Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = combined vortex distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2299 KB  
Article
A New Dimensional Target Scattering Characteristic Characterization Method Based on the Electromagnetic Vortex-Polarization Joint Scattering Matrix
by Yixuan Liu, Zhuo Zhang, Tao Wu and Xinger Cheng
Electronics 2025, 14(17), 3346; https://doi.org/10.3390/electronics14173346 - 22 Aug 2025
Viewed by 160
Abstract
Vortex electromagnetic (EM) waves exhibit spiral wavefront phase distributions, owing to their orbital angular momentum (OAM). Thus, the scattered waves from targets contain OAM characteristics, demonstrating novel scattering properties. Although researchers have carried out both theoretical and experimental studies on the target scattering [...] Read more.
Vortex electromagnetic (EM) waves exhibit spiral wavefront phase distributions, owing to their orbital angular momentum (OAM). Thus, the scattered waves from targets contain OAM characteristics, demonstrating novel scattering properties. Although researchers have carried out both theoretical and experimental studies on the target scattering characteristics of vortex EM waves, a comprehensive and standardized characterization framework is still lacking. This paper proposes and defines an EM vortex scattering matrix (EVSM), which can be used as a characterization method for the target scattering characteristics in the OAM dimension of vortex EM waves. Since vortex EM waves carry both OAM and spin angular momentum (SAM), the EM vortex-polarization joint scattering matrix (EVPJSM) is defined by extending EVSM. This joint matrix simultaneously describes the target scattering characteristics in both OAM and SAM dimensions of vortex EM waves. And it can offer a thorough framework of target scattering characteristics for arbitrary OAM–SAM combinations in new-dimensional EM waves. Numerical simulations are performed to compute each element in EVPJSM for two typical targets under twelve different pairs of OAM modes and two SAM polarization combinations. The numerical results can be used as an example of the characterization method in new dimensions for the targets’ scattering characteristics. Full article
Show Figures

Figure 1

21 pages, 9001 KB  
Article
Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory
by Yunrui Fang, Jianyong Hu, Bin Liu, Puxi Li, Feng Xie, Xiujun Hu, Jingyuan Cui and Runlong Zhang
Water 2025, 17(16), 2458; https://doi.org/10.3390/w17162458 - 19 Aug 2025
Viewed by 386
Abstract
To alleviate the pressure on grid regulation and ensure grid safety, pumped storage power stations need to frequently start and stop and change operating conditions, leading to the pump-turbine easily entering the hump characteristic zone, causing flow oscillation within the unit and significant [...] Read more.
To alleviate the pressure on grid regulation and ensure grid safety, pumped storage power stations need to frequently start and stop and change operating conditions, leading to the pump-turbine easily entering the hump characteristic zone, causing flow oscillation within the unit and significant changes in its input power, resulting in increased vibration and grid connection failure. The spatial distribution of energy losses and the hydrodynamic flow features within the hump zone of a pump-turbine under pumped storage operation are the focus of the study. The SST k-ω turbulence model is applied in CFD simulations of the pump-turbine within this work, focusing on the unstable operating range of the positive slope, with model testing providing experimental support. The model test method combines numerical simulation with experimental verification. The LEPR method is used to quantitatively investigate the unstable phenomenon in the hump zone, and the distribution law of energy loss is discussed. The results show that, at operating points in the hump zone, up to 72–86% of the energy dissipation is attributed to the runner, the guide vane passage, and the double vane row assembly within the guide vane system. The flow separation in the runner’s bladeless area evolves into a vortex group, leading to an increase in runner energy loss. With decreasing flow rate, the impact and separation of the water flow intensify the energy dissipation. The high-speed gradient change and dynamic–static interference in the bladeless area cause high energy loss in the double vane row area, and energy loss mainly occurs near the bottom ring. In the hump operation zone, the interaction between adverse flows such as vortices and recirculation and the passage walls directly drive the sharp rise in energy dissipation. Full article
Show Figures

