 310, 122630. [Google Scholar] [CrossRef]
- Shang, L.J.; Yu, S.Q.; Shang, X.W.; Wei, X.Y.; Wang, H.Y.; Jiang, W.S.; Ren, Q.Q. A non-invasive glucose sensor based on 3D reduced graphene oxide-MXene and AuNPs composite electrode for the detection of saliva glucose. J. Appl. Electrochem. 2024, 54, 1807–1817. [Google Scholar] [CrossRef]
- Binabaji, F.; Dashtian, K.; Zare-Dorabei, R.; Naseri, N.; Noroozifar, M.; Kerman, K. Innovative Wearable Sweat Sensor Array for Real-Time Volatile Organic Compound Detection in Noninvasive Diabetes Monitoring. Anal. Chem. 2024, 96, 13522–13532. [Google Scholar] [CrossRef]
- Jagannath, B.; Lin, K.C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. A sweat-based wearable enabling technology for real-time monitoring of IL-1β and CRP as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis. 2020, 26, 1533–1542. [Google Scholar] [CrossRef]
- Tu, J.; Min, J.; Song, Y.; Xu, C.; Li, J.; Moore, J.; Hanson, J.; Hu, E.; Parimon, T.; Wang, T.Y.; et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 2023, 7, 1293–1306. [Google Scholar] [CrossRef]
- Kothari, A.; Jagannath, B.; Muthukumar, S.; Prasad, S. An observational study for detection and quantification of interferon-γ in sweat toward inflammation monitoring. Biosens. Bioelectron. X 2022, 10, 100122. [Google Scholar] [CrossRef]
- Liu, Z.B.; Huang, X.S.; Liu, Z.J.; Zheng, S.T.; Yao, C.J.; Zhang, T.; Huang, S.; Zhang, J.R.; Wang, J.Z.; Farah, S.; et al. Plug-In Design of the Microneedle Electrode Array for Multi-Parameter Biochemical Sensing in Gouty Arthritis. ACS Sens. 2025, 10, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Schönbein, G.W. Analysis of inflammation. Annu. Rev. Biomed. Eng. 2006, 8, 93–151. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Fu, Y.; Liu, Y.; Cui, M.; Zhang, C.; Zhang, Q.; Li, C.; Zhao, J.; Wang, C.; Song, J.; et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1156039. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef]
- Tanaka, T.; Kishimoto, T. Targeting interleukin-6: All the way to treat autoimmune and inflammatory diseases. Int. J. Biol. Sci. 2012, 8, 1227. [Google Scholar] [CrossRef]
- Waugh, D.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef]
- Stoner, L.; Lucero, A.A.; Palmer, B.R.; Jones, L.M.; Young, J.M.; Faulkner, J. Inflammatory biomarkers for predicting cardiovascular disease. Clin. Biochem. 2013, 46, 1353–1371. [Google Scholar] [CrossRef]
- Ohta, H.; Wada, H.; Niwa, T.; Kirii, H.; Iwamoto, N.; Fujii, H.; Saito, K.; Sekikawa, K.; Seishima, M. Disruption of tumor necrosis factor-α gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 2005, 180, 11–17. [Google Scholar] [CrossRef]
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020, 8, 49. [Google Scholar] [CrossRef]
- te Velde, A.A.; Huijbens, R.J.; Heije, K.; de Vries, J.E.; Figdor, C.G. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood 1990, 76, 1392–1397. [Google Scholar] [CrossRef]
- Ralph, P.; Nakoinz, I.A.S.J.; Sampson-Johannes, A.; Fong, S.; Lowe, D.; Min, H.Y.; Lin, L. IL-10, T lymphocyte inhibitor of human blood cell production of IL-1 and tumor necrosis factor. J. Immunol. 1992, 148, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.B.; Van der Kraan, P.M.; Van Den Berg, W.B. TGF-β and osteoarthritis. Osteoarthr. Cartil. 2007, 15, 597–604. [Google Scholar] [CrossRef]
- Friedel, M.; Thompson, I.A.; Kasting, G.; Polsky, R.; Cunningham, D.; Soh, H.T.; Heikenfeld, J. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 2023, 7, 1541–1555. [Google Scholar] [CrossRef]
- Wiig, H.; Swartz, M.A. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol. Rev. 2012, 92, 1005–1060. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419. [Google Scholar] [CrossRef]
- Zaleska, M.; Olszewski, W.L.; Durlik, M.; Miller, N.E. Signaling proteins are represented in tissue fluid/lymph from soft tissues of normal human legs at concentrations different from serum. Lymphat. Res. Biol. 2013, 11, 203–210. [Google Scholar] [CrossRef]
- Sjöbom, U.; Christenson, K.; Hellström, A.; Nilsson, A.K. Inflammatory markers in suction blister fluid: A comparative study between interstitial fluid and plasma. Front. Immunol. 2020, 11, 597632. [Google Scholar] [CrossRef]
- Szegedi, K.; Lutter, R.; Bos, J.D.; Luiten, R.M.; Kezic, S.; Middelkamp-Hup, M.A. Cytokine profiles in interstitial fluid from chronic atopic dermatitis skin. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2136–2144. [Google Scholar] [CrossRef]
- Khairnar, P.; Phatale, V.; Shukla, S.; Tijani, A.O.; Hedaoo, A.; Strauss, J.; Verana, G.; Vambhurkar, G.; Puri, A.; Srivastava, S. Nanocarrier-integrated microneedles: Divulging the potential of novel frontiers for fostering the management of skin ailments. Mol. Pharm. 2024, 21, 2118–2147. [Google Scholar] [CrossRef]
