A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator
Abstract
1. Introduction
2. Materials and Methods
2.1. Biomechanics
2.2. Multi-Bundle SMA Actuator
2.3. Electronics and Testbench
2.4. Exosuit
2.5. Control Strategy
3. Results
3.1. Testbench Results
3.2. Exosuit Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Heart Organization. World Heart Organization—Stroke, Cerebrovascular Accident. 2025. Available online: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 2 April 2025).
- World Stroke Organization. World Stroke Organization—Impact of Stroke. 2025. Available online: https://www.world-stroke.org/world-stroke-day-campaign/about-stroke (accessed on 2 April 2025).
- Carlsson, H.; Gard, G.; Brogårdh, C. Upper-limb sensory impairments after stroke: Self-reported experiences of daily life and rehabilitation. J. Rehabil. Med. 2018, 50, 45–51. [Google Scholar] [CrossRef]
- Schaechter, J.D. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 2004, 73, 61–72. [Google Scholar] [CrossRef]
- Pérez Vidal, A.F.; Rumbo Morales, J.Y.; Ortiz Torres, G.; Sorcia Vázquez, F.d.J.; Cruz Rojas, A.; Brizuela Mendoza, J.A.; Rodríguez Cerda, J.C. Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Huang, W.; Feng, M.; Yang, D.; Gu, G. Low-resistance, high-force, and large-ROM fabric-based soft elbow exosuits with adaptive mechanism and composite bellows. Sci. China Technol. Sci. 2023, 66, 24–32. [Google Scholar] [CrossRef]
- Xie, D.; Su, Y.; Shi, X.; Tong, S.F.; Li, Z.; Kai-yu Tong, R. A Compact Elbow Exosuit Driven by Pneumatic Artificial Muscles. IEEE Robot. Autom. Lett. 2024, 9, 3331–3338. [Google Scholar] [CrossRef]
- Alapati, S.; Seth, D.; Nakka, S.; Aoustin, Y. Validation of Cable-Driven Experimental Setup to Assess Movements Made with Elbow Joint Assistance. Appl. Sci. 2025, 15, 1892. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Zhu, C.; Guo, X.; Meng, W.; Ai, Q.; Hu, J. Design and Control of a Reconfigurable Upper Limb Rehabilitation Exoskeleton With Soft Modular Joints. IEEE Access 2021, 9, 166815–166824. [Google Scholar] [CrossRef]
- Shen, Y.; Dang, Y.; Jiang, T.; Huo, W.; Yu, N.; Han, J. A Textile-Based Pneumatic Soft Suit for Elbow Joint Rehabilitation. In Proceedings of the 2024 IEEE 14th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Copenhagen, Denmark, 16–19 July 2024; pp. 662–667. [Google Scholar] [CrossRef]
- Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Shape memory alloy (SMA)-based exoskeletons for upper limb rehabilitation. In Rehabilitation of the Human Bone-Muscle System; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Shami, Z.; Arslan, T.; Lomax, P. Wearable Soft Robots: Case Study of Using Shape Memory Alloys in Rehabilitation. Bioengineering 2025, 12, 276. [Google Scholar] [CrossRef]
- Xie, Q.; Meng, Q.; Yu, W.; Xu, R.; Wu, Z.; Wang, X.; Yu, H. Design of a soft bionic elbow exoskeleton based on shape memory alloy spring actuators. Mech. Sci. 2023, 14, 159–170. [Google Scholar] [CrossRef]
- Jeong, J.; Hyeon, K.; Jang, S.Y.; Chung, C.; Hussain, S.; Ahn, S.Y.; Bok, S.K.; Kyung, K.U. Soft Wearable Robot With Shape Memory Alloy (SMA)-Based Artificial Muscle for Assisting With Elbow Flexion and Forearm Supination/Pronation. IEEE Robot. Autom. Lett. 2022, 7, 6028–6035. [Google Scholar] [CrossRef]
- Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Copaci, D.; Cano, E.; Moreno, L.; Blanco, D. New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators. Appl. Bionics Biomech. 2017, 2017, 1605101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ghodrat, S.; Huisman, G.; Jansen, K.M. Shape memory alloy actuators for haptic wearables: A review. Mater. Des. 2023, 233, 112264. [Google Scholar] [CrossRef]
- Taylor, F.; Au, C. Forced air cooling of shape-memory alloy actuators for a prosthetic hand. J. Comput. Inf. Sci. Eng. 2016, 16, 041004. [Google Scholar] [CrossRef]
- Bishay, P.; Aguilar, C.; Amirbekyan, A.; Vartanian, K.; Arjon-Ramirez, M.; Pucio, D. Design of a lightweight shape memory alloy stroke-amplification and locking system in a transradial prosthetic arm. In Proceedings of the Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, Virtual, 14–15 September, 2021; Volume 85499, p. V001T05A015. [Google Scholar]
- Xie, Q.; Meng, Q.; Yu, W.; Wu, Z.; Xu, R.; Zeng, Q.; Zhou, Z.; Yang, T.; Yu, H. Design of a SMA-based soft composite structure for wearable rehabilitation gloves. Front. Neurorobot. 2023, 17, 1047493. [Google Scholar]
- Sadeghi, M.; Abbasimoshaei, A.; Kitajima Borges, J.P.; Kern, T.A. Numerical and Experimental Study of a Wearable Exo-Glove for Telerehabilitation Application Using Shape Memory Alloy Actuators. Actuators 2024, 13, 409. [Google Scholar] [CrossRef]
- Riccio, A.; Sellitto, A.; Battaglia, M. Morphing Spoiler for Adaptive Aerodynamics by Shape Memory Alloys. Actuators 2024, 13, 330. [Google Scholar] [CrossRef]
- Brasoveanu, F.A.; Burlacu, A. Towards independent SMA actuators: A novel analog two-state control system for flexible robots. In Proceedings of the 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 12–15 September, 2023; pp. 1–4. [Google Scholar]
- Guadalupe, J.A.; Copaci, D.; Navarro, P.M.; Moreno, L.; Blanco, D. A novel multi-wire SMA-based actuator with high-frequency displacement. Mechatronics 2023, 91, 102957. [Google Scholar] [CrossRef]
- Dynalloy. Technical Information/Technical Data/Technical Wire Data. 2025. Available online: https://dynalloy.com/ (accessed on 2 May 2025).
- Plagenhoef, S.; Evans, F.G.; Abdelnour, T. Anatomical data for analyzing human motion. Res. Q. Exerc. Sport 1983, 54, 169–178. [Google Scholar] [CrossRef]
- ST. Discovery kit with STM32F407VG MCU. 2025. Available online: https://www.st.com/ (accessed on 2 May 2025).
- ST. STP310N10F7. 2025. Available online: https://www.st.com/resource/en/datasheet/stp310n10f7.pdf (accessed on 2 May 2025).
- ams. ams AS5045 Rotary Sensor. 2025. Available online: https://ams-osram.com/products/sensor-solutions/position-sensors/ams-as5045-rotary-sensor (accessed on 2 May 2025).
- interlink. FSR 404 Force Sensing Resistor. 2025. Available online: https://www.interlinkelectronics.com/fsr-404 (accessed on 2 May 2025).
- Bioelettronica, O. Quattro. 2025. Available online: https://otbioelettronica.it/ (accessed on 2 May 2025).
- Orliman. Shoulder Brace. 2025. Available online: https://www.orliman.com/en/producto/neoprene-shoulder-support-4801/ (accessed on 2 May 2025).
- PULS. Power Supply. 2025. Available online: https://www.pulspower.com/ (accessed on 21 June 2025).
