Climate Adaptation Strategies for Maintaining Rice Grain Quality in Temperate Regions
Simple Summary
Abstract
1. Introduction
2. Overview of the Australian Rice Industry
2.1. Historical Development and Adaptive Evolution
2.2. Contemporary Production Systems and Market Position
2.3. Climate Vulnerability and Adaptation Capacity
3. Global Temperate Rice-Growing Regions and Rice Grain Quality Classes
Quality Class Differentiation and Climate Vulnerability
4. Impact of Climate Change and Fluctuating Environmental Conditions on Grain Quality
4.1. Temperature Stresses
4.1.1. Cold Temperature Stress
4.1.2. High Temperature Stress
4.2. Water-Related Stresses and Management
4.2.1. Altered Precipitation Patterns and Water Management Implications
4.2.2. Increased Salinity
4.3. Elevated Atmospheric CO2 Concentrations
4.4. Extreme Weather Events
4.5. Physiological and Molecular Mechanisms Underlying Climate Stress Effects on Rice Quality
4.6. Genetic Network and Metabolic Hubs in Rice Stress–Quality Integration
5. Differential Climate Vulnerability Across Rice Quality Classes
5.1. Mechanistic Basis of Differential Climate Responses
5.2. Geographical Variation in Quality Response
5.3. Implications for Adaptation Prioritisation
6. Adaptation Strategies
6.1. Genetic Adaptation Approaches
6.2. Water Management Innovations
6.3. Technological Adaptation Systems
6.4. Advanced Quality Assessment Methodologies
7. Policy Implications for Climate Adaptation
7.1. Regulatory Frameworks Supporting Adaptation
7.2. Economic Incentives for Quality-Maintaining Practices
7.3. Research Funding Priorities
7.4. International Cooperation Mechanisms
8. Consumer Perspective on Climate-Induced Quality Changes
8.1. Potential Shifts in Consumer Acceptability Thresholds
8.2. Implications for Market Segmentation
8.3. Communication Strategies Regarding Quality Variations
8.4. Network-Informed Quality Consistency
9. Research Priorities for Climate-Resilient Rice Quality
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2AP | 2-acetyl-1-pyrroline |
ABARES | Australian Bureau of Agricultural and Resource Economics and Sciences |
ABA | Abscisic Acid |
AWD | Alternate Wetting and Drying |
DPW | Delayed Permanent Water |
DSR | Direct-Seeded Rice |
FACE | Free-Air Carbon Dioxide Enrichment |
HDT | High Day Time temperature |
HNT | High Night Time temperature |
NSW DPI | New South Wales Department of Primary Industries |
References
- Sreenivasulu, N.; Butardo, V.M., Jr.; Misra, G.; Cuevas, R.P.; Anacleto, R.; Kavi Kishor, P.B. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J. Exp. Bot. 2015, 66, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, T.; Xiong, R.; Zeng, Y.; Zhang, J.; Tang, F.; Zeng, Y.; Huang, S. Effect of climate warming on the grain quality of early rice in a double-cropped rice field: A 3-year measurement. Front. Sustain. Food Syst. 2023, 7, 1133665. [Google Scholar] [CrossRef]
- Tang, L.; Wu, A.; Li, S.; Tuerdimaimaiti, M.; Zhang, G. Impacts of Climate Change on Rice Grain: A Literature Review on What Is Happening, and How Should We Proceed? Foods 2023, 12, 536. [Google Scholar] [CrossRef]
- Zhao, X.; Fitzgerald, M. Climate change: Implications for the yield of edible rice. PLoS ONE 2013, 8, e66218. [Google Scholar] [CrossRef]
- Kim, A.-N.; Kim, O.W.; Kim, H. Varietal differences of japonica rice: Intrinsic sensory and physicochemical properties and their changes at different temperatures. J. Cereal Sci. 2023, 109, 103603. [Google Scholar] [CrossRef]
- Cordero-Lara, K.I. Temperate japonica rice (Oryza sativa L.) breeding: History, present and future challenges. Chil. J. Agric. Res. 2020, 80, 303–314. [Google Scholar] [CrossRef]
- Reinke, R.; Beecher, G.; Dunn, B.; Snell, P. Temperate Rice in Australia. In Advances in Temperate Rice Research; Jena, K.K., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2012; pp. 1–14. Available online: http://books.irri.org/9789712202896_content.pdf (accessed on 20 January 2025).
- Wassmann, R.; Jagadish, S.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.; Heuer, S. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, H.W.; Chen, D.; Zhou, T.; Dong, W.; Xiao, C.; Xie, S.-P.; Song, X.; Guo, L.; Ding, R.; et al. Reversed asymmetric warming of sub-diurnal temperature over land during recent decades. Nat. Commun. 2023, 14, 7189. [Google Scholar] [CrossRef]
- Australia State of the Environment. Available online: https://soe.dcceew.gov.au/overview/pressures/climate-change-and-extreme-events#:~:text=There%20is%20a%20general%20shift,increasing%20in%20frequency%20and%20intensity (accessed on 20 February 2025).
- Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). Independent Report into NSW Rice Vesting Arrangements; ABARES: Canberra, Australia, 2023. Available online: https://www.agriculture.gov.au/abares/research-topics/rice-vesting (accessed on 10 January 2025).
- Dou, Z.; Yang, Q.; Guo, H.; Zhou, Y.; Xu, Q.; Gao, H. A comparative study of grain quality and physicochemical properties of premium japonica rice from three typical production regions. Front. Plant Sci. 2024, 15, 1270388. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, Y.; Yuan, J.; Xing, C. Grain quality evaluation of japonica rice effected by cultivars, environment, and their interactions based on appearance and processing characteristics. Food Sci. Nutr. 2021, 9, 2129–2138. [Google Scholar] [CrossRef]
- Lu, M. Impact of climate change on rice and adaptation strategies: A review. Adv. Resour. Res. 2024, 4, 252–262. [Google Scholar] [CrossRef]
- Li, S.; Wu, F.; Zhou, Q.; Zhang, Y. Adopting agronomic strategies to enhance the adaptation of global rice production to future climate change: A meta-analysis. Agron. Sustain. Dev. 2024, 44, 23. [Google Scholar] [CrossRef]
- Blakeney, A. Rice grain quality evaluation in Australia. In Proceedings of the Workshop on Chemical Aspects of Rice Grain Quality; International Rice Research Institute: Los Baños, Philippines, 1979; pp. 115–121. [Google Scholar]
- Chant, S. The Historical Evolution of Rice as a ‘Local’ Food in Australia. Locale Australas. Pac. J. Reg. Food Stud. 2021, 8, 1–15. Available online: https://localejournal.org/issues/n8/Locale%20n8%20-%2005%20-%20Chant.pdf (accessed on 24 October 2024).
