Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine
Abstract
1. Introduction
2. Numerical Model
2.1. Governing Equations
2.2. Turbulence Model
3. Computational Model and Validation
3.1. Semi-Submersible Floating Turbine Model
3.1.1. Semi-Submersible Floating Platform
3.1.2. Mooring System
3.1.3. Tidal Stream Turbine Model
3.2. CFD Numerical Model
3.2.1. Geometric Model Design
3.2.2. Grid Division and Boundary Condition Settings
3.3. Numerical Verification
3.3.1. Grid Independence Verification
3.3.2. Validity Verification of Wave–Current Environment
3.3.3. Validity Verification of Turbine Model
4. Results and Discussions
4.1. Wave Height Effects
4.1.1. Case Configuration
4.1.2. Hydrodynamic Coefficient
4.1.3. Dynamic Response
4.1.4. Wake Characteristics
4.1.5. Blade Pressure
4.2. Wave Period Effects
4.2.1. Case Configuration
4.2.2. Hydrodynamic Coefficient
4.2.3. Dynamic Response
4.2.4. Wake Characteristics
4.2.5. Blade Pressure
5. Conclusions
- (1)
- Under the combined effect of waves and platform motion, the turbine’s power and thrust coefficients exhibit periodic variations with obvious temporal fluctuations, but the fluctuation amplitudes are unstable. As wave height rises, the fluctuation amplitudes of Cp and Ct gradually increase. At the maximum wave height condition, the peak Cp is 1.25 times that under the minimum wave height, and the peak Ct is 1.2 times that under the minimum wave height.
- (2)
- The platform’s motion response intensifies as the wave height increases. The pitch angle at a 0.12 m wave height is 3.5 times that at 0.04 m, and the mooring tension is 1.5 times. With a longer wave period, platform motion becomes gentler; mooring tension at a wave period of 0.8 s is twice that at 1.2 s.
- (3)
- As wave height and period increase, the flow velocity around the turbine increases, leading to flow turbulence, expanding the range of high-speed regions, and thus slowing down the velocity recovery. Meanwhile, due to the strong effect of the flow, the wake vortex shedding becomes highly disordered without obvious periodicity and regularity, and the shape and size of the wake vortices change drastically, especially those near the platform.
- (4)
- With increases in wave height and period, wave action on the blade root may be approximately uniform, but more complex wave–current interactions occur at the blade tip. This further causes pressure difference between the two sides to grow as the turbine’s relative flow velocity increases, which affects the quality of the output electric energy and causes severe fatigue loads.
- (5)
- Affected by waves and platform motion, the slope of the pressure coefficient distribution curve changes significantly from the blade’s suction surface to pressure surface and from the blade root to the tip, with clear transitions between curves. The overall value of the pressure coefficient at the tip of the blade is relatively higher.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Swept Area of the Turbine’s Upstream Surface (m2) |
c | Chord length (m) |
Cp | Power coefficient of turbine (–) |
Ct | Thrust coefficient of turbine (–) |
D | Diameter of turbine (m) |
F | Axial thrust exerted on the turbine (N) |
Fi | Volume fraction of the i-th phase flow in the element (–) |
Fr | Froude number (–) |
g | Gravitational acceleration (m/s2) |
H | Wave height (m) |
k | Turbulent kinetic energy (m2/s2) |
lIDDES | IDDES length scale (m) |
lLES | Length scales of the LES (m) |
lRANS | Length scales of the RANS (m) |
m | Mass (kg) |
Q | Torque applied to the turbine (N·m) |
r | Radius from the center of blade (mm) |
R | Radius of turbine (m) |
Sij | Mean strain rate tensor (s−1) |
t | Time (s) |
T | Wave period (s) |
VA | Inflow velocity (m/s) |
θ | Twist angle (°) |
λ | Tip speed ratio (–) |
δ | Blade thickness (mm) |
μ | Molecular viscosity (kg/ms) |
μt | Turbulent viscosity (kg/ms) |
