Development of Knitted Strain Sensor Optimized for Dumbbell Exercise and Evaluation of Its Electrical Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Structure and Working Mechanism
2.2. Measurement of Electromechanical Properties
3. Results and Discussion
3.1. Results of Repeated Bending Experiments
3.2. Applications of Knitted Strain Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, T.; Saidane, F.; Faisal, A.A.; Khan, A.; Hossain, G. Smart-textile strain sensor for human joint monitoring. Sens. Actuators A Phys. 2022, 341, 113587. [Google Scholar] [CrossRef]
- Souri, H.; Banerjee, H.; Jusufi, A.; Strokes, A.A.; Park, I.; Sitti, M.; Amjadi, M. Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Adv. Intell. Syst. 2020, 2, 2000039. [Google Scholar] [CrossRef]
- Bozali, B.; Ghodrat, S.; Jansen, K.M. Design of Wearable Finger Sensors for Rehabilitation Applications. Micromachines 2023, 4, 710. [Google Scholar] [CrossRef]
- Wang, J.; Soltanian, S.; Servati, P.; Ko, F.; Weng, M. A knitted wearable flexible sensor for monitoring breathing condition. J. Eng. Fibers Fabr. 2020, 15. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Cong, H. Design and performance of stretchable resistive sensor based on knitted loop structures for motion detection. J. Ind. Text. 2023, 53. [Google Scholar] [CrossRef]
- Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J.; Song, C.; Kim, S.; Lee, D.; Jun, S.W.; et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404. [Google Scholar] [CrossRef]
- Yin, B.; Wang, L.; Liu, J.; Gao, S.; Zhang, Y.; Hong, L.; Tian, M. Integrated Janus Meta-Fabric via an Interlock Stitch Knitted Structure for Marginal Physiological Signal Monitoring. ACS Appl. Electron. Mater. 2025, 7, 1120–1129. [Google Scholar] [CrossRef]
- Raji, R.K.; Miao, X.; Zhang, S.; Li, y.; Wan, A.; Boakye, A. Knitted piezoresistive strain sensor performance, impact of conductive area and profile design. J. Ind. Text. 2020, 50, 616–634. [Google Scholar] [CrossRef]
- Niu, B.; Yang, S.; Tian, X.; Hua, T. Highly sensitive and stretchable fiber strain sensors empowered by synergetic conductive network of silver nanoparticles and carbon nanotubes. Appl. Mater. Today 2021, 25, 101221. [Google Scholar] [CrossRef]
- Togidi, S.; Zille, A.; Catarino, A.P.; Rocha, A.M. Effects of Base Fabric Parameters on the Electro-Mechanical Behavior of Piezoresistive Knitted Sensors. IEEE Sens. J. 2018, 18, 4529–4535. [Google Scholar] [CrossRef]
- Seyedin, S.; Moradi, S.; Singh, C.; Razal, J.M. Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Appl. Mater. Today 2018, 1, 255–263. [Google Scholar] [CrossRef]
- Liu, L.; Liang, X.; Wan, X.; Kuang, X.; Zhang, Z.; Jiang, G.; Dong, Z.; Chen, C.; Cong, H.; He, H. A Review on Knitted Flexible Strain Sensors for Human Activity Monitoring. Adv. Mater. Technol. 2023, 8, 2300820. [Google Scholar] [CrossRef]
- Gupta, U.; Lau, J.L.; Ahmed, A.; Chia, P.Z.; Soh, G.S.; Low, H.Y. Soft Wearable Knee Brace with Embedded Sensors for Knee Motion Monitoring. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 7348–7351. [Google Scholar] [CrossRef]
- Warncke, M.N.; Böhmer, C.H.; Sachse, C.; Fischer, S.; Häntzsche, E.; Nocke, A.; Mersch, J.; Cherif, C. Advancing Smart Textiles: Structural Evolution of Knitted Piezoresistive Strain Sensors for Enabling Precise Motion Capture. Polymers 2023, 15, 3936. [Google Scholar] [CrossRef]