- Lewis, G.G.J. Illustrated History of the Riverina Rice Industry; NSW Department of Agriculture: Leeton, NSW, Australia, 1994. [Google Scholar]
- NSW DPI. 100 Years of Rice Research; NSW Department of Primary Industries: Leeton, NSW, Australia, 2022. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/1420281/Rice-Booklet-FINAL-WEB-2.pdf (accessed on 15 January 2025).
- SunRice. 70+ Years of SunRice. Available online: https://www.sunrice.com.au/our-70th-anniversary (accessed on 12 January 2025).
- Department of Agriculture, Fisheries and Forestry, Australia. Rice. 2022. Available online: https://www.agriculture.gov.au/agriculture-land/farm-food-drought/crops/rice (accessed on 5 February 2022).
- Rice Breeding Australia. About Our Organisation. Available online: https://www.ricebreedingaustralia.com.au/about (accessed on 15 March 2025).
- NSW-Government. Cropping Rice. Available online: https://www.dpi.nsw.gov.au/about-us/publications/pdi/2023/rice (accessed on 15 April 2024).
- Dwyer, G.; Clarke, M.; Cheesman, J. Rice in the Riverina; Marsden Jacob Associates: Melbourne, VIC, Australia, 2020. Available online: https://www.dcceew.gov.au/sites/default/files/documents/mja-rice-riverina.pdf (accessed on 20 October 2024).
- Department of Agriculture, Fisheries and Forestry (DAFF). Australian Rice Markets in 2020; DAFF: Canberra, ACT, Australia, 2020. Available online: https://www.agriculture.gov.au/abares/research-topics/agricultural-outlook/rice#:~:text=Rice%20production%20in%20Australia%20fluctuates,in%20southern%20New%20South%20Wales. (accessed on 20 January 2025).
- Statista. Rice—Australia. Available online: https://www.statista.com/outlook/cmo/food/bread-cereal-products/rice/australia (accessed on 10 June 2024).
- Monaco, F.; Sali, G.; Ben Hassen, M.; Facchi, A.; Romani, M.; Valè, G. Water Management Options for Rice Cultivation in a Temperate Area: A Multi-Objective Model to Explore Economic and Water Saving Results. Water 2016, 8, 336. [Google Scholar] [CrossRef]
- Farmonaut. Revolutionizing Australian Rice Farming: Sustainable Water-Saving Technologies for Enhanced Productivity. Available online: https://farmonaut.com/australia/revolutionizing-australian-rice-farming-sustainable-water-saving-technologies-for-enhanced-productivity/ (accessed on 20 February 2025).
- Tingey-Holyoak, J.L.; Pisaniello, J.; Buss, P.; Wiersma, B. Water productivity accounting in Australian agriculture: The need for cost-informed decision-making. Outlook Agric. 2020, 49, 172–184. [Google Scholar] [CrossRef]
- Kynetec. Impact of Devastating Bushfires on Australian Agriculture; Kynetec: Melbourne, VIC, Australia, 2020; Available online: https://www.kynetec.com/impact-of-devastating-bushfires-on-australian-agriculture#:~:text=Irrigation%20storages%20have%20been%20greatly,the%20lowest%20since%201978%2D1979 (accessed on 23 October 2024).
- Lou, G.; Bhat, M.A.; Tan, X.; Wang, Y.; He, Y. Research progress on the relationship between rice protein content and cooking and eating quality and its influencing factors. Seed Biol. 2023, 2, 16. [Google Scholar] [CrossRef]
- Zang, Q.; Han, X.; Zhang, M.; Huang, X.; Jiang, M.; Huang, L. Effects of High Temperature on Quality of Japonica Rice at Early and Middle Heading Stage under Different Planting Modes. Agronomy 2022, 12, 1833. [Google Scholar] [CrossRef]
- Ward, R.; Martin, M. Rice Cereal Quality; Department of Primary Industries: Leeton, NSW, Australia, 2009. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/307503/Rice-cereal-quality.pdf (accessed on 23 October 2024).
- Seneweera, S.; Blakeney, A.; Milham, P. Influence of rising atmospheric CO2 and phosphorus nutrition on the grain yield and quality of rice (Oryza sativa cv. Jarrah). Cereal Chem. 1996, 73, 239–243. [Google Scholar]
- Rahman, S.; Copeland, L.; Atwell, B.J.; Roberts, T.H. Elevated CO2 differentially affects the properties of grain from wild and domesticated rice. J. Cereal Sci. 2021, 100, 103227. [Google Scholar] [CrossRef]
- Zheng, C.; Niu, S.; Yan, Y.; Zhou, G.; Peng, Y.; He, Y.; Zhou, J.; Li, Y.; Xie, X. Moderate Salinity Stress Affects Rice Quality by Influencing Expression of Amylose- and Protein-Content-Associated Genes. Int. J. Mol. Sci. 2024, 25, 4042. [Google Scholar] [CrossRef]
- Ahmed, N.; Tetlow, I.J.; Nawaz, S.; Iqbal, A.; Mubin, M.; Nawaz ul Rehman, M.S.; Butt, A.; Lightfoot, D.A.; Maekawa, M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. J. Sci. Food Agric. 2015, 95, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sakai, H.; Usui, Y.; Tokida, T.; Nakamura, H.; Zhu, C.; Fukuoka, M.; Kobayashi, K.; Hasegawa, T. Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality. Field Crops Res. 2015, 179, 72–80. [Google Scholar] [CrossRef]
- Kobayashi, A.; Hori, K.; Yamamoto, T.; Yano, M. Koshihikari: A premium short-grain rice cultivar–its expansion and breeding in Japan. Rice 2018, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Chinachanta, K.; Shutsrirung, A.; Herrmann, L.; Lesueur, D.; Pathom-aree, W. Enhancement of the Aroma Compound 2-Acetyl-1-pyrroline in Thai Jasmine Rice (Oryza sativa) by Rhizobacteria under Salt Stress. Biology 2021, 10, 1065. [Google Scholar] [CrossRef]
- Dangthaisong, P.; Sookgul, P.; Wanchana, S.; Arikit, S.; Malumpong, C. Abiotic Stress at the Early Grain Filling Stage Affects Aromatics, Grain Quality and Grain Yield in Thai Fragrant Rice (Oryza sativa) Cultivars. Agric. Res. 2023, 12, 285–297. [Google Scholar] [CrossRef]
- Jirapornvaree, I.; Suppadit, T.; Kumar, V. Assessing the environmental impacts of agrifood production. Clean Technol. Environ. Policy 2022, 24, 1099–1112. [Google Scholar] [CrossRef]
- Vanavichit, A.; Kamolsukyeunyong, W.; Siangliw, M.; Siangliw, J.L.; Traprab, S.; Ruengphayak, S.; Chaichoompu, E.; Saensuk, C.; Phuvanartnarubal, E.; Toojinda, T.; et al. Thai Hom Mali Rice: Origin and Breeding for Subsistence Rainfed Lowland Rice System. Rice 2018, 11, 20. [Google Scholar] [CrossRef]
- Baldoni, E.; Mattana, M.; Locatelli, F.; Consonni, R.; Cagliani, L.R.; Picchi, V.; Abbruscato, P.; Genga, A. Analysis of transcript and metabolite levels in Italian rice (Oryza sativa L.) cultivars subjected to osmotic stress or benzothiadiazole treatment. Plant Physiol. Biochem. 2013, 70, 492–503. [Google Scholar] [CrossRef]
- Griglione, A.; Liberto, E.; Cordero, C.; Bressanello, D.; Cagliero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chem. 2015, 172, 305–313. [Google Scholar] [CrossRef]
- Lucisano, M.; Mariotti, M.; Pagani, M.; Bottega, G.; Fongaro, L. Cooking and textural properties of some traditional and aromatic rice cultivars. Cereal Chem. 2009, 86, 542–548. [Google Scholar] [CrossRef]
- Usui, Y.; Sakai, H.; Tokida, T.; Nakamura, H.; Nakagawa, H.; Hasegawa, T. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment. Rice 2014, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-H.; Lu, H.; Zhu, X.; Deng, Y.; Xie, Y.; Luo, Q.; Yu, J. How Rice Responds to Temperature Changes and Defeats Heat Stress. Rice 2024, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Dunn, T. Rice Variety Guide 2024–2025. 2024. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/1563080/Rice-variety-guide-2024-25.pdf (accessed on 23 June 2025).