- Chang, B.C.; Shaw, J.A.; Iadicola, M.A. Thermodynamics of shape memory alloy wire: Modeling, experiments, and application. Contin. Mech. Thermodyn. 2006, 18, 83–118. [Google Scholar] [CrossRef]
- Theren, B.; Heß, P.; Bracke, S.; Kuhlenkötter, B. The development and verification of a simulation model of shape-memory alloy wires for strain prediction. Crystals 2022, 12, 1121. [Google Scholar] [CrossRef]
- Hedrea, R.C.R.; Petriu, E.M. Evolving fuzzy models of shape memory alloy wire actuators. Sci. Technol. 2021, 24, 353–365. [Google Scholar]
- Martineau, S.; Burnham, K.; Minihan, J.; Marcroft, S.; Andrews, G.; Heeley, A. Application of a bilinear PID compensator to an industrial furnace. IFAC Proc. Vol. 2002, 35, 25–30. [Google Scholar] [CrossRef]
- Bishay, P.L.; Fontana, J.; Raquipiso, B.; Rodriguez, J.; Borreta, M.J.; Enos, B.; Gay, T.; Mauricio, K. Development of a biomimetic transradial prosthetic arm with shape memory alloy muscle wires. Eng. Res. Express 2020, 2, 035041. [Google Scholar] [CrossRef]
- Copaci, D.; Martin, F.; Moreno, L.; Blanco, D. SMA based elbow exoskeleton for rehabilitation therapy and patient evaluation. Ieee Access 2019, 7, 31473–31484. [Google Scholar] [CrossRef]
- Mansilla Navarro, P.; Copaci, D.; Arias, J.; Blanco Rojas, D. Design of an SMA-Based Actuator for Replicating Normal Gait Patterns in Pediatric Patients with Cerebral Palsy. Biomimetics 2024, 9, 376. [Google Scholar] [CrossRef]
- Mansilla Navarro, P.; Copaci, D.; Blanco Rojas, D. Design and control of a soft knee exoskeleton for pediatric patients at early stages of the walking learning process. Bioengineering 2024, 11, 188. [Google Scholar] [CrossRef]
- Xiloyannis, M.; Annese, E.; Canesi, M.; Kodiyan, A.; Bicchi, A.; Micera, S.; Ajoudani, A.; Masia, L. Design and validation of a modular one-to-many actuator for a soft wearable exosuit. Front. Neurorobot. 2019, 13, 39. [Google Scholar] [CrossRef]
- Ismail, R.; Ariyanto, M.; Perkasa, I.A.; Adirianto, R.; Putri, F.T.; Glowacz, A.; Caesarendra, W. Soft Elbow Exoskeleton for Upper Limb Assistance Incorporating Dual Motor-Tendon Actuator. Electronics 2019, 8, 1184. [Google Scholar] [CrossRef]
- Park, S.J.; Park, C.H. Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci. Rep. 2019, 9, 9157. [Google Scholar] [CrossRef]
Gain | Kp | Kd | Ki | Kb |
---|---|---|---|---|
Position | 24 | 2.4 | 0 | 2 |
Force | 8 | 0.075 | 0 | 1.2 |
Source | Torque/Force | Weight | ROM | Response Time | Actuator |
---|---|---|---|---|---|
Our proposal | 104.73 N | 0.72 kg (wearing part) | 0–120° | 28 s/cycle | SMA wires |
[6] | 2 Nm | 1.3027 kg | 0–130° | - | pneumatic |
[7] | 9.1 Nm | 0.211 kg (wearing part) | 0–120° | - | pneumatic |
[42] | 3.4 Nm | 2.2 kg | 0–90° | 424 deg/s | DC motor |
[43] | 33 N | 2.013 kg | 90–157° | 1 s | DC motor |
[13] | 100 N | 0.877 kg | 0–80° | 0.1 Hz | SMA springs |
[14] | 3 Nm | 1.55 kg (wearing part) | 0–120° | - | SMA coil springs |
[44] | 100 N | 0.96 kg (wearing part) | 0–90° | 33 s | SMA springs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias Guadalupe, J.; Pereira-Cabral Perez, A.; Blanco Rojas, D.; Copaci, D. A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator. Actuators 2025, 14, 337. https://doi.org/10.3390/act14070337
Arias Guadalupe J, Pereira-Cabral Perez A, Blanco Rojas D, Copaci D. A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator. Actuators. 2025; 14(7):337. https://doi.org/10.3390/act14070337
Chicago/Turabian StyleArias Guadalupe, Janeth, Alejandro Pereira-Cabral Perez, Dolores Blanco Rojas, and Dorin Copaci. 2025. "A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator" Actuators 14, no. 7: 337. https://doi.org/10.3390/act14070337
APA StyleArias Guadalupe, J., Pereira-Cabral Perez, A., Blanco Rojas, D., & Copaci, D. (2025). A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator. Actuators, 14(7), 337. https://doi.org/10.3390/act14070337