- Ng, C.Y.; Chiu, Y.C.; Chan, Y.P.; Lin, Y.J.; Chung, P.H.; Chung, W.H.; Ku, C.L. Skin interstitial fluid and plasma multiplex cytokine analysis reveals IFN-γ signatures and granzyme b as useful biomarker for activity, severity and prognosis assessment in vitiligo. Front. Immunol. 2022, 13, 872458. [Google Scholar] [CrossRef]
- Aroche, A.F.; Nissan, H.E.; Daniele, M.A. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv. Healthc. Mater. 2025, 14, 2401782. [Google Scholar] [CrossRef] [PubMed]
- Shahi, F.; Afshar, H.; Dawi, E.A.; Khonakdar, H.A. Smart Microneedles in Biomedical Engineering: Harnessing Stimuli-Responsive Polymers for Novel Applications. Polym. Adv. Technol. 2024, 35, e70020. [Google Scholar] [CrossRef]
- Portugal-Cohen, M.; Horev, L.; Ruffer, C.; Schlippe, G.; Voss, W.; Oron, M.; Soroka, Y.; Frušić-Zlotkin, M.; Milner, Y.; Kohen, R. Non-invasive skin biomarkers quantification of psoriasis and atopic dermatitis: Cytokines, antioxidants and psoriatic skin auto-fluorescence. Biomed. Pharmacother. 2012, 66, 293–299. [Google Scholar] [CrossRef]
- Ansari, N.A.; Ramesh, V.; Salotra, P. Interferon (IFN)–γ, tumor necrosis factor–α, interleukin-6, and IFN-γ receptor 1 are the major immunological determinants associated with post–kala azar dermal leishmaniasis. J. Infect. Dis. 2006, 194, 958–965. [Google Scholar] [CrossRef]
- Caldas, A.; Favali, C.; Aquino, D.; Vinhas, V.; van Weyenbergh, J.; Brodskyn, C.; Costa, J.; Barral-Netto, M.; Barral, A. Balance of IL-10 and interferon-γ plasma levels in human visceral leishmaniasis: Implications in the pathogenesis. BMC Infect. Dis. 2005, 5, 113. [Google Scholar] [CrossRef]
- Nedrebø, T.; Reed, R.K.; Jonsson, R.; Berg, A.; Wiig, H. Differential cytokine response in interstitial fluid in skin and serum during experimental inflammation in rats. J. Physiol. 2004, 556, 193–202. [Google Scholar] [CrossRef]
- Hendricks, A.J.; Vaughn, A.R.; Clark, A.K.; Yosipovitch, G.; Shi, V.Y. Sweat mechanisms and dysfunctions in atopic dermatitis. J. Dermatol. Sci. 2018, 89, 105–111. [Google Scholar] [CrossRef]
- Qiao, L.; Benzigar, M.R.; Subramony, J.A.; Lovell, N.H.; Liu, G. Advances in sweat wearables: Sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interfaces 2020, 12, 34337–34361. [Google Scholar] [CrossRef]
- Hladek, M.D.; Szanton, S.L.; Cho, Y.E.; Lai, C.; Sacko, C.; Roberts, L.; Gill, J. Using sweat to measure cytokines in older adults compared to younger adults: A pilot study. J. Immunol. Methods 2018, 454, 1–5. [Google Scholar] [CrossRef]
- Dai, X.; Okazaki, H.; Hanakawa, Y.; Murakami, M.; Tohyama, M.; Shirakata, Y.; Sayama, K. Eccrine sweat contains IL-1α, IL-1β and IL-31 and activates epidermal keratinocytes as a danger signal. PLoS ONE 2013, 8, e67666. [Google Scholar] [CrossRef]
- Gasim, S.; Elhassan, A.M.; Khalil, E.A.G.; Ismail, A.; Kadaru, A.M.Y.; Kharazmi, A.; Theander, T.G. High levels of plasma IL-10 and expression of IL-10 by keratinocytes during visceral leishmaniasis predict subsequent development of post-kala-azar dermal leishmaniasis. Clin. Exp. Immunol. 1998, 111, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, B.; Lin, K.C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng. Transl. Med. 2021, 6, e10220. [Google Scholar] [CrossRef]
- Polz-Dacewicz, M.; Strycharz-Dudziak, M.; Dworzański, J.; Stec, A.; Kocot, J. Salivary and serum IL-10, TNF-α, TGF-β, VEGF levels in oropharyngeal squamous cell carcinoma and correlation with HPV and EBV infections. Infect. Agents Cancer 2016, 11, 45. [Google Scholar] [CrossRef]
- Jaedicke, K.M.; Preshaw, P.M.; Taylor, J.J. Salivary cytokines as biomarkers of periodontal diseases. Periodontology 2000 2016, 70, 164–183. [Google Scholar] [CrossRef]
- Williamson, S.; Munro, C.; Pickler, R.; Grap, M.J.; Elswick Jr, R.K. Comparison of biomarkers in blood and saliva in healthy adults. Nurs. Res. Pract. 2012, 2012, 246178. [Google Scholar] [CrossRef]
- Riis, J.L.; Out, D.; Dorn, L.D.; Beal, S.J.; Denson, L.A.; Pabst, S.; Jaedicke, K.; Granger, D.A. Salivary cytokines in healthy adolescent girls: Intercorrelations, stability, and associations with serum cytokines, age, and pubertal stage. Dev. Psychobiol. 2014, 56, 797–811. [Google Scholar] [CrossRef]
- Dillon, M.C.; Opris, D.C.; Kopanczyk, R.; Lickliter, J.; Cornwell, H.N.; Bridges, E.G.; Nazar, A.M.; Bridges, K.G. Detection of homocysteine and C-reactive protein in the saliva of healthy adults: Comparison with blood levels. Biomark. Insights 2010, 5, BMI-S5305. [Google Scholar] [CrossRef]