- Kishor, D.; Seo, J.; Chin, J.H.; Koh, H.-J. Evaluation of whole-genome sequence, genetic diversity, and agronomic traits of Basmati rice (Oryza sativa L.). Front. Genet. 2020, 11, 86. [Google Scholar] [CrossRef]
- Mir, S.; Bosco, S.; Sunooj, K. Evaluation of physical properties of rice cultivars grown in the temperate region of India. Int. Food Res. J. 2013, 20, 1521–1527. Available online: http://www.ifrj.upm.edu.my/20%20(04)%202013/2%20IFRJ%2020%20(04)%202013%20Bosco%20(438).pdf (accessed on 20 October 2024).
- Singh, V.; Singh, A.K.; Mohapatra, T.; Krishnan, G.; Ellur, R.K. Pusa Basmati 1121—A rice variety with exceptional kernel elongation and volume expansion after cooking. Rice 2018, 11, 19. [Google Scholar] [CrossRef]
- Kang, M.-Y.; Rico, C.W.; Kim, C.-E.; Lee, S.-C. Physicochemical properties and eating qualities of milled rice from different Korean elite rice varieties. Int. J. Food Prop. 2011, 14, 640–653. [Google Scholar] [CrossRef]
- Nakamura, S.; Cui, J.; Zhang, X.; Yang, F.; Xu, X.; Sheng, H.; Ohtsubo, K.i. Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars. Biosci. Biotechnol. Biochem. 2016, 80, 2437–2449. [Google Scholar] [CrossRef]
- Ohtsubo, K.i.; Kobayashi, A.; Shimizu, H. Quality evaluation of rice in Japan. Jpn. Agric. Res. Q. 1993, 27, 95. Available online: https://www.jircas.go.jp/sites/default/files/publication/jarq/27-2-095-101_0.pdf (accessed on 24 October 2024).
- Suwannaporn, P.; Pitiphunpong, S.; Champangern, S. Classification of rice amylose content by discriminant analysis of physicochemical properties. Starch-Stärke 2007, 59, 171–177. [Google Scholar] [CrossRef]
- California Rice Commission. California Rice 101 Guide; California Rice Commission: Sacramento, CA, USA, 2020; Available online: https://www.calrice.org/ (accessed on 23 April 2025).
- Thompson, J.; Mutters, R. Effect of weather and rice moisture at harvest on milling quality of California medium-grain rice. Trans. ASABE 2006, 49, 435–440. [Google Scholar] [CrossRef]
- United States Department of Agriculture Foreign Agricultural Service (USDA). Production—Rice. USDA: Washington, DC, USA. Available online: https://www.fas.usda.gov/data/production/commodity/0422110 (accessed on 23 June 2025).
- United States Department of Agriculture Foreign Agricultural Service (USDA). World Agricultural Production (WAP) Circular. USDA: Washington, DC, USA. Available online: https://ipad.fas.usda.gov/ (accessed on 23 June 2025).
- Sakai, H.; Cheng, W.; Chen, C.P.; Hasegawa, T. Short-term high nighttime temperatures pose an emerging risk to rice grain failure. Agric. For. Meteorol. 2022, 314, 108779. [Google Scholar] [CrossRef]
- Lanceras, J.C.; Huang, Z.-L.; Naivikul, O.; Vanavichit, A.; Ruanjaichon, V.; Tragoonrung, S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res. 2000, 7, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Dutta, C.; Nath, D.J.; Phyllei, D. Aromatic rice and factors affecting aroma in rice. Int. J. Environ. Clim. Chang 2022, 12, 1773–1779. [Google Scholar] [CrossRef]
- Sustainable EU Rice. Varieties in Italy. Available online: https://www.sustainableeurice.eu/european-rice/varieties-in-italy/# (accessed on 23 June 2025).
- Reig-Valiente, J.L.; Viruel, J.; Sales, E.; Marqués, L.; Terol, J.; Gut, M.; Derdak, S.; Talón, M.; Domingo, C. Genetic Diversity and Population Structure of Rice Varieties Cultivated in Temperate Regions. Rice 2016, 9, 58. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Jiang, Y.; Zhang, H.; Wang, S.; Wang, F.; Zhu, Y. Genetic control and high temperature effects on starch biosynthesis and grain quality in rice. Front. Plant Sci. 2021, 12, 757997. [Google Scholar] [CrossRef]
- Rubayet, M.T.; Hossain, M.M. Climate Change and Its Impacts on Disease Dynamics in Major Cereal Crops. In Climate Change and Soil-Water-Plant Nexus: Agriculture and Environment; Rahman, M.M., Biswas, J.C., Meena, R.S., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 265–295. [Google Scholar]
- Hosseiniyan Khatibi, S.M.; Dimaano, N.G.; Veliz, E.; Sundaresan, V.; Ali, J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. Plant Commun. 2024, 5, 101078. [Google Scholar] [CrossRef]
- Hussain, S.; Huang, J.; Huang, J.; Ahmad, S.; Nanda, S.; Anwar, S.; Shakoor, A.; Zhu, C.; Zhu, L.; Cao, X.; et al. Rice Production Under Climate Change: Adaptations and Mitigating Strategies. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 659–686. [Google Scholar]
- Ward, R. Rice Growing Guide; NSW Department of Primary Industries: Leeton, NSW, Australia, 2021. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/1361173/RGG-2021-web-final-26Oct2021.pdf (accessed on 23 October 2024).