ρ | Fluid density (kg/m3) |
σ | Model coefficients (–) |
τij | Stress tensor (N/m2) |
ω | Rotational angular velocity (rad/s) |
ωT | Rotational frequency of the turbine (rad/s) |
CFD | Computational fluid dynamics |
CM | Center of mass |
IDDES | Improved delayed detached eddy simulation |
SWL | Still water level |
References
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; et al. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef]
- Zeng, X.; Shao, Y.; Feng, X.; Xu, K.; Jin, R.; Li, H. Nonlinear hydrodynamics of floating offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2024, 191, 114092. [Google Scholar] [CrossRef]
- Chen, Y.; Kuang, L.; Su, J.; Zhou, D.; Cao, H.; Han, Z.; Zhao, Y.; Fu, S. Investigation of pitch angles on the aerodynamics of twin-VAWT under staggered arrangement. Ocean Eng. 2022, 254, 111385. [Google Scholar] [CrossRef]
- Cheng, Y.; Gong, J.; Zhang, J. Hydrodynamic investigation on a single-point moored offshore cage-wave energy converter hybrid system. Ocean Eng. 2024, 299, 116848. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Goda, I.; Rouway, M. A review on the technologies, design considerations and numerical models of tidal current turbines. Renew. Energy 2020, 157, 1274–1288. [Google Scholar] [CrossRef]
- Gong, S.; Gao, J.; Song, Z.; Shi, H.; Liu, Y. Hydrodynamics of fluid resonance in a narrow gap between two boxes with different breadths. Ocean Eng. 2024, 311, 118986. [Google Scholar] [CrossRef]
- Bosah, C.; Li, S.; Ampofo, G.; Sangare, L. A continental and global assessment of the role of energy consumption, total natural resource rent, and economic growth as determinants of carbon emission. Sci. Total Environ. 2023, 892, 164592. [Google Scholar] [CrossRef]
- Ji, R.; Kong, M.; Sun, K.; Zhang, J.; Zhu, R.; Yin, M.; Zhang, Y.; Fernandez-Rodriguez, E. Wake interference of tandem wind turbines considering pitch strategy based on the AL-LDS-Ωnew coupling method. Front. Energy Res. 2024, 12, 1449454. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, L.; Dai, S.; Collu, M.; Ji, C.; Yuan, Z.; Incecik, A. Experimental and numerical investigation of WEC-type floating breakwaters: A single-pontoon oscillating buoy and a dual-pontoon oscillating water column. Coast. Eng. 2022, 177, 104188. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, Y.; Dai, S.; Yuan, Z.; Incecik, A. Wave energy harvesting performance of a novel Dual-mode Oscillating Buoy-Parabolic Oscillating Water Column (DOB-POWC) hybrid system. Renew. Energy 2025, 248, 123157. [Google Scholar] [CrossRef]
- Mi, C.; Gao, J.; Song, Z.; Yan, M. Gap resonance between a stationary box and a vertical wall induced by transient focused wave groups. China Ocean Eng. 2025, 39, 441–454. [Google Scholar] [CrossRef]
- Zhou, B.; Zheng, Z.; Jin, P.; Wang, L.; Zang, J. Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters. Energy 2022, 260, 125164. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, R.; Sun, K.; Zhang, Z.; Zheng, Y.; Zhang, J.; Zhang, X.; Fernandez-Rodriguez, E. Research on complex wake interference of aligned rotors considering the precone variation of the upstream wind turbine. Front. Mar. Sci. 2022, 9, 1039233. [Google Scholar] [CrossRef]
- Chen, S.; Wang, K.; Wen, Y.; Le, C.; Gao, Z. Fully coupled dynamic analysis of novel floating dual-rotor wind turbines. Phys. Fluids 2025, 37, 017114. [Google Scholar] [CrossRef]
- Ji, R.; Li, X.; Ye, Y.; Zhu, R.; Sun, K.; Wu, M.; Huang, F.; Reabroy, R. Hydrodynamic characteristics of offshore wind turbine pile foundations under combined focusing wave-current conditions. J. Mar. Sci. Eng. 2024, 12, 2068. [Google Scholar] [CrossRef]
- Zhou, B.; Hu, J.; Wang, Y.; Jin, P.; Jing, F.; Ning, D. Coupled dynamic and power generation characteristics of a hybrid system consisting of a semi-submersible wind turbine and an array of heaving wave energy converters. Renew. Energy 2023, 214, 23–38. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, F.; Fu, L.; Dai, S.; Yuan, Z.; Incecik, A. Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system. Energy 2024, 286, 129427. [Google Scholar] [CrossRef]