Figure 1

29 pages, 6429 KB  
Article
Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine
by Ming Kong, Xiaojie Zhang, Renwei Ji, He Wu, Minwei Yin, Hongzang Liu, Ke Sun and Ratthakrit Reabroy
J. Mar. Sci. Eng. 2025, 13(8), 1520; https://doi.org/10.3390/jmse13081520 - 8 Aug 2025
Viewed by 395
Abstract
Within real-world marine settings, the operational performance of floating tidal stream turbines is impacted by wave–current interaction effects and platform motion responses. Leveraging the improved delayed detached eddy simulation (IDDES) method, this research constructs a computational fluid dynamics (CFD) numerical analysis framework for [...] Read more.
Within real-world marine settings, the operational performance of floating tidal stream turbines is impacted by wave–current interaction effects and platform motion responses. Leveraging the improved delayed detached eddy simulation (IDDES) method, this research constructs a computational fluid dynamics (CFD) numerical analysis framework for floating turbines in wave–current environments. It further investigates the hydrodynamic behaviors and motion response features of the turbine under wave–current interactions. The results show that under the combined action of regular waves and steady currents, the fluctuation amplitudes of the power coefficient and thrust coefficient of the floating turbine exhibit a positive correlation with wave height, whereas the mean values of these coefficients remain relatively stable; in contrast, the mean values of the Cp and Ct are proportional to the wave period. Additionally, the motion amplitude of the platform shows a proportional relationship with both wave height and wave period. Flow field analysis demonstrates that elevations in wave height and period result in enhanced flow turbulence, disrupted wake vortex shedding patterns, non-uniform pressure distributions across the blades, and a larger pressure differential in the blade tip area. Such conditions may potentially induce cavitation erosion and fatigue loads. The results of the research have certain academic significance and value to the development and engineering of floating tidal current energy devices. Full article
(This article belongs to the Special Issue Floating Wave–Wind Energy Converter Plants)
Show Figures

Figure 1

20 pages, 1801 KB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 1456
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

11 pages, 4858 KB  
Communication
Customized Chirality of an Optical Vortex Pair: Helical Dichroism and Enantioselective Force
by Xingxing Han, Haibo Niu, Jing Shi, Weili Dong and Jiajie Wang
Photonics 2025, 12(8), 781; https://doi.org/10.3390/photonics12080781 - 4 Aug 2025
Viewed by 217
Abstract
Tailoring the chirality of an optical vortex is crucial for advancing helical chiroptical spectroscopy techniques in various scenarios and attracts great attention. In contrast to the single vortex, the optical vortex pair exhibits richer, fantastic chirality properties due to its additional adjustment parameters. [...] Read more.
Tailoring the chirality of an optical vortex is crucial for advancing helical chiroptical spectroscopy techniques in various scenarios and attracts great attention. In contrast to the single vortex, the optical vortex pair exhibits richer, fantastic chirality properties due to its additional adjustment parameters. Here, a comprehensive investigation of the chirality for linearly polarized optical vortex pairs based on the vector angular spectrum decomposition method is conducted. The numerical results show that the magnitudes and distributions of local chirality density, helical dichroism, and enantioselective force of the optical vortex pair can be flexibly customized by the position as well as sign combination of vortices, and can vary during free space propagation. The underlying physical mechanism behind these phenomena is ascribed to the interplay of two vortices. Our work can deepen the understanding of the chirality for multiple vortices and open-up the prospect for relevant applications in chiral recognition and manipulation. Full article
(This article belongs to the Special Issue Realization and Application of Vortex Laser)
Show Figures

