Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = combined heat drought stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1224
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 303
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

14 pages, 1333 KiB  
Article
Reliable RT-qPCR Normalization in Polypogon fugax: Reference Gene Selection for Multi-Stress Conditions and ACCase Expression Analysis in Herbicide Resistance
by Yufei Zhao, Xu Yang, Qiang Hu, Jie Zhang, Sumei Wan and Wen Chen
Agronomy 2025, 15(8), 1813; https://doi.org/10.3390/agronomy15081813 - 26 Jul 2025
Viewed by 244
Abstract
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data [...] Read more.
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data from seedling tissues. We assessed the expression stability of these eight RGs across various abiotic stresses and developmental stages using Delta Ct, BestKeeper, geNorm, and NormFinder algorithms. A comprehensive stability ranking was generated using RefFinder, with validation performed using the target genes COR413 and P5CS. Results identified EIF4A and TUB as the optimal RG combination for normalizing gene expression during heat stress, cold stress, and growth stages. EIF4A and ACT were most stable under drought stress, EIF4A and 28S under salt stress, and EIF4A and EF-1 under cadmium (Cd) stress. Furthermore, EIF4A and UBQ demonstrated optimal stability under herbicide stress. Additionally, application of validated RGs revealed higher acetyl-CoA carboxylase gene (ACCase) expression in one herbicide-resistant population, suggesting target-site gene overexpression contributes to resistance. This work presents the first systematic evaluation of RGs in P. fugax. The identified stable RGs provide essential tools for future gene expression studies on growth and abiotic stress responses in this species, facilitating deeper insights into the molecular basis of its weediness and adaptability. Full article
(This article belongs to the Special Issue Adaptive Evolution in Weeds: Molecular Basis and Management)
Show Figures

Graphical abstract

16 pages, 6892 KiB  
Article
Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture
by Tsiala V. Tutberidze, Alexey V. Ryndin, Tina D. Besedina, Natalya S. Kiseleva, Vladimir Brigida and Aleksandr P. Boyko
Sustainability 2025, 17(14), 6499; https://doi.org/10.3390/su17146499 - 16 Jul 2025
Viewed by 324
Abstract
Kiwifruit is a high-value subtropical crop with significant nutritional and economic importance, but its cultivation faces growing challenges due to climate change, particularly in Caucasus. This study aims to study the impact of abiotic stressors such as temperature extremes, drought, and frost on [...] Read more.
Kiwifruit is a high-value subtropical crop with significant nutritional and economic importance, but its cultivation faces growing challenges due to climate change, particularly in Caucasus. This study aims to study the impact of abiotic stressors such as temperature extremes, drought, and frost on the yield of the ‘Hayward’ cultivar over a 20-year period (from 2003 to 2022). Using a combination of agroclimatic data analysis, measurements of soluble solid content, and soil moisture assessments, this research identified key factors which limit kiwifruit cultivation productivity. The results revealed a high yield variability—68%, with the mean value declining by 16.6% every five years due to increasing aridity and heat stress. Extreme temperature rises of up to 30 °C caused yield losses of 79–89%, and the presence of frost led to declines of 71–94%. In addition, it is objectively proven that the vulnerability of kiwifruit is subject to climate-driven water imbalances. This highlights the need for adaptive strategy formation in the area of optimized irrigation for the sustainable cultivation of fruit in the subtropics. One of the study’s limitations was that it was organized around a single variety of kiwifruit (‘Hayward’). In view of the fact that there are significant differences in growth characteristics among kiwifruit varieties, future research should focus on overcoming this shortcoming. Full article
Show Figures