- Jungrungruengtaworn, S.; Reabroy, R.; Thaweewat, N.; Hyun, B. Numerical and experimental study on hydrodynamic performance of multi-level OWEC. Ocean Syst. Eng. 2020, 10, 359–371. [Google Scholar]
- Ji, R.; Sheng, Q.; Wang, S.; Zhang, Y.; Zhang, X.; Zhang, L. Array characteristics of oscillating-buoy two-floating-body wave-energy converter. J. Mar. Sci. Appl. 2019, 18, 325–333. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, Z.; Ji, R.; Lee, Y.; Fernandez-Rodriguez, E. Experimental investigation of wake dynamics and power fluctuations of a horizontal-axis tidal stream turbine under co-and counter-directional wave-current environment. Phys. Fluids 2025, 37, 075127. [Google Scholar] [CrossRef]
- Ji, R.; Sun, K.; Wang, S.; Li, Y.; Zhang, L. Analysis of hydrodynamic characteristics of ocean ship two-unit vertical axis tidal current turbines with different arrangements. J. Coast. Res. 2018, 83, 98–108. [Google Scholar] [CrossRef]
- Fan, M.; Sun, Z.; Yu, R.; Dong, X.; Li, Z.; Bai, Y. Effect of leading-edge tubercles on the hydrodynamic characteristics and wake development of tidal turbines. J. Fluids Struct. 2023, 119, 103873. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, Y.; Zheng, Y.; Wang, R.; Fernandez-Rodriguez, E.; Tang, Q.; Zhang, Z.; Zang, W. The effects of surge motion on the dynamics and wake characteristics of a floating tidal stream turbine under free surface condition. Energy Convers. Manag. 2022, 266, 115816. [Google Scholar] [CrossRef]
- Li, F.; Yao, J.; Eskilsson, C.; Pan, Y.; Chen, J.; Ji, R. Investigations on the wave performance of Savonius turbine operating under initial phase-locked strategy. Phys. Fluids 2023, 35, 9. [Google Scholar] [CrossRef]
- Yin, M.; Ji, R.; Zhu, R.; Sun, K.; Wu, M.; Li, X.; Ye, Y.; Reabroy, R.; Zhang, Y. Hydrodynamic performance of a horizontal-axis tidal turbine subjected to terrain-induced turbulence using the lattice Boltzmann method. Phys. Fluids 2025, 37, 035169. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Zheng, Y.; Zhang, J.; Fernandez-Rodriguez, E.; Zang, W.; Ji, R. Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction. Energy 2023, 264, 126185. [Google Scholar] [CrossRef]
- Zhang, Y.; Fernandez-Rodriguez, E.; Zheng, J.; Zheng, Y.; Zhang, J.; Gu, H.; Zang, W.; Lin, X. A review on numerical development of tidal stream turbine performance and wake prediction. IEEE Access 2020, 8, 79325–79337. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, L.; Dai, S.; Collu, M.; Cui, L.; Yuan, Z.; Incecil, A. Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy. Renew. Sustain. Energy Rev. 2022, 169, 112909. [Google Scholar] [CrossRef]
- Mei, Y.; Jing, F.; Lu, Q.; Guo, B. Study on the hydrodynamic and wake characteristics of variable speed control of horizontal axis tidal turbine under surge motion. Energy 2024, 298, 131380. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, J.; Zang, J.; Sheng, Q.; Sun, K.; Zhang, X.; Ji, R. A fast two-dimensional numerical method for the wake simulation of a vertical axis wind turbine. Energies 2020, 14, 49. [Google Scholar] [CrossRef]
- Ji, R.; Zheng, J.; Xue, M.; Sun, K.; Ye, Y.; Zhu, R.; Fernandez-Rodriguez, E.; Zhang, Y. Investigations on the performance and wake dynamics of a tidal stream turbine under different yaw-offset conditions. Phys. Fluids 2025, 37, 015192. [Google Scholar] [CrossRef]
- Wang, B.; Bai, X.; Lei, G.; Zhang, W.; Ji, R. Effect analysis of the V-angle and straight edge length on the performance of V-shaped blades for a Savonius hydrokinetic turbine. J. Mar. Sci. Eng. 2025, 13, 1240. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, W.; Dai, S.; Yuan, Z.; Incecik, A. Wave energy conversion by multi-mode exciting wave energy converters arrayed around a floating platform. Energy 2024, 313, 133621. [Google Scholar] [CrossRef]