- Bosch, J.A. The use of saliva markers in psychobiology: Mechanisms and methods. Saliva: Secret. Funct. 2014, 24, 99–108. [Google Scholar]
- Christodoulides, N.; Floriano, P.N.; Miller, C.S.; Ebersole, J.L.; Mohanty, S.; Dharshan, P.; Griffin, M.; Lennart, A.; Ballard, K.L.M.; King, C.P.; et al. Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Ann. N. Y. Acad. Sci. 2007, 1098, 411–428. [Google Scholar] [CrossRef]
- Yoon, A.J.; Cheng, B.; Philipone, E.; Turner, R.; Lamster, I.B. Inflammatory biomarkers in saliva: Assessing the strength of association of diabetes mellitus and periodontal status with the oral inflammatory burden. J. Clin. Periodontol. 2012, 39, 434–440. [Google Scholar] [CrossRef]
- Alzahrani, A.S.; Bissada, N.F.; Jurevic, R.J.; Narendran, S.; Nouneh, I.E.; Al-Zahrani, M.S. Reduced systemic inflammatory mediators after treatment of chronic gingivitis. Saudi Med. J 2013, 34, 415–419. [Google Scholar] [PubMed]
- Gonzales, J.R.; Herrmann, J.M.; Boedeker, R.H.; Francz, P.I.; Biesalski, H.; Meyle, J. Concentration of interleukin-1β and neutrophil elastase activity in gingival crevicular fluid during experimental gingivitis. J. Clin. Periodontol. 2001, 28, 544–549. [Google Scholar] [CrossRef]
- Syndergaard, B.; Al-Sabbagh, M.; Kryscio, R.J.; Xi, J.; Ding, X.; Ebersole, J.L.; Miller, C.S. Salivary biomarkers associated with gingivitis and response to therapy. J. Periodontol. 2014, 85, e295–e303. [Google Scholar] [CrossRef]
- Aziz, S.; Ahmed, S.S.; Ali, A.; Khan, F.A.; Zulfiqar, G.; Iqbal, J.; Khan, A.A.; Shoaib, M. Salivary immunosuppressive cytokines IL-10 and IL-13 are significantly elevated in oral squamous cell carcinoma patients. Cancer Investig. 2015, 33, 318–328. [Google Scholar] [CrossRef]
- Lee, L.T.; Wong, Y.K.; Hsiao, H.Y.; Wang, Y.W.; Chan, M.Y.; Chang, K.W. Evaluation of saliva and plasma cytokine biomarkers in patients with oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2018, 47, 699–707. [Google Scholar] [CrossRef]
- Ouellet-Morin, I.; Danese, A.; Williams, B.; Arseneault, L. Validation of a high-sensitivity assay for C-reactive protein in human saliva. Brain Behav. Immun. 2011, 25, 640–646. [Google Scholar] [CrossRef]
- Out, D.; Hall, R.J.; Granger, D.A.; Page, G.G.; Woods, S.J. Assessing salivary C-reactive protein: Longitudinal associations with systemic inflammation and cardiovascular disease risk in women exposed to intimate partner violence. Brain Behav. Immun. 2012, 26, 543–551. [Google Scholar] [CrossRef]
- Punyadeera, C.; Dimeski, G.; Kostner, K.; Beyerlein, P.; Cooper-White, J. One-step homogeneous C-reactive protein assay for saliva. J. Immunol. Methods 2011, 373, 19–25. [Google Scholar] [CrossRef]
- Pay, J.B.; Shaw, A.M. Towards salivary C-reactive protein as a viable biomarker of systemic inflammation. Clin. Biochem. 2019, 68, 1–8. [Google Scholar] [CrossRef]
- Slavish, D.C.; Graham-Engeland, J.E.; Smyth, J.M.; Engeland, C.G. Salivary markers of inflammation in response to acute stress. Brain Behav. Immun. 2015, 44, 253–269. [Google Scholar] [CrossRef]
- Lam, H.; Bleiden, L.; De Paiva, C.S.; Farley, W.; Stern, M.E.; Pflugfelder, S.C. Tear cytokine profiles in dysfunctional tear syndrome. Am. J. Ophthalmol. 2009, 147, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Carreño, E.; Portero, A.; Herreras, J.M.; García-Vázquez, C.; Whitcup, S.M.; Stern, M.E.; Calonge, M.; Enríquez-de-Salamanca, A. Cytokine and chemokine tear levels in patients with uveitis. Acta Ophthalmol. 2017, 95, e405–e414. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Gadaria-Rathod, N.; Epstein, S.; Asbell, P. Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: Standard operating procedures. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8327–8336. [Google Scholar] [CrossRef] [PubMed]
- Roda, M.; Corazza, I.; Bacchi Reggiani, M.L.; Pellegrini, M.; Taroni, L.; Giannaccare, G.; Versura, P. Dry eye disease and tear cytokine levels—A meta-analysis. Int. J. Mol. Sci. 2020, 21, 3111. [Google Scholar] [CrossRef]
- Massingale, M.L.; Li, X.; Vallabhajosyula, M.; Chen, D.; Wei, Y.; Asbell, P.A. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea 2009, 28, 1023–1027. [Google Scholar] [CrossRef]
- Cook, E.B. Tear cytokines in acute and chronic ocular allergic inflammation. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 441–445. [Google Scholar] [CrossRef]
- Short, C.S.; Quinlan, R.; Bennett, P.; Shattock, R.J.; Taylor, G.P. Optimising the collection of female genital tract fluid for cytokine analysis in pregnant women. J. Immunol. Methods 2018, 458, 15–20. [Google Scholar] [CrossRef]
- Simpson, K.L.; Keelan, J.A.; Mitchell, M.D. Labour-associated changes in the regulation of production of immunomodulators in human amnion by glucocorticoids, bacterial lipopolysaccharide and pro-inflammatory cytokines. Reproduction 1999, 116, 321–327. [Google Scholar] [CrossRef]