- Ward, R.; Spohr, L.; Snell, P. Rice grain quality: An Australian multi-environment study. Crop Pasture Sci. 2019, 70, 946–957. [Google Scholar] [CrossRef]
- Fitzgerald, M.A.; Reinke, R. Rice Grain Quality III. In A Report for the Rural Industries Research and Development Corporation; RIRDC Publication: Barton, ACT, Australia, 2006. [Google Scholar]
- Aghamolki, M.T.K.; Yusop, M.K.; Oad, F.C.; Zakikhani, H.; Jaafar, H.Z.; Kharidah, S.; Musa, M.H. Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. J. Food Agric. Env. 2014, 12, 741–746. [Google Scholar]
- Chandarak, N.; Somjinda, P.; Phoncharoen, P.; Banterng, P.; Taratima, W.; Theerakulpisut, P.; Dongsansuk, A. Booting heat stress alters leaf photosynthesis, growth rate, phenology and yield in rice. Plant Stress 2023, 10, 100226. [Google Scholar] [CrossRef]
- Jagadish, S.K.; Craufurd, P.Q.; Wheeler, T. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef]
- Farrell, T.; Fox, K.; Williams, R.; Fukai, S. Genotypic variation for cold tolerance during reproductive development in rice: Screening with cold air and cold water. Field Crops Res. 2006, 98, 178–194. [Google Scholar] [CrossRef]
- Mitchell, J.; Zulkafli, S.; Bosse, J.; Campbell, B.; Snell, P.; Mace, E.; Godwin, I.; Fukai, S. Rice-cold tolerance across reproductive stages. Crop Pasture Sci. 2016, 67, 823–833. [Google Scholar] [CrossRef]
- Farrell, T.; Fox, K.; Williams, R.; Fukai, S.; Lewin, L. Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Aust. J. Agric. Res. 2006, 57, 89–100. [Google Scholar] [CrossRef]
- Ma, H.; Jia, Y.; Wang, W.; Wang, J.; Zou, D.; Wang, J.; Gong, W.; Han, Y.; Dang, Y.; Wang, J.; et al. Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice. Agronomy 2025, 15, 417. [Google Scholar] [CrossRef]
- Zhen, F.; Wang, W.; Wang, H.; Zhou, J.; Liu, B.; Zhu, Y.; Liu, L.; Cao, W.; Tang, L. Effects of short-term heat stress at booting stage on rice-grain quality. Crop Pasture Sci. 2019, 70, 486–498. [Google Scholar] [CrossRef]
- Espe, M.B.; Hill, J.E.; Hijmans, R.J.; McKenzie, K.; Mutters, R.; Espino, L.A.; Leinfelder-Miles, M.; van Kessel, C.; Linquist, B.A. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice. Glob. Change Biol. 2017, 23, 4386–4395. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, J.; Qian, Q.; Shang, L. Enhancement of heat and drought stress tolerance in rice by genetic manipulation: A systematic review. Rice 2022, 15, 67. [Google Scholar] [CrossRef]
- Wood, R.M.; Dunn, B.W.; Waters, D.L.E.; Blanchard, C.L.; Mawson, A.J.; Oli, P. Effect of agronomic management on rice grain quality Part III: Australian water-saving irrigation practices. Cereal Chem. 2020, 98, 249–262. [Google Scholar] [CrossRef]
- Wood, R.M.; Waters, D.L.; Mawson, A.J.; Blanchard, C.L.; Dunn, B.W.; Oli, P. Effect of agronomic management on rice grain quality Part I: A review of Australian practices. Cereal Chem. 2021, 98, 222–233. [Google Scholar] [CrossRef]
- Rural Industries Research and Development Corporation (RIRDC). Focus on Rice Research and Development; RIRDC: Barton, ACT, Australia, 2013; Available online: https://agrifutures.com.au/wp-content/uploads/publications/13-054.pdf (accessed on 23 October 2024).
- Kim, Y.U.; Moon, K.; Lee, B.W. Climatic constraints to yield and yield components of temperate japonica rice. Agron. J. 2021, 113, 3489–3497. [Google Scholar] [CrossRef]
- Sales, E.; Viruel, J.; Domingo, C.; Marqués, L. Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties. PLoS ONE 2017, 12, e0183416. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Jiang, L.; Zou, Y.; Zhang, W. On-farm assessment of effect of low temperature at seedling stage on early-season rice quality. Field Crops Res. 2013, 141, 63–68. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, B.; Tang, J.; Xu, F.; Xu, K.; Hu, Y.; Xing, Z.; Zhang, H.; Huo, Z.; Wei, H. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron. Sin. 2019, 45, 1208–1220. [Google Scholar]
- Rural Industries Research and Development Corporation (RIRDC). Production of Quality Rice in South Eastern Australia; RIRDC: Kingston, VIC, Australia, 2000; ISBN 0642580324. [Google Scholar]
- Singh, A.; Chaudhuri, B.; Roychoudhury, A. Influence of Night Temperature on Rice Yield and Quality. In Rice Research for Quality Improvement: Genomics and Genetic Engineering: Volume 1: Breeding Techniques and Abiotic Stress Tolerance; Roychoudhury, A., Ed.; Springer Singapore: Singapore, 2020; pp. 579–590. [Google Scholar]
- Morita, S.; Yonemaru, J.-I.; Takanashi, J.-I. Grain Growth and Endosperm Cell Size Under High Night Temperatures in Rice (Oryza sativa L.). Ann. Bot. 2005, 95, 695–701. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Peng, S.; Zou, Y.; Chen, S.; Shi, W.; Qin, J.; Laza, M.R.C. Effects of high night temperature on yield and agronomic traits of irrigated rice under field chamber system condition. Aust. J. Crop Sci. 2013, 7, 7–13. [Google Scholar]
- Yang, T.; Xiong, R.; Tan, X.; Huang, S.; Pan, X.; Guo, L.; Zeng, Y.; Zhang, J.; Zeng, Y. The impacts of post-anthesis warming on grain yield and quality of double-cropping high-quality indica rice in Jiangxi Province, China. Eur. J. Agron. 2022, 139, 126551. [Google Scholar] [CrossRef]
- Ricegrowers’ Association of Australia (RGA). The Rice Growing and Production Process; RGA: Leeton, NSW, Australia, 2013; Available online: https://www.rga.org.au/common/Uploaded%20files/RGA/Publications%20and%20Factsheets/The-rice-growing-process-2013_Web.aspx (accessed on 18 October 2024).
- Ali, F.; Waters, D.L.; Ovenden, B.; Bundock, P.; Raymond, C.A.; Rose, T.J. Australian rice varieties vary in grain yield response to heat stress during reproductive and grain filling stages. J. Agron. Crop Sci. 2019, 205, 179–187. [Google Scholar] [CrossRef]
- Batlang, U.; Baisakh, N.; Ambavaram, M.M.; Pereira, A. Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Rice Protoc. 2013, 956, 209–225. [Google Scholar]
- Huanhe, W.; Weiyi, M.; Xiang, Z.; Boyuan, Z.; Xiaoyu, G.; Lulu, W.; Wang, Z.; Yinglong, C.; Zhongyang, H.; Ke, X. Salinity Stress Deteriorates Grain Yield and Increases 2-Acetyl-1-Pyrroline Content in Rice. Rice Sci. 2024, 31, 371. [Google Scholar] [CrossRef]
- New South Wales Department of Primary Industries (NSW DPI). Irrigation Salinity—Causes and Impacts; NSW DPI: New South Wales, NSW, Australia, 2009. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/310365/Irrigation-salinity-causes-and-impacts.pdf (accessed on 25 August 2024).