- Xue, M.A.; Yang, J.; Yuan, X.; Lu, Z.; Zheng, J.; Lin, P. Vibration controlling effect of tuned liquid column damper (TLCD) on support structural platform (SSP). Ocean Eng. 2024, 306, 118117. [Google Scholar] [CrossRef]
- Ji, R.; Wu, M.; Zheng, J.; Sun, K.; Zhang, J.; Xue, M.; Reabroy, R.; Zhang, Y. Lagrangian dynamic large-eddy simulation of the performance of a horizontal-axis tidal turbine with an actuator-line method. Phys. Fluids 2025, 37, 075169. [Google Scholar] [CrossRef]
- Kong, M.; Ji, R.; Wu, M.; Sun, K.; Zhang, J.; Zhang, Y.; Zhu, R.; Reabroy, R. Correction of sidewall blockage effect for twin-rotor vertical axis tidal stream turbine subjected to different solidities. Phys. Fluids 2025, 37, 035157. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zheng, J.; Zheng, Y.; Zhang, J.; Liu, Z.; Fernandez-Rodriguez, E. Research of the array spacing effect on wake interaction of tidal stream turbines. Ocean Eng. 2023, 276, 114227. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Zhang, Y.; Guo, W.; Wang, K.; Chen, L. A fast hydrodynamic prediction method of horizontal axis tidal turbine with surging motion under wave-current condition. Ocean Eng. 2023, 290, 116318. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Zhang, Y.; Jing, F.; Chen, L. Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave. Renew. Energy 2022, 189, 1020–1032. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, B.; Chen, F.; Zang, W.; Fernandez-Rodriguez, E.; Zhang, D.; Zhu, W. Numerical prediction of the surge-induced response of a tidal twin-turbine system. Energy 2025, 330, 136748. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Peng, B.; Zheng, Y.; Li, C.; Zang, W.; Fernandez-Rodriguez, E. Study on the dynamics and wake characteristics of a floating tidal stream turbine with pitch motion under free surface. Phys. Fluids 2023, 35, 085101. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zheng, Y.; Qian, Y.; Hua, H.; Ren, S.; Fernandez-Rodriguez, E. Effects of surge and roll motion on a floating tidal turbine using the actuator-line method. Phys. Fluids 2023, 35, 075125. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Li, C.; Ji, R.; Fernandez-Rodriguez, E. Performance evaluation and fast prediction of a pitched horizontal-axis tidal turbine under wave-current conditions using a variable-speed control strategy. J. Fluids Struct. 2025, 133, 104265. [Google Scholar] [CrossRef]
- Zang, W.; Zhang, Y.; Zheng, Y.; Zhang, J.; Guan, D.; Fernandez-Rodriguez, E. On the impact of waves and turbulence on the power fluctuations and wake structure of a tidal-stream turbine. Phys. Fluids 2023, 35, 055115. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, X.; Chen, Y.; Yan, H.; Chen, S.; Lai, W. Coupled dynamic response and energy conversion characteristics of 10 MW floating vertical axis wind turbine with different configurations. Ocean Eng. 2024, 309, 118610. [Google Scholar] [CrossRef]
- Hua, H.; Zhang, Y.; Qin, Z.; Yang, Y.; Fernandez-Rodriguez, E. Dynamic response of a semi-submersible floating wind turbine-point absorption wave energy hybrid energy system under rated and extreme conditions. Phys. Fluids 2025, 37, 017144. [Google Scholar] [CrossRef]
- Xue, M.A.; Dou, P.; Zheng, J.; Lin, P.; Yuan, X. Pitch motion reduction of semisubmersible floating offshore wind turbine substructure using a tuned liquid multicolumn damper. Mar. Struct. 2022, 84, 103237. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Ong, M.C.; Wan, L.; Li, L.; Cheng, Z. Extreme responses of an integrated system with a semi-submersible wind turbine and four torus-shaped wave energy converters in different survival modes. China Ocean Eng. 2024, 38, 877–892. [Google Scholar] [CrossRef]