- Taylor, B.D.; Holzman, C.B.; Fichorova, R.N.; Tian, Y.; Jones, N.M.; Fu, W.; Senagore, P.K. Inflammation biomarkers in vaginal fluid and preterm delivery. Hum. Reprod. 2013, 28, 942–952. [Google Scholar] [CrossRef]
- Paternoster, D.M.; Stella, A.; Gerace, P.; Manganelli, F.; Plebani, M.; Snijders, D.; Nicolini, U. Biochemical markers for the prediction of spontaneous pre-term birth. Int. J. Gynecol. Obstet. 2002, 79, 123–129. [Google Scholar] [CrossRef]
- Wei, S.Q.; Fraser, W.; Luo, Z.C. Inflammatory cytokines and spontaneous preterm birth in asymptomatic women: A systematic review. Obstet. Gynecol. 2010, 116 Pt 1, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.S.; Romero, R.; Jun, J.K.; Moon, K.C.; Kim, G.; Yoon, B.H. C-reactive protein concentration in vaginal fluid as a marker for intra-amniotic inflammation/infection in preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2005, 18, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Musilova, I.; Bestvina, T.; Hudeckova, M.; Michalec, I.; Cobo, T.; Jacobsson, B.; Kacerovsky, M. Vaginal fluid interleukin-6 concentrations as a point-of-care test is of value in women with preterm prelabor rupture of membranes. Am. J. Obstet. Gynecol. 2016, 215, 619.e1–619.e12. [Google Scholar] [CrossRef] [PubMed]
- Naro, E.D.; Ghezzi, F.; Raio, L.; Romano, F.; Mueller, M.D.; McDougall, J.; Cicinelli, E. C-reactive protein in vaginal fluid of patients with preterm premature rupture of membranes. Acta Obstet. Gynecol. Scand. 2003, 82, 1072–1079. [Google Scholar] [CrossRef]
- Beverly, E.S.; D’Amico, R.D.; Landay, A.L.; Spear, G.T.; Massad, L.S.; Rydman, R.J.; Warner, N.A.; Padnick, J.; Ackatz, L.; Charles, L.A.; et al. Evaluation of immunologic markers in cervicovaginal fluid of HIV-infected and uninfected women: Implications for the immunologic response to HIV in the female genital tract. JAIDS J. Acquir. Immune Defic. Syndr. 1997, 16, 161–168. [Google Scholar]
- Bélec, L.; Gherardi, R.; Payan, C.; Prazuck, T.; Malkin, J.E.; Tévi-Bénissan, C.; Pillot, J. Proinflammatory cytokine expression in cervicovaginal secretions of normal and HIV-infected women. Cytokine 1995, 7, 568–574. [Google Scholar] [CrossRef]
- Sharkey, D.J.; Macpherson, A.M.; Tremellen, K.P.; Mottershead, D.G.; Gilchrist, R.B.; Robertson, S.A. TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells. J. Immunol. 2012, 189, 1024–1035. [Google Scholar] [CrossRef]
- Rametse, C.L.; Adefuye, A.O.; Olivier, A.J.; Curry, L.; Gamieldien, H.; Burgers, W.A.; Lewis, D.A.; Williamson, A.L.; Katz, A.A.; Passmore, J.A.S. Inflammatory cytokine profiles of semen influence cytokine responses of cervicovaginal epithelial cells. Front. Immunol. 2018, 9, 2721. [Google Scholar] [CrossRef]
- Olivier, A.J.; Masson, L.; Ronacher, K.; Walzl, G.; Coetzee, D.; Lewis, D.A.; Williamson, A.L.; Passmore, J.A.S.; Burgers, W.A. Distinct cytokine patterns in semen influence local HIV shedding and HIV target cell activation. J. Infect. Dis. 2014, 209, 1174–1184. [Google Scholar] [CrossRef]
- Matalliotakis, I.M.; Cakmak, H.; Fragouli, Y.; Kourtis, A.; Arici, A.; Huszar, G. Increased IL-18 levels in seminal plasma of infertile men with genital tract infections. Am. J. Reprod. Immunol. 2006, 55, 428–433. [Google Scholar] [CrossRef]
- Aliberti, S.; Morlacchi, L.C.; Faverio, P.; Fernandez-Botran, R.; Cosentini, R.; Mantero, M.; Peyrani, P.; Ramirez, J.; Bordon, J.; Blasi, F. Serum and exhaled breath condensate inflammatory cytokines in community-acquired pneumonia: A prospective cohort study. Pneumonia 2016, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Ghelli, F.; Panizzolo, M.; Garzaro, G.; Squillacioti, G.; Bellisario, V.; Colombi, N.; Bergamaschi, E.; Canu, I.G.; Bono, R. Inflammatory biomarkers in exhaled breath condensate: A systematic review. Int. J. Mol. Sci. 2022, 23, 9820. [Google Scholar] [CrossRef] [PubMed]
- Garey, K.W.; Neuhauser, M.M.; Robbins, R.A.; Danziger, L.H.; Rubinstein, I. Markers of inflammation in exhaled breath condensate of young healthy smokers. Chest 2004, 125, 22–26. [Google Scholar] [CrossRef]
- Matsunaga, K.; Yanagisawa, S.; Ichikawa, T.; Ueshima, K.; Akamatsu, K.; Hirano, T.; Nakanishi, M.; Yamagata, T.; Minakata, Y.; Ichinose, M. Airway cytokine expression measured by means of protein array in exhaled breath condensate: Correlation with physiologic properties in asthmatic patients. J. Allergy Clin. Immunol. 2006, 118, 84–90. [Google Scholar] [CrossRef]