- Champness, M.; Ballester, C.; Hornbuckle, J. Effect of soil moisture deficit on aerobic rice in temperate Australia. Agronomy 2023, 13, 168. [Google Scholar] [CrossRef]
- Mote, K.; Rao, V.P.; Anitha, V. Alternate wetting and drying. Indian Farm 2020, 70, 6–9. [Google Scholar]
- Mote, K.; Rao, V.P.; Ramulu, V.; Kumar, K.A.; Devi, M.U.; Sudhakara, T.M. Alternate wetting and drying irrigation technology for sustainable rice (Oryza sativa) production. Paddy Water Environ. 2023, 21, 551–569. [Google Scholar] [CrossRef]
- Dunn, B.; Troldahl, D. Rice Variety Guide 2022–2023, 12th ed.; Primefact 1112; NSW Department of Primary Industries: Yanco, NSW, Australia, 2022. [Google Scholar]
- Laenoi, S.; Rerkasem, B.; Lordkaew, S. Seasonal variation in grain yield and quality in different rice varieties. Field Crops Res. 2018, 221, 350–357. [Google Scholar] [CrossRef]
- AgriFutures_Australia. Keeping the Australian Rice Industry Competitive: Transitioning to Management Practices that Increase Water Productivity. Available online: https://agrifutures.com.au/news/australian-rice-management-practices-increase-water-productivity/ (accessed on 20 February 2025).
- Dunn, B.; Gaydon, D. Rice growth, yield and water productivity responses to irrigation scheduling prior to the delayed application of continuous flooding in south-east Australia. Agric. Water Manag. 2011, 98, 1799–1807. [Google Scholar] [CrossRef]
- Porpavai, S.; Yogeswari, D. Alternate wetting and drying irrigation in direct seeded rice: A review. Agric. Rev. 2021, 42, 329–335. [Google Scholar] [CrossRef]
- LaHue, G.T.; Chaney, R.L.; Adviento-Borbe, M.A.; Linquist, B.A. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives. Agric. Ecosyst. Environ. 2016, 229, 30–39. [Google Scholar] [CrossRef]
- Wood, R.; Mawson, J.; Waters, D.L.; Blanchard, C.; Dunn, B.W.; Oli, P. Vegetative Water Stress Alters Grain-Filling Behaviour Improving Grain Quality in Rice. In Proceedings of the 68th Australasian Grain Science Conference, Wagga, NSW, Australia, 10–13 September 2018. [Google Scholar]
- Darbyshire, R.; Crean, J.; Kouadio, L.; Cashen, M.; Anwar, M.; Cobon, D. Valuing Seasonal Climate Forecasts in Australian Agriculture: Northern Grains Case Study; NSW Department of Primary Industries: Leeton, NSW, Australia, 2018. [Google Scholar]
- Lee, M.-S.; Kang, B.-M.; Lee, J.-E.; Choi, W.-J.; Ko, J.; Choi, J.-E.; An, K.-N.; Kwon, O.-D.; Park, H.-G.; Shin, H.-R. How do extreme wet events affect rice quality in a changing climate? Agric. Ecosyst. Environ. 2013, 171, 47–54. [Google Scholar] [CrossRef]
- Murphy, J. Salinity–Our Silent Disaster; Australian Broadcasting Corporation: Sydney, NSW, Australia, 1999; Available online: http://abc.net.au/science/slab/salinity/default.htm (accessed on 25 September 2024).
- Zeng, L.; Shannon, M.C.; Lesch, S.M. Timing of salinity stress affects rice growth and yield components. Agric. Water Manag. 2001, 48, 191–206. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Bibliography on Salt Tolerance, Fibres, Grains and Special Crops; Salinity Laboratory, USDA Agriculture Research Service: Washington, DC, USA, 2019. Available online: http://www.Ars.Usda.Gov/services/docs.Htm?Docid=8908 (accessed on 20 January 2024).
- Zhou, G.; Zhai, C.; Deng, X.; Zhang, J.; Zhang, Z.; Dai, Q.; Cui, S. Performance of Yield, Photosynthesis and Grain Quality of japonica Rice Cultivars Under Salinity Stress in Micro-plots. Chin. J. Rice Sci. 2018, 1, 146. [Google Scholar]
- Thitisaksakul, M.; Tananuwong, K.; Shoemaker, C.F.; Chun, A.; Tanadul, O.-u.-m.; Labavitch, J.M.; Beckles, D.M. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. J. Agric. Food Chem. 2015, 63, 2296–2304. [Google Scholar] [CrossRef]
- Beecher, H. Effect of saline water on rice yields and soil properties in the Murrumbidgee Valley. Aust. J. Exp. Agric. 1991, 31, 819–823. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, T.; Zhu, K.; Wang, W.; Zhang, W.; Zhang, H.; Liu, L.; Zhang, Z.; Wang, Z.; Wang, B.; et al. Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance. Plants 2023, 12, 3243. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Ali, A.; Safdar, L.B.; Zafar, M.M.; Rui, Y.; Shakeel, A.; Shaukat, A.; Ashraf, M.; Gong, W.; Yuan, Y. Salt stress induces physiochemical alterations in rice grain composition and quality. J. Food Sci. 2020, 85, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, F.; Zhang, A.; Chen, Z.; Luo, X.; Kong, D.; Zhang, F.; Yu, X.; Liu, G.; Luo, L. Improvement of Salinity Tolerance in Water-Saving and Drought-Resistance Rice (WDR). Int. J. Mol. Sci. 2023, 24, 5444. [Google Scholar] [CrossRef]
- Cui, R.; Zhou, T.; Shu, C.; Zhu, K.; Ye, M.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; et al. Effects of Salt Stress on Grain Quality and Starch Properties of High-Quality Rice Cultivars. Agronomy 2024, 14, 444. [Google Scholar] [CrossRef]
- AR6, I. Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 20 June 2025).