- Yi, Y.; Sun, K.; Liu, Y.; Zhang, J.; Ji, R.; Wu, S. Hydrodynamic performance investigation of the floating wind turbine and point-absorber array hybrid system using a fully-coupled CFD model. Ocean Eng. 2024, 313, 119215. [Google Scholar] [CrossRef]
- Mi, C.; Gao, J.; Song, Z.; Lin, Y. Hydrodynamic wave forces on two side-by-side barges subjected to nonlinear focused wave groups. Ocean Eng. 2025, 317, 120056. [Google Scholar] [CrossRef]
- Gao, J.; Mi, C.; Song, Z.; Liu, Y. Transient gap resonance between two closely-spaced boxes triggered by nonlinear focused wave groups. Ocean Eng. 2024, 305, 117938. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, X.; Xu, D.; Zhao, Z.; Liu, H.; Kong, M.; Ji, R. Ship Optimization Based on Fully-Parametric Models for Hull, Propeller and Rudder. J. Mar. Sci. Eng. 2024, 12, 1635. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, B.; Zheng, J.; Zheng, Y.; Tang, Q.; Liu, Z.; Xu, J.; Wang, Y.; Fernandez-Rodriguez, E. The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition. Energy 2023, 283, 129071. [Google Scholar] [CrossRef]
- Jing, F.; Mei, Y.; Lu, Q.; Yang, L.; Guo, B. Study on the performance of a floating horizontal-axis tidal turbine with pitch motion under wave–current interaction. Phys. Fluids 2024, 36, 047122. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Sheng, Q.; Jing, F.; Ma, Y. The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine. Renew. Energy 2015, 74, 796–802. [Google Scholar] [CrossRef]
- Wang, S.; Sun, K.; Xu, G.; Liu, Y.; Bai, X. Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions. Renew. Energy 2017, 102, 87–97. [Google Scholar] [CrossRef]
- Wang, S.; Xu, G.; Zhu, R.; Wang, K. Hydrodynamic analysis of vertical-axis tidal current turbine with surging and yawing coupled motions. Ocean Eng. 2018, 155, 42–54. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Xie, Y.; Xu, G.; Zhu, R.; Liu, K. Research on hydrodynamic characteristics of horizontal axis tidal turbine with rotation and pitching motion under free surface condition. Ocean Eng. 2021, 235, 109383. [Google Scholar] [CrossRef]
- Wang, S.; Cui, J.; Ye, R.; Chen, Z.; Zhang, L. Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion. Renew. Energy 2019, 135, 313–325. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Cheng, S.; Zheng, Y.; Chamorro, L. On the dynamics of a model wind turbine under passive tower oscillations. Appl. Energy 2022, 311, 118608. [Google Scholar] [CrossRef]
- Zhang, X.; He, H.; Hao, H.; Ma, Y. Prediction of ultimate tensions in mooring lines for a floating offshore wind turbine considering extreme gusts. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2356223. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, W.; Zheng, J.; Peng, B.; Qian, Y.; Li, C.; Zheng, Y.; Fernandez-Rodriguez, E.; Yu, A. Quantifying the surge-induced response of a floating tidal stream turbine under wave-current flows. Energy 2023, 283, 129072. [Google Scholar] [CrossRef]
- Guo, X.; Yang, J.; Lu, W.; Li, X. Dynamic responses of a floating tidal turbine with 6-DOF prescribed floater motions. Ocean Eng. 2018, 165, 426–437. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Lu, B.; Lin, X.; Wang, F.; Liu, S. Experimental investigation of motion response and mooring load of semi-submersible tidal stream energy turbine under wave-current interactions. Ocean Eng. 2024, 300, 117445. [Google Scholar] [CrossRef]
- Lei, H.; Zhou, D.; Bao, Y.; Li, Y.; Han, Z. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine. Energy Convers. Manag. 2017, 133, 235–248. [Google Scholar] [CrossRef]
- Mikhail, L.S.; Philippe, R.S.; Mikhail, K.S.; Andrey, K.T. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar]
- Robertson, A.; Jonkman, J.; Masciola, M.; Song, H. Definition of the Semisubmersible Floating System for Phase II of OC4; National Renewable Energy Lab (NREL): Golden, CO, USA, 2014.