- Robroeks, C.M.H.H.T.; Rijkers, G.T.; Jöbsis, Q.; Hendriks, H.J.E.; Damoiseaux, J.G.M.C.; Zimmermann, L.J.I.; Van Schayck, O.P.; Dompeling, E. Increased cytokines, chemokines and soluble adhesion molecules in exhaled breath condensate of asthmatic children. Clin. Exp. Allergy 2010, 40, 77–84. [Google Scholar] [CrossRef]
- Shahid, S.K.; Kharitonov, S.A.; Wilson, N.M.; Bush, A.; Barnes, P.J. Increased interleukin-4 and decreased interferon-γ in exhaled breath condensate of children with asthma. Am. J. Respir. Crit. Care Med. 2002, 165, 1290–1293. [Google Scholar] [CrossRef]
- Gessner, C.; Scheibe, R.; Wötzel, M.; Hammerschmidt, S.; Kuhn, H.; Engelmann, L.; Hoheisel, G.; Gillissen, A.; Sack, U.; Wirtz, H. Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir. Med. 2005, 99, 1229–1240. [Google Scholar] [CrossRef]
- Turner, J.G.; Lay, E.; Jungwirth, U.; Varenko, V.; Gill, H.S.; Estrela, P.; Leese, H.S. 3D-Printed Hollow Microneedle-Lateral Flow Devices for Rapid Blood-Free Detection of C-Reactive Protein and Procalcitonin. Adv. Mater. Technol. 2023, 8, 2300259. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Bian, F.; Cai, L.; Zhao, Y. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv. Mater. 2019, 31, 1902825. [Google Scholar] [CrossRef]
- Xu, M.; Liu, Y.; Chen, H.; Hu, W.; Li, Y.; Zhang, Y.; Wang, Q.; Ma, T. Rapid detection of antibodies in skin interstitial fluid via fluorescent testing using antigen-modified porous microneedles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 133987. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Yang, Y.; Cheng, D. Sensitive detection of exhaled breath condensate inflammation biomarkers using boron nitride nanosheet/gold nanoparticle hybrids. Alex. Eng. J. 2024, 93, 280–287. [Google Scholar] [CrossRef]
- Chu, H.; Hu, X.; Lee, C.Y.; Zhang, A.; Ye, Y.; Wang, Y.; Chen, Y.; Yan, X.; Wang, X.; Wei, J.; et al. A wearable electrochemical fabric for cytokine monitoring. Biosens. Bioelectron. 2023, 232, 115301. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, E.; Tamborlane, W.V. A tale of two compartments: Interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 2009, 11 (Suppl. 1), S11–S16. [Google Scholar] [CrossRef]
- Vora, L.K.; Sabri, A.H.; McKenna, P.E.; Himawan, A.; Hutton, A.R.; Detamornrat, U.; Paredes, A.J.; Larrañeta, E.; Donnelly, R.F. Microneedle-based biosensing. Nat. Rev. Bioeng. 2024, 2, 64–81. [Google Scholar] [CrossRef]
- Zhuang, Z.M.; Wang, Y.; Feng, Z.X.; Lin, X.Y.; Wang, Z.C.; Zhong, X.C.; Guo, K.; Zhong, Y.F.; Fang, Q.Q.; Wu, X.J.; et al. Targeting diverse wounds and scars: Recent innovative bio-design of microneedle patch for comprehensive management. Small 2024, 20, 2306565. [Google Scholar] [CrossRef]
- Dixon, R.V.; Lau, W.M.; Moghimi, S.M.; Ng, K.W. The diagnostic potential of microneedles in infectious diseases. Precis. Nanomed. 2020, 3, 629–640. [Google Scholar] [CrossRef]
- Bao, Z.; Lu, S.; Zhang, D.; Wang, G.; Cui, X.; Liu, G. Wearable Microneedle Patch for Colorimetric Detection of Multiple Signature Biomarkers In Vivo Toward Diabetic Diagnosis. Adv. Healthc. Mater. 2024, 13, 2303511. [Google Scholar] [CrossRef]
- Ventrelli, L.; Marsilio Strambini, L.; Barillaro, G. Microneedles for transdermal biosensing: Current picture and future direction. Adv. Healthc. Mater. 2015, 4, 2606–2640. [Google Scholar] [CrossRef]
- Takeuchi, K.; Kim, B. Functionalized microneedles for continuous glucose monitoring. Nano Converg. 2018, 5, 28. [Google Scholar] [CrossRef]
- Miller, P.R.; Taylor, R.M.; Tran, B.Q.; Boyd, G.; Glaros, T.; Chavez, V.H.; Krishnakumar, R.; Sinha, A.; Poorey, K.; Williams, K.P.; et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 2018, 1, 173. [Google Scholar] [CrossRef]
- Mei, R.; Wang, Y.; Zhao, X.; Shi, S.; Wang, X.; Zhou, N.; Shen, D.; Kang, Q.; Chen, L. Skin interstitial fluid-based SERS tags labeled microneedles for tracking of peritonitis progression and treatment effect. ACS Sens. 2023, 8, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Li, C.G.; Ihm, C.; Jung, H. A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling. Sens. Actuators B Chem. 2018, 255, 384–390. [Google Scholar] [CrossRef]
- Yang, G.R.; Kim, W.; Jung, J.H. Sliding Microneedle-Lateral flow immunoassay strip device for highly sensitive biomarker detection in interstitial fluid. Biosens. Bioelectron. 2024, 263, 116590. [Google Scholar] [CrossRef]
- Bacha, T.W.; Manuguerra, D.C.; Marano, R.A.; Stanzione, J.F. Hydrophilic modification of SLA 3D printed droplet generators by photochemical grafting. RSC Adv. 2021, 11, 21745–21753. [Google Scholar] [CrossRef]
- Chua, B.; Desai, S.P.; Tierney, M.J.; Tamada, J.A.; Jina, A.N. Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring In Vivo. Sens. Actuators A Phys. 2013, 203, 373–381. [Google Scholar] [CrossRef]