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Hu, S.; Tong, K.; Chen, W.; Wang, Y.; Wang, Y.; Yang, L. Response of rice grain quality to elevated atmospheric CO2 concentration: A meta-analysis of 20-year FACE studies. Field Crops Res. 2022, 284, 108562. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; McGrath, J.M. Direct Effects of Rising Atmospheric Carbon Dioxide and Ozone on Crop Yields. In Climate Change and Food Security: Adapting Agriculture to a Warmer World; Lobell, D., Burke, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 109–130. [Google Scholar]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Dong, G.; Gu, H.; Huang, J.; Zhu, J.; Yang, H.; Liu, G.; Han, Y. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res. 2007, 102, 128–140. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Lam, S.K.; Liu, X.; Pan, G. Responses of wheat and rice grain mineral quality to elevated carbon dioxide and canopy warming. Field Crops Res. 2020, 249, 107753. [Google Scholar] [CrossRef]
- Hu, S.; Shi, G.; Wang, Y.; Gao, B.; Jing, L.; Chen, X.; Xiong, F.; Zhu, J.; Wang, Y.; Huang, J. Differences and similarities between japonica and indica rice cultivars in the response of grain quality to free-air CO2 enrichment. Crop Environ. 2025, 4, 73–82. [Google Scholar] [CrossRef]
- NSW DPI. State Seasonal Update—Riverina LLS Region. Available online: https://www.dpi.nsw.gov.au/climate_applications/ssu-archive/2025/march-2025/monthly-regional-breakdown/riverina-lls-region (accessed on 20 June 2025).
- AdaptNSW. Climate Change in the Murray/Murrumbidgee. Available online: https://www.climatechange.environment.nsw.gov.au/murray-murrumbidgee (accessed on 20 June 2025).
- NSW DPI. Extreme Event Analysis—January 2025. Available online: https://www.dpi.nsw.gov.au/climate_applications/ssu-archive/2025/January-2025/monthly-indicators/climate-analysis/extreme-event-analysis (accessed on 20 June 2025).
- WWF Australia; University of Sydney. Black Summer 2019–20 Bushfires Cost Farmers $4–5 Billion. Available online: https://www.sydney.edu.au/news-opinion/news/2021/12/13/black-summer-2019-20-bushfires-cost-farmers-5-billion-australia.html (accessed on 20 June 2025).
- ABC News. Flooding Stops Rice Farmers Sowing Next Crop in Southern New South Wales. Available online: https://www.abc.net.au/news/2022-11-22/flooding-devastates-southern-nsw-rice-growers/101677310 (accessed on 20 June 2025).
- Jakob, D.; Walland, D. Variability and long-term change in Australian temperature and precipitation extremes. Weather Clim. Extrem. 2016, 14, 36–55. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.-S.; Fromm, M.; Grierson, P.F.; McRae, R.; Baker, P. Natural hazards in Australia: Extreme bushfire. Clim. Change 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Bartos, S. Fork in the Road: Impacts of Climate Change on Australia’s Food Supply. 2022. Available online: https://farmersforclimateaction.org.au/wp-content/uploads/2022/03/Fork-in-the-Road_V5.pdf (accessed on 15 March 2024).
- Duan, H.; Tong, H.; Zhu, A.; Zhang, H.; Liu, L. Effects of Heat, Drought and Their Combined Effects on Morphological Structure and Physicochemical Properties of Rice (Oryza sativa L.) Starch. J. Cereal Sci. 2020, 95, 103059. [Google Scholar] [CrossRef]
- Moulick, D.; Sarkar, S.; Awasthi, J.P.; Ghosh, D.; Choudhury, S.; Tata, S.K.; Bramhachari, K.; Santra, S.C. Rice Grain Quality Traits: Neglected or Less Addressed? In Rice Research for Quality Improvement: Genomics and Genetic Engineering Volume 1: Breeding Techniques and Abiotic Stress Tolerance; Roychoudhury, A., Ed.; Springer Nature: Singapore, 2020; pp. 729–745. [Google Scholar]
- Zhang, H.; Duan, L.; Dai, J.-S.; Zhang, C.-Q.; Li, J.; Gu, M.-H.; Liu, Q.-Q.; Zhu, Y. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA. Theor. Appl. Genet. 2014, 127, 273–282. [Google Scholar] [CrossRef]
- Chauhan, H.; Khurana, N.; Agarwal, P.; Khurana, P. Heat shock factors in rice (Oryza sativa L.): Genome-wide expression analysis during reproductive development and abiotic stress. Mol. Genet. Genom. 2011, 286, 171–187. [Google Scholar] [CrossRef]
- Shi, Y.; Chang, Y.-L.; Wu, H.-T.; Shalmani, A.; Liu, W.-T.; Li, W.-Q.; Xu, J.-W.; Chen, K.-M. OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice. Plant Cell Rep. 2020, 39, 1767–1784. [Google Scholar] [CrossRef]
- Ghosh, P.; Roychoudhury, A. Aromatic Rice: Biochemical and Molecular Basis of Aroma Production and Stress Response. In Rice Research for Quality Improvement: Genomics and Genetic Engineering: Volume 2: Nutrient Biofortification and Herbicide and Biotic Stress Resistance in Rice; Roychoudhury, A., Ed.; Springer: Singapore, 2020; pp. 373–408. [Google Scholar]
- Li, W.; Lou, X.; Wang, Z.; Zhang, D.; Li, L.; Ding, X.; Cheng, G.; Nie, W.; Li, Z.; Yu, J.; et al. Unlocking ABA’s role in rice cold tolerance: Insights from Zhonghua 11 and Kasalath. Theor. Appl. Genet. 2025, 138, 16. [Google Scholar] [CrossRef]
- Rajkumari, N.; Chowrasia, S.; Nishad, J.; Ganie, S.A.; Mondal, T.K. Metabolomics-mediated elucidation of rice responses to salt stress. Planta 2023, 258, 111. [Google Scholar] [CrossRef]
- Wang, R.; Jing, W.; Xiao, L.; Jin, Y.; Shen, L.; Zhang, W. The Rice High-Affinity Potassium Transporter1;1 Is Involved in Salt Tolerance and Regulated by an MYB-Type Transcription Factor. Plant Physiol. 2015, 168, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Batool, M.; Ullah, M.; Khalid, B.; El-Badri, A.M.; Mohamed, I.A.A.; Zhang, L.; Kuai, J.; Xu, Z.; Zhao, J.; et al. Molecular Alchemy: Converting Stress into Resilience via Secondary Metabolites and Calcium Signaling in Rice. Rice 2025, 18, 32. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Tazoe, N.; Nakayama, T.; Yonekura, T.; Izuta, T.; Kohno, Y. Combined effects of elevated air temperature and CO2 on growth, yield, and yield components of japonica rice (Oryza sativa L.). Asian J. Atmos. Environ. 2023, 17, 17. [Google Scholar] [CrossRef]