- Zhang, Y.; Zang, W.; Zheng, J.; Cappietti, L.; Zhang, J.; Zheng, Y.; Fernandez-Rodriguez, E. The influence of waves propagating with the current on the wake of a tidal stream turbine. Appl. Energy 2021, 290, 116729. [Google Scholar] [CrossRef]
- Zhao, W.; Wan, D. Numerical Study of Interactions Between Phase II of OC4 Wind Turbine and Its Semi-Submersible Floating Support System. J. Ocean. Wind. Energy 2015, 2, 45–53. [Google Scholar]
- Yang, Y.; Liu, Y. Three-degree-of-freedom vortex-induced motions of an OC4 floating offshore wind turbine platform under different current incidences. Ocean Eng. 2025, 330, 121240. [Google Scholar] [CrossRef]
- Li, X.; Xiao, Q.; Wang, E.; Peyrard, C.; Gonçalves, R. The dynamic response of floating offshore wind turbine platform in wave–current condition. Phys. Fluids 2023, 35, 087113. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Q.; Incecik, A.; Peyrard, C.; Wan, D. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines. Renew. Energy 2017, 112, 280–301. [Google Scholar] [CrossRef]
- Tran, T.T.; Kim, D.-H. Fully coupled aero-hydrodynamic analysis of a semi submersible FOWT using a dynamic fluid body interaction approach. Renew. Energy 2016, 92, 244–261. [Google Scholar] [CrossRef]
- Tran, T.T.; Kim, D.-H. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion. Renew. Energy 2016, 90, 204–228. [Google Scholar] [CrossRef]
- Jin, W. Evaluation of Tidal Current Energy Resources in Zhoushan Sea Area and Site Selection of Tidal Current Energy Power; Zhejiang Ocean University: Zhoushan, China, 2021. (In Chinese) [Google Scholar]
- Wang, S.; Peng, Y.; Dong, L.; Jiao, Y. An overview of ocean renewable energy in China. Renew. Sustain. Energy Rev. 2011, 15, 91–111. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, J.; Zhang, J. Potential Assessment of Tidal Stream Energy Around Hulu Island, China. Procedia Eng. 2015, 116, 871–879. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Si, Y.; Qian, P.; Wu, H.; Cui, L.; Zhang, D. A review of tidal current energy resource assessment in China. Renew. Sustain. Energy Rev. 2021, 145, 111012. [Google Scholar] [CrossRef]
- Dai, P.; Huang, Z.; Zhang, J. A modelling study of the tidal stream resource around Zhoushan Archipelago, China. Renew. Energy 2023, 218, 119234. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, B.; Vogel, C.; Willden, R.; Zang, J.; Zhang, L. Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter. Appl. Energy 2020, 257, 113996. [Google Scholar] [CrossRef]
- Hu, J.; Song, C.; Ji, R.; Deng, J.; Zhang, H.; Xu, G. Hydrodynamic sheltering characteristic assessment for a ship using wave attenuation systems in numerical wave tanks. Phys. Fluids 2025, 37, 075163. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, D.; Duan, Y.; Zhang, J.; Jiang, L. Investigation of coupled motion and power generation characteristics in a star-CCM-based floating wind-wave-current power generation platform. Ocean Eng. 2025, 331, 121255. [Google Scholar] [CrossRef]
- Edera, O.; Niosi, F.; Casalone, P.; Bonfanti, M.; Paduano, B.; Mattiazzo, G. Understanding wave energy converters dynamics: High-fidelity modeling and validation of a moored floating body. Appl. Energy 2024, 376, 124202. [Google Scholar] [CrossRef]
- Hu, C.; Tang, C.; Yu, W.; Ma, Y. Coupled interactions analysis of a floating tidal current power station in uniform flow. J. Mar. Sci. Eng. 2021, 9, 958. [Google Scholar] [CrossRef]
- Boger, D.; Paterson, E.; Noack, R.W. FoamedOver: A Dynamic Overset Grid Implementation in OpenFOAM. In Proceedings of the 10th Symposium on Overset Composite Grids and Solution Technology, NASA Ames Research Center, Moffet Field, CA, USA, 20–23 September 2010. [Google Scholar]