- Sun, F.; Dong, Z.; Din, Y.; Cong, H.; Ma, P. Seamless Weft Knit Vest with Integrated Needle Sensing Zone for Monitoring Shoulder Movement: A First Methodological Study. Materials 2023, 16, 5563. [Google Scholar] [CrossRef]
- Morinaga Sports Fitness. (Effective) Dumbbell Exercise Guide; Woodumji: Seoul, Republic of Korea, 2005. [Google Scholar]
- Seyedin, S.; Razal, J.M.; Innis, P.C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G.G. Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 2015, 7, 21150–21158. [Google Scholar] [CrossRef]
- Atalay, O.; Kennon, W.R.; Husain, M.D. Textile-based weft knitted strain sensors: Effect of fabric parameters on sensor properties. Sensors 2013, 13, 11114–11127. [Google Scholar] [CrossRef]
- Xie, J.; Jia, Y.; Miao, M. High sensitivity knitted fabric bi-directional pressure sensor based on conductive blended yarn. Smart Mater. Struct. 2019, 28, 035017. [Google Scholar] [CrossRef]
- Rumon, M.A.; Cay, G.; Ravichandran, V.; Altekreeti, A.; Gitelson-Kahn, A.; Constant, N.; Solanki, D.; Mankodiya, K. Textile knitted stretch sensors for wearable health monitoring: Design and performance evaluation. Biosensors 2022, 13, 34. [Google Scholar] [CrossRef]
- Stavrakis, A.K.; Simić, M.; Stojanović, G.M. Electrical Characterization of Conductive Threads for Textile Electronics. Electronics 2021, 10, 967. [Google Scholar] [CrossRef]
- Chui, Y.; Yang, C.; Tong, J.; Zhao, Y.; Ho, C.; Li, L. A systematic method for stability assessment of Ag-coated nylon yarn. Text. Res. J. 2016, 86, 787–802. [Google Scholar] [CrossRef]
- Park, J.; Park, S.; Jeong, S.; Lee, J.; Song, J. Corrosion behavior of silver-coated conductive yarn. Front. Chem. 2023, 11, 1090648. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Superhydrophobicity and conductivity of polyester-conductive fabrics using alkaline hydrolysis. RSC Adv. 2022, 12, 22911–22921. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jun, J.; Oh, Y.; Choi, H.; Lee, M.; Min, K.; Kim, S.; Lee, H.; Nam, H.; Singh, S.; et al. Assessing the Role of Yarn Placement in Plated Knit Strain Sensors: A Detailed Study of Their Electromechanical Properties and Applicability in Bending Cycle Monitoring. Sensors 2024, 24, 1690. [Google Scholar] [CrossRef]
- Jung, I.; Lee, S. Durability Evaluation of Stainless Steel Conductive Yarn under Various Sewing Method by Repeated Strain and Abrasion Test. J. Korean Soc. Cloth. Text. 2018, 42, 474–485. [Google Scholar] [CrossRef]
- Park, S. Development of Finger Motion Recognition Gloves Using Knit Strain Sensors. Master’s Dissertation, Kookmin University, Seoul, Republic of Korea, February 2023. [Google Scholar]
- Kim, S. A Smart Glove Study That Performs Language Translation by Pattern Recognition by Applying Strain Sensors. Master’s Dissertation, Hanyang University, Seoul, Republic of Korea, February 2023. [Google Scholar]
- Roh, J. Wearable Textile Strain Sensors. Fash. Text. Res. J. 2016, 18, 733–745. [Google Scholar] [CrossRef]
- Guidelines for Estimating and Expressing Uncertainty of Measurement Results; Korean Agency for Technology and Standards: Maengdong-myeon, Republic of Korea, 2024.