Figure 1

19 pages, 4538 KB  
Article
Structural Optimization of Numerical Simulation for Spherical Grid-Structured Microporous Aeration Reactor
by Yipeng Liu, Hui Nie, Yangjiaming He, Yinkang Xu, Jiale Sun, Nan Chen, Saihua Huang, Hao Chen and Dongfeng Li
Water 2025, 17(15), 2302; https://doi.org/10.3390/w17152302 - 2 Aug 2025
Viewed by 450
Abstract
As the core equipment for efficient wastewater treatment, the internal structure of microporous aeration bioreactors directly determines the mass transfer efficiency and treatment performance. Based on Computational Fluid Dynamics (CFD) technology, this study explores the optimization mechanism of a Spherical Grid-Structured on the [...] Read more.
As the core equipment for efficient wastewater treatment, the internal structure of microporous aeration bioreactors directly determines the mass transfer efficiency and treatment performance. Based on Computational Fluid Dynamics (CFD) technology, this study explores the optimization mechanism of a Spherical Grid-Structured on the internal flow field of the reactor through a 3D numerical simulation system, aiming to improve the aeration efficiency and resource utilization. This study used a combination of experimental and numerical simulations to compare and analyze different configurations of the Spherical Grid-Structure. The simulation results show that the optimal equilibrium of the flow field inside the reactor is achieved when the diameter of the grid sphere is 2980 mm: the average flow velocity is increased by 22%, the uniformity of the pressure distribution is improved by 25%, and the peak turbulent kinetic energy is increased by 30%. Based on the Kalman vortex street theory, the periodic vortex induced by the grid structure refines the bubble size to 50–80 microns, improves the oxygen transfer efficiency by 20%, increases the spatial distribution uniformity of bubbles by 35%, and significantly reduces the dead zone volume from 28% to 16.8%, which is a decrease of 40%. This study reveals the quantitative relationship between the structural parameters of the grid and the flow field characteristics through a pure numerical simulation, which provides a theoretical basis and quantifiable optimization scheme for the structural design of the microporous aeration bioreactor, which is of great significance in promoting the development of low-energy and high-efficiency wastewater treatment technology. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 4567 KB  
Article
Validation of Taylor’s Frozen Hypothesis for DAS-Based Flow
by Shu Dai, Lei Liang, Ke Jiang, Hui Wang and Chengyi Zhong
Sensors 2025, 25(13), 3840; https://doi.org/10.3390/s25133840 - 20 Jun 2025
Viewed by 460
Abstract
Accurate measurement of pipeline flow is of great significance for industrial and environmental monitoring. Traditional intrusive methods have the disadvantages of high cost and damage to pipeline structure, while non-intrusive techniques can circumvent such issues. Although Taylor’s frozen hypothesis has a theoretical advantage [...] Read more.
Accurate measurement of pipeline flow is of great significance for industrial and environmental monitoring. Traditional intrusive methods have the disadvantages of high cost and damage to pipeline structure, while non-intrusive techniques can circumvent such issues. Although Taylor’s frozen hypothesis has a theoretical advantage in non-intrusive velocity detection, current research focuses on planar flow fields, and its applicability in turbulent circular pipes remains controversial. Moreover, there is no precedent for combining it with distributed acoustic sensing (DAS) technology. This paper constructs a circular pipe turbulence model through large eddy simulation (LES), revealing the spatiotemporal distribution characteristics of turbulent kinetic energy and the energy propagation rules of FK spectra. It proposes a dispersion feature enhancement algorithm based on cross-correlation, which combines a rotatable elliptical template with normalized cross-correlation coefficients to suppress interference from non-target directions. An experimental circulating pipeline DAS measurement system was set up to complete signal denoising and compare two principles of flow velocity verification. The results show that the vortex structure of turbulent flow in circular pipes remains stable in the convection direction, conforming to theoretical premises; the relative error of average flow velocity by this method is ≤3%, with significant improvements in accuracy and stability in high-flow zones. This study provides innovative methods and experimental basis for non-intrusive flow detection using DAS. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 12973 KB  
Article
Study of Inlet Vortex Behavior in Dual-Pump Systems and Its Influence on Pump Operational Instability
by Wei Song, Jilong Lin, Yonggang Lu, Yun Zhao and Zhengwei Wang
Water 2025, 17(12), 1784; https://doi.org/10.3390/w17121784 - 14 Jun 2025
Viewed by 534
Abstract
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure [...] Read more.
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure pulsation propagation patterns are analyzed. System stability mechanisms are investigated. A 3D model incorporates inducers, impellers, guide vanes, outlet sections, and base structures. The SST k-ω turbulence model and Q-criterion vortex identification reveal key features. Results show minimal head differences during parallel operation. The inlet flow field remains uniform without significant vortices. However, local low-velocity zones beneath the base may cause flow separation at low flows. Pressure pulsations are governed by guide vane rotor–stator interactions. These disturbances propagate backward to impellers and inducers. Outlet sections show asymmetric pressure fluctuations. This asymmetry results from spatial positioning differences. Complex base geometries generate low-intensity vortices. Vortex intensity stabilizes at higher flows. These findings provide theoretical foundations for vibration suppression. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