Figure 1

33 pages, 392 KiB  
Review
Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
by Despoina G. Petoumenou and Vasiliki Liava
Plants 2025, 14(14), 2157; https://doi.org/10.3390/plants14142157 - 13 Jul 2025
Cited by 1 | Viewed by 585
Abstract
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This [...] Read more.
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This review focuses on the main effects of salinity, drought, and high temperatures and the combined impact of drought and high temperatures on grapevines and examines how foliar applications influence grapevine responses under these specific stress conditions. Synthesizing the recent findings from the last ten years (160 articles), it provides direct insights into the potential of these compounds to alleviate each type of stress, highlighting their effects on grapevine physiology, yield components, and secondary metabolites in berries. While their mechanism of action is not entirely clear and their efficacy can vary depending on the type of compound used and the grapevine variety, most studies report a beneficial effect or no effect on grapevines under abiotic stresses (either single or combined). Future research is necessary to optimize the concentrations of these compounds and determine the appropriate number and timing of applications, particularly under open-field experiments. Additionally, studies should assess the effect of foliar applications under multiple abiotic stress conditions. In conclusion, integrating foliar applications into vineyard management represents a sustainable technique to mitigate abiotic stresses associated with climate change, such as salinity, water deficit, and heat stress, while preserving or enhancing the quality of grapes and wines. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
40 pages, 1231 KiB  
Review
Climate Adaptation Strategies for Maintaining Rice Grain Quality in Temperate Regions
by Yvonne Fernando, Ben Ovenden, Nese Sreenivasulu and Vito Butardo
Biology 2025, 14(7), 801; https://doi.org/10.3390/biology14070801 - 2 Jul 2025
Viewed by 512
Abstract
Climate change poses significant challenges to temperate rice production, particularly affecting grain quality and market acceptance. This review synthesizes current knowledge of climate-induced quality changes, with a focus on the Australian rice industry as a case study with comparisons to other temperate regions. [...] Read more.
Climate change poses significant challenges to temperate rice production, particularly affecting grain quality and market acceptance. This review synthesizes current knowledge of climate-induced quality changes, with a focus on the Australian rice industry as a case study with comparisons to other temperate regions. Environmental stressors such as extreme temperatures, variable rainfall, elevated CO2, and salinity disrupt biochemical pathways during grain development, altering physicochemical, textural, and aromatic traits. Different rice classes exhibit distinct vulnerabilities: medium-grain japonica varieties show reduced amylose under heat stress, aromatic varieties experience disrupted aroma synthesis under drought, and long-grain types suffer kernel damage under combined stresses. Temperature is a key driver, with quality deterioration occurring above 35 °C and below 15 °C. Systems biology analyses reveal complex signalling networks underpinning these stress responses, although experimental validation remains limited. The Australian industry has responded by developing cold-tolerant cultivars, precision agriculture, and water-saving practices, yet projected climate variability demands more integrated strategies. Priorities include breeding for stress-resilient quality traits, refining water management, and deploying advanced phenotyping tools. Emerging technologies like hyperspectral imaging and machine learning offer promise for rapid quality assessment and adaptive management. Sustaining high-quality rice in temperate zones requires innovation linking physiology with practical adaptation. Full article
Show Figures

Figure 1

24 pages, 4564 KiB  
Article
Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses
by Hasnae Choukri, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni and Shiv Kumar
Plants 2025, 14(13), 2019; https://doi.org/10.3390/plants14132019 - 1 Jul 2025
Viewed by 393
Abstract
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat [...] Read more.
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat stress, and combined heat and drought stresses. Significant effects of genotype, environment, and their interactions were observed on seed yield, seed size, cooking time, and nutritional quality. Heat and drought stresses caused substantial reductions in seed yield (up to 40% under combined stress), protein content, iron, and zinc concentration, and increased phytic acid levels, which negatively impacted iron and zinc bioavailability. Cooking time significantly decreased under stress conditions, with up to 54% reduction under combined heat and drought stresses at Annoceur research station. Correlation analysis revealed complex trade-offs among yield, nutritional quality, and cooking traits under stress conditions. Principal component analysis and GGE biplot analyses identified genotypes with superior yield, micronutrient concentration, and cooking time stability across environments. Genotypes such as G32, G3, and G36 combined high iron and zinc levels; G13 and G30 showed low phytic acid, while G 15 exhibited the shortest cooking time. These genotypes also demonstrated adaptability across the tested environment. This study highlights the potential of selecting climate-resilient, nutrient-dense lentil genotypes to support breeding efforts aimed at improving food security in the face of global climate variability. These genotypes can be suggested as elite climate-resilient parental lines to support breeders in enhancing lentil yield, nutritional quality, and stability under multiple stress conditions. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