- Wang, Z.; Fan, Z.; Liu, F.; Jiang, X.; Li, B.; Qiu, M. Large-scale parallel simulation with implicit conservative overlapped grid technique for compressor flow. Comput. Fluids 2022, 238, 105375. [Google Scholar] [CrossRef]
- Nini, M.; Motta, V.; Biodolino, G.; Guardone, A. Three-dimensional simulation of a complete Vertical Axis Wind Turbine using overlapping grids. J. Comput. Appl. Math. 2014, 270, 78–87. [Google Scholar] [CrossRef]
- Mittal, K.; Dutta, S.; Fischer, P. Multirate timestepping for the incompressible Navier-Stokes equations in overlapping grids. J. Comput. Phys. 2021, 437, 110335. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, B. A fully coupled computational fluid dynamics method for analysis of semi-submersible floating offshore wind turbines under wind-wave excitation conditions based on OC5 data. Appl. Sci. 2018, 8, 2314. [Google Scholar] [CrossRef]
- Nematbakhsh, A.; Olinger, D.J.; Tryggvason, G. Nonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditions. J. Renew. Sustain. Energy 2014, 6, 033121. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, X.; Zeng, F.; Zhang, N.; Gu, Q. Hydrodynamic analysis of three semi-submersible floating offshore wind turbines under wave and current conditions. Ocean Eng. 2025, 331, 121322. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, M.; Chen, S.; Zha, R. Aerodynamic performance analysis of a floating wind turbine with coupled blade rotation and surge motion. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2301524. [Google Scholar] [CrossRef]
- Zeng, X.; Shi, W.; Feng, X.; Shao, Y.; Li, X. Investigation of higher-harmonic wave loads and low-frequency resonance response of floating offshore wind turbine under extreme wave groups. Mar. Struct. 2023, 89, 103401. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, B.; Wang, L.; Wang, P.; Zhao, H.; Guo, P.; Yang, S.; Wu, D. The effects of heave motion on the performance of a floating counter-rotating type tidal turbine under wave-current interaction. Energy Convers. Manag. 2022, 252, 115093. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, D.; Huang, X.; Yan, X.; Dou, P.; Ji, R. Comparative investigations on hull line optimization based on traditional and fully parametric methods for saving energy. Front. Energy Res. 2024, 12, 1359957. [Google Scholar] [CrossRef]
- Deng, X.; Law, A.; Zhang, J.; Lin, X. Two phase fluid-actuator line-immersed boundary coupling for tidal stream turbine modeling with scouring morphology under wave-current loading. Energy 2025, 329, 136757. [Google Scholar] [CrossRef]
- Draycott, S.; Payne, G.; Steynor, J.; Nambiar, A.; Sellar, B.; Venugopal, V. An experimental investigation into non-linear wave loading on horizontal axis tidal turbines. J. Fluids Struct. 2019, 84, 199–217. [Google Scholar] [CrossRef]
- Whelan, J.I. A Fluid Dynamic Study of Free-Surface Proximity and Inertia Effects on Tidal Turbines; Imperial College: London, UK, 2019. [Google Scholar]
- Li, X.; Li, M.; Jordan, L.-B.; McLelland, S.; Parsons, D.; Amoudry, L.; Song, Q.; Comerford, L. Modelling impacts of tidal stream turbines on surface waves. Renew. Energy 2019, 130, 725–734. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, S.; Dai, S.; Ji, C.; Collu, M.; Yuan, Z.; Incecik, A. Energy conversion and hydrodynamic analysis of multi-degree-of-freedom wave energy converters integrated into a semi-submersible platform. Energy Convers. Manag. 2022, 252, 115075. [Google Scholar] [CrossRef]
- International Towing Tank Conference. Uncertainty Analysis in Cfd, Verification and Validation Methodology and Procedures; ITTC: Ankara/Istanbul, Turkey, 2017. [Google Scholar]
- Ji, R.; Sun, K.; Zhang, J.; Zhu, R.; Wang, S. A novel actuator line-immersed boundary (AL-IB) hybrid approach for wake characteristics prediction of a horizontal-axis wind turbine. Energy Convers. Manag. 2022, 253, 115193. [Google Scholar] [CrossRef]