25 pages, 6637 KB  
Article
Influence of Gurney Flap and Leading-Edge/Trailing-Edge Flaps on the Stall Characteristics and Aeroacoustic Performance of Airfoils
by Zelin Liu, Kaidi Li and Xiaojing Sun
Fluids 2025, 10(6), 152; https://doi.org/10.3390/fluids10060152 - 9 Jun 2025
Viewed by 1204
Abstract
In aerospace, flow control techniques have improved the separation flow characteristics around airfoils by various means. In this paper, the delayed detached eddy simulation (DDES) technique is used to simulate the detailed flow field around the NACA0021 airfoil with two different flow control [...] Read more.
In aerospace, flow control techniques have improved the separation flow characteristics around airfoils by various means. In this paper, the delayed detached eddy simulation (DDES) technique is used to simulate the detailed flow field around the NACA0021 airfoil with two different flow control methods (Gurney flaps and leading- and trailing-edge flaps) applied at an angle of attack of 20°. The aerodynamic characteristics around the airfoil under these two flow control methods are investigated, and the results show that both flow control methods lead to a significant increase in the pressure on the suction surface of the airfoil, which contributes to an increase in lift. The aeroacoustic characteristics of the original airfoil, the Gurney flapped airfoil and the airfoil with leading-edge and trailing-edge flaps are then analyzed using a combination of DDES and FW-H acoustic analog equations. The results show that the total sound pressure level of the Gurney flap airfoil and the leading-edge and trailing-edge flap airfoil are improved in most azimuthal angles of the acoustic pointing distribution, among which the degree of improvement of the leading-edge and trailing-edge flap airfoil is greater than that of the Gurney flap airfoil near the trailing edge, and the total sound pressure level of the band leading- and trailing-edge flap airfoil decreases in the azimuthal angles near the leading edge. Compared with the original airfoil, the noise value is thus reduced by up to 4.13 dB. The results of pressure pulsation cloud map, sound pressure level cloud map on the airfoil surface and vortex cloud map distribution show that the two flow controls increase the pressure pulsation near the trailing edge, the range and peak value of sound emission on the airfoil surface increase, and the trailing vortex becomes more finely grained, which leads to an increase in noise. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

21 pages, 442 KB  
Article
A Mixed-Integer Convex Optimization Framework for Cost-Effective Conductor Selection in Radial Distribution Networks While Considering Load and Renewable Variations
by Oscar Danilo Montoya, Oscar David Florez-Cediel, Luis Fernando Grisales-Noreña, Walter Gil-González and Diego Armando Giral-Ramírez
Sci 2025, 7(2), 72; https://doi.org/10.3390/sci7020072 - 3 Jun 2025
Viewed by 466
Abstract
The optimal selection of conductors (OCS) in radial distribution networks is a critical aspect of system planning, directly impacting both investment costs and energy losses. This paper proposed a mixed-integer convex (MI-Convex) optimization framework to solve the OCS problem under balanced operating conditions, [...] Read more.
The optimal selection of conductors (OCS) in radial distribution networks is a critical aspect of system planning, directly impacting both investment costs and energy losses. This paper proposed a mixed-integer convex (MI-Convex) optimization framework to solve the OCS problem under balanced operating conditions, integrating the costs of conductor investment and energy losses into a single convex objective. This formulation leveraged second-order conic constraints and was solved using a combination of branch-and-bound and interior-point methods. Numerical validations on standard 27-, 33-, and 85-bus test systems confirmed the effectiveness of the proposal. In the 27-bus grid, the MI-Convex approach achieved a total cost of $550,680.25, outperforming or matching the best results reported by state-of-the-art metaheuristic algorithms, including the vortex search algorithm (VSA), Newton’s metaheuristic algorithm (NMA), the generalized normal distribution optimizer (GNDO), and the tabu search algorithm (TSA). The MI-Convex method demonstrated consistent and repeatable results, in contrast to the variability observed in heuristic techniques. Further analyses considering three-period and daily load profiles led to cost reductions of up to 27.6%, and incorporating distributed renewable generation into the 85-bus system achieved a total cost of $705,197.06—approximately 22.97% lower than under peak-load planning. Moreover, the methodology proved computationally efficient, requiring only 1.84 s for the 27-bus and 12.27 s for the peak scenario of the 85-bus. These results demonstrate the superiority of the MI-Convex approach in achieving globally optimal, reproducible, and computationally tractable solutions for cost-effective conductor selection. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