19 pages, 331 KiB  
Review
The Impact of Heat Stress on Canola (Brassica napus L.) Yield, Oil, and Fatty Acid Profile
by Elizabeth Markie, Ali Khoddami, Sonia Y. Liu, Sheng Chen and Daniel K. Y. Tan
Agronomy 2025, 15(7), 1511; https://doi.org/10.3390/agronomy15071511 - 21 Jun 2025
Viewed by 560
Abstract
Canola (Brassica napus L.) is an oilseed crop that is currently being impacted by climate change. Heat stress risks production by impacting yield, oil, protein, and fatty acid profile. The purpose of this literature review was to assess the impact of heat [...] Read more.
Canola (Brassica napus L.) is an oilseed crop that is currently being impacted by climate change. Heat stress risks production by impacting yield, oil, protein, and fatty acid profile. The purpose of this literature review was to assess the impact of heat stress on canola while briefly evaluating other abiotic stresses, and to address the following research questions: (1) What is the impact of heat stress on canola yield?, (2) What is the impact of heat stress on canola oil and protein content?, and (3) What is the impact of heat stress on the fatty acid profile of canola? Forty papers were selected in relation to B. napus heat stress and impact on yield, oil content, or fatty acid profile, from 1978 to 2025. Key findings revealed that heat stress negatively impacted yield and oil, while significant variation was observed within the fatty acid profile. Genotype, heat stress condition, and growth stage significantly impacted results. Certain genotypes were identified as having potential heat-tolerant traits, providing a basis for future breeding programs. Future field studies with controlled irrigation may better explain variations between controlled environment and field studies when water stress is not a concern. A better understanding of the impact of combined stresses, particularly heat and drought, is also required for breeding tolerant lines in regions with minimal irrigation. Full article
(This article belongs to the Special Issue Agroclimatology and Crop Production: Adapting to Climate Change)
31 pages, 7842 KiB  
Article
Genome-Wide Characterization and Functional Analysis of CsDOF Transcription Factors in Camellia sinensis cv. Tieguanyin Under Combined Heat–Drought Stress
by Yingxin Wen, Cunyi Tan, Yujie Zhang, Hua Wu, Dian Chen, Heng Yue, Zekai Ding, Shijiang Cao and Kehui Zheng
Plants 2025, 14(12), 1829; https://doi.org/10.3390/plants14121829 - 14 Jun 2025
Viewed by 588
Abstract
Tieguanyin tea, celebrated as one of China’s top ten famous teas, is highly regarded for its unique flavor and taste. However, recent intensification of global warming has escalated the occurrence of abiotic stresses, posing significant threats to the growth, development, yield, and quality [...] Read more.
Tieguanyin tea, celebrated as one of China’s top ten famous teas, is highly regarded for its unique flavor and taste. However, recent intensification of global warming has escalated the occurrence of abiotic stresses, posing significant threats to the growth, development, yield, and quality of Tieguanyin tea plants. DOF (DNA-binding one zinc finger protein), a plant-specific transcription factor, plays a critical role in plant development and stress response. In this study, we identified and analyzed 58 CsDOF genes across the whole genome, which were found to be randomly and unevenly distributed across 15 chromosomes. A phylogenetic tree was constructed using DOF genes from Arabidopsis thaliana and Tieguanyin, categorizing these genes into 10 subgroups. Collinearity analysis revealed homologous gene pairs between CsDOF and OsDOF(19 pairs), StDOF (101 pairs), and ZmDOF (24 pairs). Cis-acting element analysis indicated that CsDOF genes contain elements related to both stress and hormone responses. Heat map analysis demonstrated that subfamily C2 predominantly regulates the growth and development of roots, stems, and leaves in Tieguanyin. Tertiary structure analysis of CsDOF proteins revealed diverse structures, underscoring the functional variability within the CsDOF gene family. Furthermore, qRT-PCR analysis was employed to assess the expression profiles of 13 CsDOF genes under high-temperature and drought conditions. Notably, CsDOF51 and CsDOF12 exhibited significant expression changes under drought and high-temperature stress, respectively, while CsDOF44 showed significant changes under both conditions. This study provides foundational knowledge of the CsDOF gene family and offers novel insights for enhancing the drought and heat tolerance of Tieguanyin tea. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