- Tayyaba, S.; Ashraf, M.W.; Afzulpurkar, N. Design and simulation of double lumen polymeric microneedles for blood transport. In Proceedings of the 2010 International Conference on Mechanical and Electrical Technology, Singapore, 10–12 September 2010; IEEE: New York, NY, USA, 2010; pp. 615–618. [Google Scholar]
- Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F.Y.; et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [Google Scholar] [CrossRef]
- Dixon, R.V.; Skaria, E.; Lau, W.M.; Manning, P.; Birch-Machin, M.A.; Moghimi, S.M.; Ng, K.W. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm. Sin. B 2021, 11, 2344–2361. [Google Scholar] [CrossRef]
- Liu, P.; Du, H.; Chen, Y.; Wang, H.; Mao, J.; Zhang, L.; Tao, J.; Zhu, J. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J. Mater. Chem. B 2020, 8, 2032–2039. [Google Scholar] [CrossRef]
- Himawan, A.; Vora, L.K.; Permana, A.D.; Sudir, S.; Nurdin, A.R.; Nislawati, R.; Hasyim, R.; Scott, C.J.; Donnelly, R.F. Where microneedle meets biomarkers: Futuristic application for diagnosing and monitoring localized external organ diseases. Adv. Healthc. Mater. 2023, 12, 2202066. [Google Scholar] [CrossRef]
- Chang, H.; Zheng, M.; Yu, X.; Than, A.; Seeni, R.Z.; Kang, R.; Tian, J.; Khanh, D.P.; Liu, L.; Chen, P.; et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv. Mater. 2017, 29, 1702243. [Google Scholar] [CrossRef]
- Chen, J.; Wang, M.; Ye, Y.; Yang, Z.; Ruan, Z.; Jin, N. Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis. Biomed. Microdevices 2019, 21, 63. [Google Scholar] [CrossRef] [PubMed]
- Poudineh, M. Microneedle assays for continuous health monitoring: Challenges and solutions. ACS Sens. 2024, 9, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luan, J.; Seth, A.; Liu, L.; You, M.; Gupta, P.; Rathi, P.; Wang, Y.X.; Cao, S.S.; Jiang, Q.S.; et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 2021, 5, 64–76. [Google Scholar] [CrossRef]
- Xu, J.; Yang, B.; Kong, J.; Zhang, Y.; Fang, X. Real-time monitoring and early warning of a cytokine storm In Vivo using a wearable noninvasive skin microneedle patch. Adv. Healthc. Mater. 2023, 12, 2203133. [Google Scholar] [CrossRef]
- Oliveira, D.; Correia, B.P.; Sharma, S.; Moreira, F.T.C. Molecular imprinted polymers on microneedle arrays for point of care transdermal sampling and sensing of inflammatory biomarkers. ACS Omega 2022, 7, 39039–39044. [Google Scholar] [CrossRef]
- Huang, L.; Tang, D.; Yang, Z. Flexible electronic materials and devices toward portable immunoassays. FlexMat 2024, 1, 59–78. [Google Scholar] [CrossRef]
- Liu, S.; Rao, Y.; Jang, H.; Tan, P.; Lu, N. Strategies for body-conformable electronics. Matter 2022, 5, 1104–1136. [Google Scholar] [CrossRef]
- Munje, R.D.; Muthukumar, S.; Jagannath, B.; Prasad, S. A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs). Sci. Rep. 2017, 7, 1950. [Google Scholar] [CrossRef]
- Diao, W.; Zhou, C.; Zhang, Z.; Cao, Y.; Li, Y.; Tang, J.; Liu, G. EGaIn-Modified ePADs for Simultaneous Detection of Homocysteine and C-Reactive Protein in Saliva toward Early Diagnosis of Cardiovascular Disease. ACS Sens. 2024, 9, 4265–4276. [Google Scholar] [CrossRef]
- Hirten, R.P.; Lin, K.C.; Whang, J.; Shahub, S.; Churcher, N.K.; Helmus, D.; Muthukumar, S.; Sands, B.; Prasad, S. Longitudinal monitoring of IL-6 and CRP in inflammatory bowel disease using IBD-AWARE. Biosens. Bioelectron. X 2024, 16, 100435. [Google Scholar] [CrossRef]
- Ma, H.; Liang, H.; Zhu, G.; Jin, J.; Song, J.; Chen, A.; Zhang, Y. Laser-engraved graphene on fabrics for customizable and scalable textile electronics. Device 2025, 3, 100573. [Google Scholar] [CrossRef]
- Ruecha, N.; Shin, K.; Chailapakul, O.; Rodthongkum, N. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens. Actuators B Chem. 2019, 279, 298–304. [Google Scholar] [CrossRef]
- Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 2020, 3, 1981–1998. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Yu, S.; Huang, C.; Pan, Y.; Zhao, X. A wearable and deformable graphene-based affinity nanosensor for monitoring of cytokines in biofluids. Nanomaterials 2020, 10, 1503. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Wang, X.; Huang, C.; Lin, Q.; Zhao, X.; Pan, Y. A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 2021, 31, 2005958. [Google Scholar] [CrossRef]
- Guan, M.; Huang, Z.; Bao, Z.; Ou, Y.; Zou, S.; Liu, G. Gold nanoparticles incorporated liquid metal for wearable sensors and wound healing. Chem. Eng. J. 2025, 508, 161120. [Google Scholar] [CrossRef]