- Sánchez-Durán, J.; Oballe-Peinado, Ó.; Castellanos-Ramos, J.; Vidal-Verdú, F. Hysteresis correction of tactile sensor response with a generalized Prandtl–Ishlinskii model. Microsyst. Technol. 2012, 18, 1127–1138. [Google Scholar] [CrossRef]
- Kim, J.; Kim, G. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors. Sensors 2017, 17, 229. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, T. Inverse Hysteresis Modeling for Piezoelectric Stack Actuators with Inverse Generalized Prandtl-Ishlinskii Model. J. Korean Inst. Intell. Syst. 2014, 24, 193–200. [Google Scholar] [CrossRef]
- Lee, H.; Cho, H.; Kim, S.; Kim, Y.; Kim, J. Dispenser printing of piezo-resistive nanocomposite on woven elastic fabric and hysteresis compensation for skin-mountable stretch sensing. Smart Mater. Struct. 2018, 27, 025017. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Shu, L.; Tao, X.; Xu, X. A novel double-sided fabric strain sensor array fabricated with a facile and cost-effective process. Sens. Actuators A Phys. 2024, 370, 115208. [Google Scholar] [CrossRef]
- Shyr, T.; Shie, J.; Jhuang, Y. The Effect of Tensile Hysteresis and Contact Resistance on the Performance of Strain-Resistant Elastic-Conductive Webbing. Sensors 2011, 11, 1693–1705. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Jiang, S.; Li, T.; Ding, X.; Tao, X.; Wang, X. Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Mater. Des. 2020, 188, 108451. [Google Scholar] [CrossRef]
- Huang, F.; Hu, J.; Yan, X. A wide-linear-range and low-hysteresis resistive strain sensor made of double-threaded conductive yarn for human movement detection. J. Mater. Sci. Technol. 2024, 172, 202–212. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Y.; Li, Y.; Shen, C.; Lou, Z.; Min, X.; Stewart, R. A Highly Durable and UV-Resistant Graphene-Based Knitted Textile Sensing Sleeve for Human Joint Angle Monitoring and Gesture Differentiation. Adv. Intell. Syst. 2024, 6, 2400124. [Google Scholar] [CrossRef]
- Zhao, S.; Cong, H.; Liu, S.; Zhao, K.; Wan, A.; Fan, W.; He, H. Dynamic interfacial cross-linking and chain entanglement enabling robust mechanical and conductive TPU composite fibers for knitted wearable strain sensors. J. Mater. Chem. A 2025, 13, 9538–9554. [Google Scholar] [CrossRef]
- Zahid, M.; Zych, A.; Dussoni, S.; Spallanzani, G.; Donno, R.; Maggiali, M.; Athanassiou, A. Wearable and self-healable textile-based strain sensors to monitor human muscular activities. Compos. Part B Eng. 2021, 220, 108969. [Google Scholar] [CrossRef]
- Song, X.; Liu, X.; Peng, Y.; Xu, Z.; Liu, W.; Pang, K.; Meng, J. A graphene-coated silk-spandex fabric strain sensor for human movement monitoring and recognition. Nanotechnology 2021, 32, 215501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-J.; Kim, Y.-H. Development of Knitted Strain Sensor Optimized for Dumbbell Exercise and Evaluation of Its Electrical Characteristics. Sensors 2025, 25, 3685. https://doi.org/10.3390/s25123685
Choi H-J, Kim Y-H. Development of Knitted Strain Sensor Optimized for Dumbbell Exercise and Evaluation of Its Electrical Characteristics. Sensors. 2025; 25(12):3685. https://doi.org/10.3390/s25123685
Chicago/Turabian StyleChoi, Hee-Ji, and Youn-Hee Kim. 2025. "Development of Knitted Strain Sensor Optimized for Dumbbell Exercise and Evaluation of Its Electrical Characteristics" Sensors 25, no. 12: 3685. https://doi.org/10.3390/s25123685
APA StyleChoi, H.-J., & Kim, Y.-H. (2025). Development of Knitted Strain Sensor Optimized for Dumbbell Exercise and Evaluation of Its Electrical Characteristics. Sensors, 25(12), 3685. https://doi.org/10.3390/s25123685