16 pages, 1890 KiB  
Article
Evaluation of Hybrid Sorghum Parents for Morphological, Physiological and Agronomic Traits Under Post-Flowering Drought
by Kadiatou Touré, MacDonald Bright Jumbo, Sory Sissoko, Baloua Nebie, Hamidou Falalou, Madina Diancoumba, Harou Abdou, Joseph Sékou B. Dembele, Boubacar Gano and Bernard Sodio
Agronomy 2025, 15(6), 1399; https://doi.org/10.3390/agronomy15061399 - 6 Jun 2025
Viewed by 497
Abstract
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early [...] Read more.
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early cessation of rains towards the end of the rainy season, is one of the most common constraints. Sorghum is generally adapted to harsh conditions. However, drought combined to heat reduce its yield and production in tropical and subtropical regions. To identify parents of sorghum hybrids tolerant to post-flowering drought for commercial hybrids development and deployment, a total of 200 genotypes, including male and female parents of the hybrids, were evaluated in 2022 by lysimeters under two water regimes, well-irrigated and water-stressed, at ICRISAT in Niger. Agronomic traits such as phenological stages, physiological traits including transpiration efficiency, and morphological traits such as green leaf number were recorded. Genotype × environment (G × E) interaction was significant for harvest index (HI), green leaf number (GLN), and transpiration efficiency (TE), indicating different responses of genotypes under varying water conditions. Transpiration efficiency (TE) was significantly and positively correlated with total biomass (BT), harvest index (HI), and grain weight (GW) under both stress conditions. Genotypes ICSV216094, ICSB293, ICSV1049, ICSV1460016, and ICSV216074 performed better under optimal and stress conditions. The Principal Component Analysis (PCA) results led to the identification of three groups of genotypes. The Groups 1 and 3 are characterized by their yield stability and better performance under stress and optimal conditions. These two groups could be used by breeding programs to develop high yield and drought tolerant hybrids. Full article
Show Figures

Figure 1

24 pages, 8013 KiB  
Article
Assessing the Combined Impact of Land Surface Temperature and Droughts to Heatwaves over Europe Between 2003 and 2023
by Foteini Karinou, Ilias Agathangelidis and Constantinos Cartalis
Remote Sens. 2025, 17(9), 1655; https://doi.org/10.3390/rs17091655 - 7 May 2025
Cited by 1 | Viewed by 1022
Abstract
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with [...] Read more.
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with heatwaves. Additionally, this study examines the role of different land cover types in modulating heatwave impacts, employing turbulent flux observations from micrometeorological towers. The interaction between heatwaves and droughts is further explored using the Standardized Precipitation Evapotranspiration Index (SPEI) and soil moisture data, highlighting the amplifying role of water stress through land–atmosphere feedbacks. The results reveal a statistically significant upward trend in LST-derived thermal anomalies, with the 2022 heatwave identified as the most extreme event, when approximately 75% of Europe experienced strong positive anomalies. On average, 91% of heatwave episodes identified in reanalysis-based air temperature records coincided with LST-defined anomaly events, confirming LST as a robust proxy for heatwave detection. Flux tower observations show that, during heatwaves, evergreen coniferous and mixed forests predominantly enhance sensible heat fluxes (mean anomalies during midday of 74 W/m2 and 62 W/m2, respectively), while grasslands exhibit increased latent heat flux (89 W/m2). Notably, under extreme compound heat–drought conditions, this pattern reverses for grassed sites due to rapid soil moisture depletion. Overall, the findings underscore the combined influence of surface temperature and drought in driving extreme heat events and introduce a novel, multi-source approach that integrates satellite, reanalysis, and ground-based data to assess heatwave dynamics across scales. Full article
Show Figures