- Fan, Z.; Ji, D.; Kim, J. Congelation-and dehydration-tolerant, mechanically robust hydrogel electrolyte for durable iontronic sensors operating in open air and freezing temperatures over wide strain and pressure ranges. Chem. Eng. J. 2024, 499, 156677. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, M.; Bao, Z.; Dong, F.; Cui, X.; Liu, G. Ligand mediation for tunable and oxide suppressed surface gold-decorated liquid metal nanoparticles. Small 2024, 20, 2306652. [Google Scholar] [CrossRef]
- Prabhu, K.; Lakshminarayanan, M.; Mohankumar, G.; Ponpandian, N.; Viswanathan, C. Vertically pillared α-Fe2O3 nanorods on carbon yarn as a textile-based stable immunosensor electrode for selective electrochemical sensing of interleukin-6 cancer biomarker. Sens. Actuators A Phys. 2023, 357, 114419. [Google Scholar] [CrossRef]
- Verma, S.; Singh, S.P. Non-invasive oral cancer detection from saliva using zinc oxide–reduced graphene oxide nanocomposite based bioelectrode. MRS Commun. 2019, 9, 1227–1234. [Google Scholar] [CrossRef]
- Promphet, N.; Rattanawaleedirojn, P.; Siralertmukul, K.; Soatthiyanon, N.; Potiyaraj, P.; Thanawattano, C.; Hinestroza, J.P.; Rodthongkum, N. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta 2019, 192, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Promphet, N.; Hinestroza, J.P.; Rattanawaleedirojn, P.; Soatthiyanon, N.; Siralertmukul, K.; Potiyaraj, P.; Rodthongkum, N. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens. Actuators B Chem. 2020, 321, 128549. [Google Scholar] [CrossRef]
- Hatamie, A.; Angizi, S.; Kumar, S.; Pandey, C.M.; Simchi, A.; Willander, M.; Malhotra, B.D. Textile based chemical and physical sensors for healthcare monitoring. J. Electrochem. Soc. 2020, 167, 037546. [Google Scholar] [CrossRef]
- Nilghaz, A.; Wicaksono, D.H.; Gustiono, D.; Majid, F.A.A.; Supriyanto, E.; Kadir, M.R.A. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab A Chip 2012, 12, 209–218. [Google Scholar] [CrossRef]
- Sadir, S.; Prabhakaran, M.P.; Wicaksono, D.H.; Ramakrishna, S. Fiber based enzyme-linked immunosorbent assay for C-reactive protein. Sens. Actuators B Chem. 2014, 205, 50–60. [Google Scholar] [CrossRef]
- Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar] [CrossRef]
- Nickoloff, B.J.; Naidu, Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J. Am. Acad. Dermatol. 1994, 30, 535–546. [Google Scholar] [CrossRef]
- Clough, G.F.; Jackson, C.L.; Lee, J.J.; Jamal, S.C.; Church, M.K. What can microdialysis tell us about the temporal and spatial generation of cytokines in allergen-induced responses in human skin In Vivo? J. Investig. Dermatol. 2007, 127, 2799–2806. [Google Scholar] [CrossRef]
- Samant, P.P.; Niedzwiecki, M.M.; Raviele, N.; Tran, V.; Mena-Lapaix, J.; Walker, D.I.; Felner, E.I.; Jones, D.P.; Miller, G.W.; Prausnitz, M.R. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 2020, 12, eaaw0285. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, Y.; Wang, S.; Zhou, G.; Zhao, N.; Wong, C.P. A highly stretchable and conductive composite based on an emulsion-templated silver nanowire aerogel. J. Mater. Chem. A 2020, 8, 1724–1730. [Google Scholar] [CrossRef]
- Gill, H.S.; Prausnitz, M.R. Effect of Microneedle Design on Pain in Human Subjects. In Proceedings of the American Institute of Chemical Engineers Conference, San Francisco, CA, USA, 13–18 November 2006; Volume 16. [Google Scholar]
- Hu, Y.; Chatzilakou, E.; Pan, Z.; Traverso, G.; Yetisen, A.K. Microneedle sensors for point-of-care diagnostics. Adv. Sci. 2024, 11, 2306560. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sheng, C.; Dong, F.; Liu, S. An integrated wearable differential microneedle array for continuous glucose monitoring in interstitial fluids. Biosens. Bioelectron. 2024, 256, 116280. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, W.J.; Wu, J.Z.; Li, H.; Peng, H.; Zhang, J.H.; Ding, K.; Wang, X.X.; Hou, C.Y.; Zhang, H.; et al. Smart Wearable Sensor Fuels Noninvasive Body Fluid Analysis. ACS Appl. Mater. Interfaces 2025, 17, 13279–13301. [Google Scholar] [CrossRef] [PubMed]
- Ardalan, S.; Hosseinifard, M.; Vosough, M.; Golmohammadi, H. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens. Bioelectron. 2020, 168, 112450. [Google Scholar] [CrossRef]
Biofluid Type | Inflammatory Diseases | Analytes | References |
---|---|---|---|
ISF | AD | IL-1β, IL-6, IL-8 and TNF-α | [38,39] |
Vitiligo | IFN-γ | [40] | |
Psoriasis | IL-1, IL-4, IL-6, IL-10, IFN-γ and TNF-α | [41,42,43] | |
PKDL | IL-10, IFN-γ, TNF-α and TGF-β | [44] | |
Sweat | COPD | CRP | [19] |
HF | CRP | [19] | |
COVID-19 | CRP | [19] | |
PKDL | IL-10 | [51] | |
IBD | IL-1β and CRP | [18] | |
Inflammatory Events Caused by Influenza | IL-6, IL-8, and TNF-α | [52] | |
Saliva | Periodontal Disease | IL-1β, CRP and TNF-α | [59,60] |
Gingivitis | IL-1β, IL-6 | [62,63] | |