- He, H.; Liu, C.; Wu, Z.; Chen, M.; Qu, K.; Zhao, J.; Wang, Y.; Hu, Z.; Li, Q. Responses of Rice Photosynthesis and Yield to Elevated CO2 Concentrations: A Quantitative Analysis via Chlorophyll Fluorescence Technology. J. Soil Sci. Plant Nutr. 2024, 24, 5043–5054. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Zhang, B.; Chang, Y.; An, S.; Zhao, W. Sugar starvation activates the OsSnRK1a-OsbHLH111/OsSGI1-OsTPP7 module to mediate growth inhibition of rice. Plant Biotechnol. J. 2023, 21, 2033–2046. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, M.; Chen, J.; Li, W.; Wang, M.; Chen, F. Identification of Ossnrk1a− 1 Regulated Genes Associated with Rice Immunity and Seed Set. Plants 2024, 13, 596. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, P.; Suniti; Kumar, U.; Avni; Mann, A. Transcriptional Regulatory Network Involved in Drought and Salt Stress Response in Rice. In Salinity and Drought Tolerance in Plants: Physiological Perspectives; Springer Nature Singapore: Singapore, 2023; pp. 237–274. [Google Scholar]
- Sun, L.; Huang, L.; Hong, Y.; Zhang, H.; Song, F.; Li, D. Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses. Int. J. Mol. Sci. 2015, 16, 4306–4326. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, H.; Huang, L.; Li, D.; Song, F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front. Plant Sci. 2016, 7, 4. [Google Scholar] [CrossRef]
- Lou, D.; Lu, S.; Chen, Z.; Lin, Y.; Yu, D.; Yang, X. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice. BMC Plant Biol. 2023, 23, 53. [Google Scholar] [CrossRef]
- Dey, A.; Samanta, M.K.; Gayen, S.; Maiti, M.K. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol. 2016, 16, 158. [Google Scholar] [CrossRef]
- Lou, D.; Chen, Z.; Yu, D.; Yang, X. SAPK2 contributes to rice yield by modulating nitrogen metabolic processes under reproductive stage drought stress. Rice 2020, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Prathap, V.; Tyagi, A. Correlation between expression and activity of ADP glucose pyrophosphorylase and starch synthase and their role in starch accumulation during grain filling under drought stress in rice. Plant Physiol. Biochem. 2020, 157, 239–243. [Google Scholar] [CrossRef]
- Huang, K.; Lu, F.; Chen, P.; Jiao, G.; Lin, H.; Zhang, J.; Zhao, S.; Cao, R.; Shao, G.; Sheng, Z. A large-scale gene regulatory network for rice endosperm starch biosynthesis and its application in genetic improvement of rice quality. Plant Biotechnol. J. 2025, 23, 2583–2594. [Google Scholar] [CrossRef]
- Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Zhang, Y.; Mu, Y.; Li, Y.; Nie, L. Regulation of 2-acetyl-1-pyrroline (2-AP) biosynthesis and grain quality in fragrant rice under salt stress. Field Crops Res. 2025, 322, 109747. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.; Yu, L.; Hu, Y.; Du, A.; Fu, X.; Wu, C.; Luo, D.; Hu, B.; Dong, H. OsMADS1 regulates grain quality, gene expressions, and regulatory networks of starch and storage protein metabolisms in rice. Int. J. Mol. Sci. 2023, 24, 8017. [Google Scholar] [CrossRef]
- De Silva, M.; Weeraman, J.; Piyatissa, S.; Fernando, P. Prediction of new candidate proteins and analysis of sub-modules and protein hubs associated with seed development in rice (Oryza sativa) using an ensemble network-based systems biology approach. BMC Plant Biol. 2025, 25, 604. [Google Scholar] [CrossRef]
- Ren, H.; Bao, J.; Gao, Z.; Sun, D.; Zheng, S.; Bai, J. How rice adapts to high temperatures. Front. Plant Sci. 2023, 14, 1137923. [Google Scholar] [CrossRef]
- Jung, W.-S.; Lee, K.-J.; Lee, B.-W. Responses of spikelet fertility to air, spikelet, and panicle temperatures and vapor pressure deficit in rice. J. Crop Sci. Biotechnol. 2015, 18, 209–218. [Google Scholar] [CrossRef]
- Crofts, N.; Domon, A.; Miura, S.; Hosaka, Y.; Oitome, N.F.; Itoh, A.; Noge, K.; Fujita, N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. Plant Mol. Biol. 2022, 108, 379–398. [Google Scholar] [CrossRef]
- Matsui, T.; Omasa, K.; Horie, T. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn. J. Crop Sci. 1997, 66, 449–455. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Chen, T.; Feng, B.; Fu, W.; Yan, J.; Islam, M.R.; Jin, Q.; Tao, L.; Fu, G. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 2018, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Garris, A.J.; Tai, T.H.; Coburn, J.; Kresovich, S.; McCouch, S. Genetic structure and diversity in Oryza sativa L. Genetics 2005, 169, 1631–1638. [Google Scholar] [CrossRef]
- Ma, Z.; Jyu, X.; Gao, M.; Cheng, H.; Lyu, W. Evaluation of the Quality of New Japonica Rice Resources in Three Provinces of Northeastern China. Agronomy 2024, 14, 1776. [Google Scholar] [CrossRef]
- Arcieri, M.; Ghinassi, G. Rice cultivation in Italy under the threat of climatic change: Trends, technologies and research gaps. Irrig. Drain. 2020, 69, 517–530. [Google Scholar] [CrossRef]
- Mathan, J.; Dwivedi, A.; Ranjan, A. Revisiting development and physiology of wild rice relatives for crop improvement and climate resilience. Plant Cell Rep. 2025, 44, 55. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Baek, K.-H. Insight into MAS: A molecular tool for development of stress resistant and quality of rice through gene stacking. Front. Plant Sci. 2017, 8, 985. [Google Scholar] [CrossRef]
- Mohanavel, V.; Muthu, V.; Kambale, R.; Palaniswamy, R.; Seeli, P.; Ayyenar, B.; Rajagopalan, V.; Manickam, S.; Rajasekaran, R.; Rahman, H. Marker-assisted breeding accelerates the development of multiple-stress-tolerant rice genotypes adapted to wider environments. Front. Plant Sci. 2024, 15, 1402368. [Google Scholar] [CrossRef]
- RGA. Research & Development. Available online: https://www.rga.org.au/Public/Public/Content/The_Rice_Industry/Rice_Innovation.aspx (accessed on 15 March 2024).
- SunRice. Annual Report 2023: Growing, Adapting, Thriving; SunRice: Leeton, NSW, Australia, 2023; Available online: https://sunrice-strapi4-images.s3.ap-southeast-2.amazonaws.com/Annual_Report_2023s_d75c905f00.pdf (accessed on 26 May 2024).