Graphical abstract

18 pages, 2398 KiB  
Article
Short-Term Fertilization with the Nitrogen-Fixing Bacterium (NFB) Kosakonia radicincitans GXGL-4A Agent Can Modify the Transcriptome Expression Profiling of Cucumber (Cucumis sativus L.) Root
by Baoyun Feng, Erxing Wang, Yating Zhang, Lurong Xu, Yanwen Xue and Yunpeng Chen
Microorganisms 2025, 13(3), 506; https://doi.org/10.3390/microorganisms13030506 - 25 Feb 2025
Viewed by 664
Abstract
The application of nitrogen-fixing bacteria (NFB) as a biofertilizer can greatly reduce or even avoid environmental pollution caused by the excessive use of chemical nitrogen fertilizers. To explore the effect of short-term fertilization of GXGL-4A on the expression of functional genes in the [...] Read more.
The application of nitrogen-fixing bacteria (NFB) as a biofertilizer can greatly reduce or even avoid environmental pollution caused by the excessive use of chemical nitrogen fertilizers. To explore the effect of short-term fertilization of GXGL-4A on the expression of functional genes in the roots of the cucumber (Cucumis sativus L.) cultivar “Xintaimici”, this study used transcriptome sequencing technology combined with fluorescent quantitative RT-PCR (qRT-PCR) verification to compare the gene transcription profiles of GXGL-4A-treated and control (sterile-water-treated) groups. A total of 418 differentially expressed genes (DEGs) were detected. The transcription levels of genes Csa5G161290 and Csa3G027720, which encode nitrate transporters, showed significant up-regulation (3.04- and 2.27-fold, respectively) in roots inoculated with GXGL-4A. The genes CsaV3_5G006200, encoding cytokinin dehydrogenase involved in the biosynthesis of zeatin, CsaV3_1G011730, encoding a wound-responsive protein, and CsaV3_6G015610, encoding a heat stress transcription factor, were significantly up-regulated at the transcriptional level (p < 0.05). However, the transcription of nitrogen cycling functional genes CsaV3_3G036500, CsaV3_1g008910, and CsaV3_3G018610, which encode nitrate reductase, high-affinity nitrate transporter (NRT), and ferredoxin-nitrite reductase, respectively, showed significant down-regulation (p < 0.05). Only the KEGG pathway of phenylpropanoid biosynthesis reached a significant level (p < 0.05). This study contributes to a deeper understanding of the interaction between NFB and plants and provides theoretical guidance for the development of GXGL-4A as a mature biological agent for sustainable agricultural production under drought stress. Full article
Show Figures