OSCC | TNF-α, IL-10 | [64,65] | |
Tear | Functional Tear Syndrome | IL-6, IL-8 and TNF-α | [71] |
Uveitis | IL-8, TGF-β2 | [72] | |
DED | IL-1β, IL-4, IL-6, IL-8, IL-10, IFN-γ, and TNF-α | [73,74,75] | |
Hronic Allergic Inflammation of Eye | IL-1β, IL-6, IL-8, IFN-γ, and TNF-α | [76] | |
Vaginal Fluid | PTD | TNF-α, IL-1β, and IL-6 | [79,80,81] |
IAI | IL-6, CRP | [81,82,83,84] | |
HIV | IL-6,IFN-γ and TNF-α | [85,86] | |
Semen | Urinary and Reproductive System Infections | IL-18 | [90] |
EBC | Asthma | IL-4, IL-6, IL-8, IL-10, TNF-α, IFN-γ, CRP and TGF-β | [91,92,94,95,96] |
COPD | IL-1β | [97] | |
Acute Exacerbations of COPD (AECOPD) | IL-6, IL-1β, IL-8, IL-10 and TNF-α | [97] |
Biofluid Type | Advantages | Practical Challenge |
---|---|---|
ISF |
|
|
Sweat |
|
|
Saliva |
|
|
Tear |
|
|
Vaginal Fluid and Semen |
|
|
EBC |
|
|
Parameters | MAPs | Flexible Electronics | Textile-Based Sensors |
---|---|---|---|
Sensitivity and Collecting Capability | Require high sensitivity and high collecting capability. | Require superior sensitivity and moderate collecting capability. | Require superior sensitivity and moderate collecting capability. |
Integration with Biological Contexts | MN sensor itself can affect cytokines levels due to epidermal damage. | External factors (stress, heat, etc.) and internal factors (enzymes, bacteria, etc.) | External factors (stress, heat, etc.) and internal factors (enzymes, bacteria, etc.) |
Standardization and Clinical Maturity | Primarily in preclinical stages. Lack of standardization. | Relatively mature clinical applications and advanced commercialization. | Primarily in preclinical stages. Lack of standardization. |
Real-Time Monitoring | Delayed response due to slow ISF replenishment. | Real-time capability via integrated electronics. | Limited to semi-quantitative, colorimetric readouts. |
Durability and Reliability | Limited by irregular skin thickness and uneven skin surface. | Limited by deformation of biological tissues and joint movements. Need adhesives. | Limited by deformation of biological tissues and joint movements. |
User Comfort and Compliance | May cause transient discomfort during insertion. | High comfort. | High comfort. |
Cost and Scalability | Moderate to high costs. Limited commercial adoption. | Moderate to high costs. | Low-cost substrates. Easily mass-produced. |
MN Type | Advantages | Limitations |
---|---|---|
Hollow MN |
|
|
Solid MN |
|
|
Porous MN |
|
|
Hydrogel MN |
|
|
MAP Type | Analytes | Limit of Detection (LOD) | Detection Technique | References |
---|---|---|---|---|
Hollow MNs | CRP | 10 µg mL−1 | LFA | [98] |
Solid MNs | TNF-α, IL-1β, IL-6 | ≤100 ng mL−1 | Fluorescence signal sensor | [99] |
Solid MNs | IL-6 | 0.33 pg mL−1 | Fluorescence signal sensor | [124] |
Solid MNs | TNF-α, IL-1β, IL-6 | 0.54 pg mL −1 for IL-6, LOD for TNF-α and IL-1β are not mentioned | Electrical signal sensor | [125] |
Solid MNs | IL-6 | 1 pg mL−1 | Electrical signal sensor | [126] |
Porous MNs | proteins | Not mentioned | Fluorescence signal sensor | [100] |
Substrate Materials | Electronic Materials | Biofluid Type | Analytes | References |
---|---|---|---|---|
Nanoporous polyamide membrane | ZnO and room-temperature ionic liquid (RTIL) | Sweat | IL-6 | [129] |
SPE with carbon electrode | Boron Nitride nanosheet/Gold nanoparticle (BNNS/AuNP) | EBC | IL-6 | [101] |
Filter paper | AuNP-modified Eutectic Gallium Indium (EGaIn) nanoparticles | Saliva | CRP | [130] |
SPE with ZnO | SPE with ZnO | Sweat | CRP and IL-6 | [131] |
PharmChek patch | ZnO nanomembrane | Sweat | IL-6, IL-8, IL-10 and TNF-α | [52] |
Silk | Graphene | Sweat | TNF-α | [132] |
Filter paper | Graphene | Different concentrations of human IFN-γ sample | IFN-γ | [133] |
PI | Graphene and Ag/AgCl | Saliva | CRP | [134] |
Carbon nanotube fibers | Graphene | Sweat | IL-6 | [102] |
Polyester film | Graphene field-effect transistor (GFET) | Artificial tears | TNF-α and IFN-γ | [135] |
SiO2/Si wafer | Graphene–Nafion field-effect transistor (GNFET) | Sweat | IFN-γ | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Liu, G. Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors. Biosensors 2025, 15, 351. https://doi.org/10.3390/bios15060351
Wu T, Liu G. Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors. Biosensors. 2025; 15(6):351. https://doi.org/10.3390/bios15060351
Chicago/Turabian StyleWu, Tingting, and Guozhen Liu. 2025. "Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors" Biosensors 15, no. 6: 351. https://doi.org/10.3390/bios15060351
APA StyleWu, T., & Liu, G. (2025). Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors. Biosensors, 15(6), 351. https://doi.org/10.3390/bios15060351