16 pages, 3292 KB  
Article
Contact-Angle-Guided Semi-Cured Slot-Die Coating Eliminates Air Entrapment in LED Multilayer Films
by Zikeng Fang, Jiaqi Wan, Chenghang Li, Henan Li and Ying Yan
Polymers 2025, 17(11), 1436; https://doi.org/10.3390/polym17111436 - 22 May 2025
Cited by 1 | Viewed by 610
Abstract
LED polymer multilayer films offer clear advantages over single-layer coatings, such as minimized particle settling, finer control over particle distribution, and more precise spectral tuning. However, the standard “coat–dry–coat” process for these multilayer systems often traps air bubbles, degrading film quality and uniformity. [...] Read more.
LED polymer multilayer films offer clear advantages over single-layer coatings, such as minimized particle settling, finer control over particle distribution, and more precise spectral tuning. However, the standard “coat–dry–coat” process for these multilayer systems often traps air bubbles, degrading film quality and uniformity. This study investigates the air entrainment mechanism in multilayer film formation. Bubbles form when the cured bottom layer exhibits a low contact angle, which destabilizes the advancing liquid front. High-speed microscopy captured these interfacial dynamics, and contact-angle measurements quantified the wetting behavior. Numerical simulations further demonstrated that reduced wettability and vortex formation drive air entrainment. To mitigate air entrainment, a semi-cured slot die coating approach was proposed to modify the surface wettability and suppress the flow instabilities. Incorporating temperature-dependent viscosity into the simulation model improved its predictive accuracy, cutting the error in predicted coating-gap limits from 11.49% to 4.99%. This combined strategy delivers reliable, bubble-free multilayer films and paves the way for more consistent, high-quality LED polymer applications. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Coatings)
Show Figures

Figure 1

31 pages, 7401 KB  
Review
Review of Turbine Film Cooling Technology for Marine Gas Turbines
by Yuhao Jia, Yongbao Liu, Xing He, Ge Xia and Zhengyu Shi
Processes 2025, 13(5), 1424; https://doi.org/10.3390/pr13051424 - 7 May 2025
Viewed by 2076
Abstract
Film cooling can continuously cover a layer of low-temperature gas film on the surface of hot-end components, thereby achieving the effect of isolating high-temperature gas, and can achieve a temperature drop of 600 K. As an advanced and efficient cooling technique, film cooling [...] Read more.
Film cooling can continuously cover a layer of low-temperature gas film on the surface of hot-end components, thereby achieving the effect of isolating high-temperature gas, and can achieve a temperature drop of 600 K. As an advanced and efficient cooling technique, film cooling plays a crucial role in the process of turbine power and efficiency increase, with the key factor influencing its cooling performance being the configuration and arrangement of the film holes. This paper summarizes the design and arrangement of film hole configurations and discusses the potential directions for enhancing film cooling performance. Through analysis, the optimization of film cooling performance is mainly approached from two aspects: first, optimizing the hole configuration, which includes the study of shaped holes, enhancing the cooling performance of cylindrical holes using auxiliary structures, and forming a “reverse kidney-shaped vortex” structure by using a single combined film hole; second, optimizing the arrangement of the cooling holes on the turbine surface to achieve a more uniform and efficient distribution of the cooling film. Future development trends are primarily reflected in the following aspects: designing new, easily manufacturable, high-efficiency film hole configurations and further expanding their stable operating range is an important development direction. It is essential to validate the reverse heat transfer method, assess its applicable range, and, when experimental conditions exceed the applicable range, use related theories to correct its predictive performance. This is key to overcoming the bottleneck in film cooling prediction. It is critical to develop a film hole arrangement guideline that is suitable for various types of film holes and components with temperature differences at the thermal end, to fill the gap in future film cooling optimization design technologies. This study aims to provide new ideas for the optimal design of the cooling system and further improve the power and efficiency of gas turbines. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 10968 KB  
Article
Numerical Simulation Study on the Dynamic Diffusion Characteristics of Ammonia Leakage in Ship Engine Room
by Xinyu Liu, Guogang Yang, Baixun Sun, Jihui Li and Yinhui Sun
Sustainability 2025, 17(9), 3826; https://doi.org/10.3390/su17093826 - 24 Apr 2025
Viewed by 688
Abstract
This study established a numerical model for ammonia leakage and diffusion in confined ship engine room spaces and validated its effectiveness through existing experiments. The research revealed the evolution patterns of ammonia cloud dispersion under various working conditions. Multi-parameter coupling analysis demonstrated that [...] Read more.
This study established a numerical model for ammonia leakage and diffusion in confined ship engine room spaces and validated its effectiveness through existing experiments. The research revealed the evolution patterns of ammonia cloud dispersion under various working conditions. Multi-parameter coupling analysis demonstrated that the combined effect of leakage source location and obstacle distribution alters the spatial configuration of gas clouds. When leakage jets directly impact obstacles, the resulting vortex structures maximize the coverage area of high-concentration ammonia near the ground. Ventilation system efficiency shows a significant negative correlation with hazardous zone volume. The hazardous zone volume was reduced by 50% when employing a bottom dual-side air intake combined with a top symmetric exhaust scheme, compared to the bottom single-side intake with an opposite-side top exhaust configuration. By enhancing the synergistic effect between longitudinal convection and top suction, harmful gas accumulation in lower spaces was effectively controlled. These findings not only provide a theoretical basis for ventilation system design in ammonia-fueled ships but also offer practical applications for risk prevention and control of maritime ammonia leakage. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