Physical Parameters of the Platform | Value | Unit |
---|---|---|
Platform mass | 1.407 × 107 | kg |
Center of mass (CM) location below still water level (SWL) | 9.9376 | m |
Platform roll inertia about CM | 1.1 × 1010 | kg·m2 |
Platform pitch inertia about CM | 1.1 × 1010 | kg·m2 |
Platform yaw inertia about CM | 1.226 × 1010 | kg·m2 |
Platform Geometry Parameters | Value | Unit |
---|---|---|
Depth of platform base below SWL (total draft) | 20 | m |
Elevation of main column (tower base) above SWL | 10 | m |
Elevation of offset columns above SWL | 12 | m |
Spacing between offset columns | 50 | m |
Length of upper columns | 26 | m |
Length of base columns | 6 | m |
Depth to top of base columns below SWL | 14 | m |
Diameter of main column | 6.5 | m |
Diameter of offset (upper) columns | 12 | m |
Diameter of base columns | 24 | m |
Diameter of pontoons and cross braces | 1.6 | m |
Parameters | Value | Unit |
---|---|---|
Number of mooring lines | 3 | |
Angle between adjacent lines | 120 | ° |
Depth to anchors below SWL | 200 | m |
Depth to fairleads below SWL | 14 | m |
Radius to anchors from platform centerline | 837.6 | m |
Radius to fairleads from platform centerline | 40.868 | m |
Mooring line diameter | 0.0766 | m |
Equivalent mooring line mass density | 113.35 | kg/m |
Equivalent mooring line mass in water | 108.63 | kg/m |
Equivalent mooring line extensional stiffness | 7.536 × 108 N | |
Hydrodynamic drag coefficient for mooring lines | 1.1 | |
Seabed drag coefficient for mooring lines | 1.0 |
r/R | r (mm) | c/R | θ (°) | δ/c |
---|---|---|---|---|
0.167 | 25 | 0.1 | 13.50 | 100 |
0.2 | 30 | 0.155 | 13.12 | 80 |
0.3 | 45 | 0.321 | 11.90 | 21 |
0.4 | 60 | 0.297 | 10.17 | 19 |
0.5 | 75 | 0.274 | 8.44 | 16 |
0.6 | 90 | 0.250 | 6.70 | 16 |
0.7 | 105 | 0.227 | 4.97 | 16 |
0.8 | 120 | 0.203 | 3.24 | 16 |
0.9 | 135 | 0.180 | 1.50 | 16 |
1.0 | 150 | 0.156 | −0.23 | 16 |
Parameter | s/m Value | Parameter | s/m Value | Parameter | s/m Value |
---|---|---|---|---|---|
Length | λ | Area | λ2 | Weight | λ3 |
Angle | 1 | Linear velocity | Area Moment | λ4 | |
Time | Period | Moment of Inertia | λ5 | ||
Torque | λ4 | Force | λ3 |
Number | Grid Size (m) | Total Domain Mesh Quantity (×104) | Cp | Cp Relative Change Rate | Ct | Ct Relative Change Rate |
---|---|---|---|---|---|---|
M1 | 0.011 | 347.5 | 0.29255 | - | 0.79655 | - |
M2 | 0.008 | 590.8 | 0.31876 | 8.9% | 0.80516 | 1% |
M3 | 0.006 | 729.5 | 0.31945 | 0.2% | 0.80753 | 0.29% |
Number | Wave Period T (s) | Wave Height H (m) | Flow Velocity VA (m/s) |
---|---|---|---|
1 | 1.0 | 0.04 | 0.4 |
2 | 1.0 | 0.06 | 0.4 |
3 | 1.0 | 0.08 | 0.4 |
4 | 1.0 | 0.10 | 0.4 |
5 | 1.0 | 0.12 | 0.4 |
Number | Wave Period T (s) | Wave Height H (m) | Flow Velocity VA (m/s) |
---|---|---|---|
1 | 0.8 | 0.04 | 0.4 |
2 | 1.0 | 0.04 | 0.4 |
3 | 1.2 | 0.04 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, M.; Zhang, X.; Ji, R.; Wu, H.; Yin, M.; Liu, H.; Sun, K.; Reabroy, R. Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine. J. Mar. Sci. Eng. 2025, 13, 1520. https://doi.org/10.3390/jmse13081520
Kong M, Zhang X, Ji R, Wu H, Yin M, Liu H, Sun K, Reabroy R. Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine. Journal of Marine Science and Engineering. 2025; 13(8):1520. https://doi.org/10.3390/jmse13081520
Chicago/Turabian StyleKong, Ming, Xiaojie Zhang, Renwei Ji, He Wu, Minwei Yin, Hongzang Liu, Ke Sun, and Ratthakrit Reabroy. 2025. "Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine" Journal of Marine Science and Engineering 13, no. 8: 1520. https://doi.org/10.3390/jmse13081520
APA StyleKong, M., Zhang, X., Ji, R., Wu, H., Yin, M., Liu, H., Sun, K., & Reabroy, R. (2025). Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine. Journal of Marine Science and Engineering, 13(8), 1520. https://doi.org/10.3390/jmse13081520