Figure 1

22 pages, 2620 KiB  
Review
Polyamines Interaction with Gaseous Signaling Molecules for Resilience Against Drought and Heat Stress in Plants
by Nidhi, Noushina Iqbal and Nafees A. Khan
Plants 2025, 14(2), 273; https://doi.org/10.3390/plants14020273 - 18 Jan 2025
Cited by 1 | Viewed by 1391
Abstract
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress [...] Read more.
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (H2S), nitric oxide (NO), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), and ethylene (ET). The functions of PAs and GSM in stress perception, signal transduction, and stress-responsive pathways have been explored. However, there is a lack of detailed, updated information on the interaction of PAs and GSM in the adaptation of drought and heat stress. This review explores the interaction between PAs and GSM for the adaptation to drought and heat stress. It explores their synergistic effects in mitigating the negative impacts of drought and heat stress on plant growth, development, and productivity. Moreover, a comprehensive analysis of physiological, biochemical, and molecular approaches demonstrates that their interaction activates key stress-responsive pathways, enhances antioxidant systems, and modulates gene expression. These combined effects contribute to improved drought and heat tolerance in plants. The information presented in the review provides valuable insights into plant stress resilience strategies and suggests potential measures for developing climate-resilient crops to address the increasing environmental challenges. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 2319 KiB  
Article
Drought and High Temperatures Impact the Plant–Pollinator Interactions in Fagopyrum esculentum
by Corentin Defalque, Joy Laeremans, Jonathan Drugmand, Chanceline Fopessi Tcheutchoua, Yu Meng, Meiliang Zhou, Kaixuan Zhang and Muriel Quinet
Plants 2025, 14(1), 131; https://doi.org/10.3390/plants14010131 - 4 Jan 2025
Cited by 1 | Viewed by 1427
Abstract
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of [...] Read more.
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (Fagopyrum esculentum), an entomophilous crop of growing interest for sustainable agriculture. The plants were grown under two temperature regimes (21 °C/19 °C and 28 °C/26 °C, day/night) and two watering regimes (well-watered and water-stressed). Our results showed that the reproductive growth was more affected by drought and high temperatures than was the vegetative growth, and that combined stress had more detrimental effects. However, the impact of drought and high temperatures was variety-dependent. Drought and/or high temperatures reduced the number of open flowers per plant, as well as the floral resources (nectar and pollen), resulting in a decrease in pollinator visits, mainly under combined stress. Although the proportion of Hymenoptera visiting the flowers decreased with high temperatures, the proportion of Diptera remained stable. The insect visiting behavior was not strongly affected by drought and high temperatures. In conclusion, the modification of floral display and floral resources induced by abiotic stresses related to climate change alters plant–pollinator interactions in common buckwheat. Full article
(This article belongs to the Special Issue Interaction Between Flowers and Pollinators)
Show Figures

Figure 1

20 pages, 3102 KiB  
Article
Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment
by Giancarlo Pagnani, Alfredo Lorenzo, Nausicaa Occhipinti, Lisa Antonucci, Sara D’Egidio, Fabio Stagnari and Michele Pisante
Plants 2025, 14(1), 76; https://doi.org/10.3390/plants14010076 - 29 Dec 2024
Cited by 2 | Viewed by 1132
Abstract
The phenomenon known as “dimming” or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in [...] Read more.
The phenomenon known as “dimming” or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.7% per decade in areas between 25° N and 45° N. In particular, in Mediterranean regions, the production of durum wheat (Triticum turgidum L. subsp. Durum) is increasingly constrained by abiotic factors, such as spring/summer heat stress and drought, as well as reductions in solar radiation. Field experiments were conducted in Mosciano Sant’Angelo, Italy, over two cropping seasons (2016–2017 and 2017–2018) to evaluate the effects of photosynthetically active radiation (PAR) availability and nitrogen (N) fertilization on durum wheat. A split-plot design was used with two PAR levels (100% and 20% PAR) and three N rates (0, 100, and 250 kg ha−1). Results highlighted that full sunlight (NoSh) significantly increased grain yield (+25%), thousand kernel weight (+46%), and total gluten fractions (+16%) compared to shaded conditions (Sh). Chlorophyll content and NDVI values were highest under Sh combined with 250 kg N ha−1. Rainfall patterns strongly influenced productivity, with better vegetative growth in 2016–2017 and improved grain filling in 2017–2018. Nitrogen application significantly enhanced grain protein content, particularly under arid conditions. These findings emphasize the interaction between light availability and nitrogen management, suggesting that optimizing these factors can improve yield and quality in durum wheat under Mediterranean conditions. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

Back to TopTop