17 pages, 5920 KB  
Article
Investigation of the Computational Framework of Leading-Edge Erosion for Wind Turbine Blades
by Hongyu Wang and Bin Chen
Energies 2025, 18(9), 2146; https://doi.org/10.3390/en18092146 - 22 Apr 2025
Cited by 1 | Viewed by 470
Abstract
Non-contact acoustic detection methods for blades have gained significant attention due to their advantages such as easy installation and immunity to mechanical noise interference. Numerical simulation investigations on the aerodynamic noise mechanism of blade erosion provide a theoretical basis for acoustic detection. However, [...] Read more.
Non-contact acoustic detection methods for blades have gained significant attention due to their advantages such as easy installation and immunity to mechanical noise interference. Numerical simulation investigations on the aerodynamic noise mechanism of blade erosion provide a theoretical basis for acoustic detection. However, constructing a three-dimensional erosion model remains a challenge due to the uncertainty in external natural environmental factors. This study investigates a leading-edge erosion calculation model for wind turbine blades subjected to rain erosion. A rain erosion distribution model based on the Weibull distribution of raindrop size is first constructed. Then, the airfoil modification scheme combined with the erosion distribution model is presented to calculate leading-edge erosion mass. Finally, for a sample National Renewable Energy Laboratory 5 MW wind turbine, a three-dimensional erosion model is investigated by analyzing erosion mass related to the parameter of the attack angle. The results indicate that the maximum erosion amount is presented at the pressure surface near the leading edge, and the decrease in erosion on the pressure surface is more rapid than the suction side from the leading edge to the trailing edge. With an increase in the attack angle, the erosion on the pressure side is more severe. Furthermore, a separation vortex appears at the leading edge of the airfoil under computational non-uniform erosion. For aerodynamic noise, a larger sound pressure level with significant fluctuation occurs at 400–1000 Hz. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 10318 KB  
Article
Study on the Complex Erosion Characteristics and Specific Influencing Factor Mechanism in a Francis Hydraulic Turbine
by Jinliang Wang, Xijie Song, Jiabing Wang and Zhengwei Wang
Water 2025, 17(8), 1234; https://doi.org/10.3390/w17081234 - 21 Apr 2025
Cited by 1 | Viewed by 535
Abstract
Sediment erosion of hydraulic turbines has gradually become a key factor affecting their long-term stable operation. There are many different factors that can cause erosion in the Francis hydraulic turbine; among them, the vortex occurs in the turbine, which is also a negative [...] Read more.
Sediment erosion of hydraulic turbines has gradually become a key factor affecting their long-term stable operation. There are many different factors that can cause erosion in the Francis hydraulic turbine; among them, the vortex occurs in the turbine, which is also a negative factor for the unit. In this paper, the purpose is to study the complex erosion characteristics and specific influencing factor mechanism. The method is based on numerical simulation, combined with the verification data on site. Research results show that the differences in flow patterns among various components correspond to the erosion distribution of the unit at the same location, indicating that local flow patterns affect the unit’s erosion. The highest total erosion rate is on the surface of the runner at 1.08 × 10−3 kg·s−1·m−2. The erosion rate on the guide vane wall is second highest, also at 9.8 × 10−4 kg·s−1·m−2. The total erosion rate in the clearance is lower than that on the guide vane wall at 7.03 × 10−4 kg·s−1·m−2. The lowest total erosion rate is found in the draft tube at 2.57 × 10−4 kg·s−1·m−2. The effect of local vortices not only exacerbate the microscopic damage on the blade surface but also leads to a more obvious nonuniform erosion distribution, especially at the clearance, where erosion is more severe. The vortex in the guide vane passage alters the particle trajectory at the guide vane outlet, increasing the erosion in the guide vane clearance. Similarly, the vortex in the draft tube increases particle rotation, enhancing erosion on the draft tube wall. Research indicates that eliminating vortices is beneficial for reducing sediment erosion within the unit. The research results provide a theoretical basis for the optimization design of Francis hydraulic turbine. Full article
(This article belongs to the Special Issue Hydrodynamic Science Experiments and Simulations)
Show Figures

Figure 1

Back to TopTop