- Xiong, R.; Xie, J.; Chen, L.; Yang, T.; Tan, X.; Zhou, Y.; Pan, X.; Zeng, Y.; Shi, Q.; Zhang, J.; et al. Water irrigation management affects starch structure and physicochemical properties of indica rice with different grain quality. Food Chem. 2021, 347, 129045. [Google Scholar] [CrossRef]
- Norton, G.J.; Shafaei, M.; Travis, A.J.; Deacon, C.M.; Danku, J.; Pond, D.; Cochrane, N.; Lockhart, K.; Salt, D.; Zhang, H. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Res. 2017, 205, 1–13. [Google Scholar] [CrossRef]
- Malumpong, C.; Ruensuk, N.; Rossopa, B.; Channu, C.; Intarasathit, W.; Wongboon, W.; Poathong, K.; Kunket, K. Alternate Wetting and Drying (AWD) in broadcast rice (Oryza sativa L.) management to maintain yield, conserve water, and reduce gas emissions in Thailand. Agric. Res. 2021, 10, 116–130. [Google Scholar] [CrossRef]
- Nie, L.; Peng, S.; Chen, M.; Shah, F.; Huang, J.; Cui, K.; Xiang, J. Aerobic rice for water-saving agriculture. A review. Agron. Sustain. Dev. 2012, 32, 411–418. [Google Scholar] [CrossRef]
- Grassi, C.; Bouman, B.A.M.; Castañeda, A.R.; Manzelli, M.; Vecchio, V. Aerobic rice: Crop performance and water use efficiency. J. Agric. Environ. Int. Dev. 2009, 103, 259–270. [Google Scholar]
- Soltani, A.; Jafarnode, S.; Zeinali, E.; Gherekhloo, J.; Torabi, B. Assessing aerobic rice systems for saving irrigation water and paddy yield at regional scale. Paddy Water Environ. 2024, 22, 271–284. [Google Scholar] [CrossRef]
- Hoque, M.A.-A.; Pradhan, B.; Ahmed, N.; Sohel, M.S.I. Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Sci. Total Environ. 2021, 756, 143600. [Google Scholar] [CrossRef]
- Muller, C.; Neal, M.; Carey-Smith, T.; Luttrell, J.; Srinivasan, M. Incorporating weather forecasts into risk-based irrigation decision-making. Australas. J. Water Resour. 2021, 25, 159–172. [Google Scholar] [CrossRef]
- Lockie, S.; Fairley-Grenot, K.; Ankeny, R.; Botterill, L.; Howlett, B.; Mcbratney, A.; Probyn, E.; Sorrell, T.; Sukkarieh, S.; Woodhead, I. The Future of Agricultural Technologies; Australian Council of Learned Academies (ACOLA): Acton, ACT, Australia, 2020. [Google Scholar]
- KG2. Satellite-Based Weather Forecasting for Agricultural Decision-Making. Available online: https://kg2.com.au/satellite-based-weather-forecasting-for-agricultural-decision-making/# (accessed on 15 August 2024).
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef]
- Saleem, S.R.; Zaman, Q.U.; Schumann, A.W.; Naqvi, S.M.Z.A. Variable rate technologies: Development, adaptation, and opportunities in agriculture. In Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2023; pp. 103–122. [Google Scholar] [CrossRef]
- Champness, M.; Vial, L.; Ballester, C.; Hornbuckle, J. Evaluating the performance and opportunity cost of a smart-sensed automated irrigation system for water-saving rice cultivation in temperate Australia. Agriculture 2023, 13, 903. [Google Scholar] [CrossRef]
- Karmakar, P.; Teng, S.W.; Murshed, M.; Pang, P.; Van Bui, C. A Guide to Employ Hyperspectral Imaging for Assessing Wheat Quality at Different Stages of Supply Chain in Australia: A Review; IEEE Transactions on AgriFood Electronics: New York, NY, USA, 2023. [Google Scholar]
- Barnaby, J.Y.; Huggins, T.D.; Lee, H.; McClung, A.M.; Pinson, S.R.; Oh, M.; Bauchan, G.R.; Tarpley, L.; Lee, K.; Kim, M.S. Vis/NIR hyperspectral imaging distinguishes sub-population, production environment, and physicochemical grain properties in rice. Sci. Rep. 2020, 10, 9284. [Google Scholar] [CrossRef]
- Ward, R. Rice Quality V; Rural Industries Research and Development Corporation (RIRDC) Publication No. 12/027, Project No. PRJ-003019; RIRDC: Barton, ACT, Australia, 2012. [Google Scholar]
- de Oliveira Carneiro, L.; Coradi, P.C.; Rodrigues, D.M.; Lima, R.E.; Teodoro, L.P.R.; Santos de Moraes, R.; Teodoro, P.E.; Nunes, M.T.; Leal, M.M.; Lopes, L.R. Characterizing and predicting the quality of milled rice grains using machine learning models. AgriEngineering 2023, 5, 1196–1215. [Google Scholar] [CrossRef]
- Herath, A.; Kretzschmar, T.; Sreenivasulu, N.; Mahon, P.; Butardo, V., Jr. Machine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIR. Food Chem. 2024, 460, 140728. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, P.S.; Almeida, A.S.; Brites, C.M. Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters. Foods 2021, 10, 3016. [Google Scholar] [CrossRef] [PubMed]
- Nehal, N.; Choudhary, B.; Nagpure, A.; Gupta, R.K. DNA barcoding: A modern age tool for detection of adulteration in food. Crit. Rev. Biotechnol. 2021, 41, 767–791. [Google Scholar] [CrossRef]
- Omar, A.A.; Zayed, E.M.; Oraby, H.F.; Elnaggar, N.Z.; Elashtokhy, M.M.; Basuoni, M.M.; Osman, A.; Shamseldin, S.A.; Attia, K.A.; Mohamed, A.H. Description of phenotype, grain quality, molecular fingerprinting, and biodiversity using DNA barcoding of some elite rice genotypes. S. Afr. J. Bot. 2023, 154, 289–299. [Google Scholar] [CrossRef]
- RGA. Australia Is the Best Country in the World to Grow Rice. Available online: https://www.rga.org.au/Public/Public/Content/News/Media/Campaigns/Social-Media-Australia-Best-ricegrowing-Country.aspx (accessed on 25 January 2023).
- AgriFutures Australia. AgriFutures Rice Program Strategic RD&E Plan 2021–2026; AgriFutures Australia: Barton, ACT, Australia, 2022. [Google Scholar]
- IRRI. Temperate Rice Research Consortium (TRRC). Available online: https://trrc.irri.org/?trk=public_post-text (accessed on 18 April 2025).
- Bruwer, J.; Saliba, A.; Miller, B. Consumer behaviour and sensory preference differences: Implications for wine product marketing. J. Consum. Mark. 2011, 28, 5–18. [Google Scholar] [CrossRef]
- Tomlins, K.; Manful, J.; Gayin, J.; Kudjawu, B.; Tamakloe, I. Study of sensory evaluation, consumer acceptability, affordability and market price of rice. J. Sci. Food Agric. 2007, 87, 1564–1575. [Google Scholar] [CrossRef]
- Cuevas, R.P.; Pede, V.O.; McKinley, J.; Velarde, O.; Demont, M. Rice grain quality and consumer preferences: A case study of two rural towns in the Philippines. PLoS ONE 2016, 11, e0150345. [Google Scholar] [CrossRef]
- Mahyudi, F.; Surti, S.; Husinsyah, H. Sensory and Statistical Analysis of Banjarbaru Rice Production: Hedonic Evaluation, Sensory Attributes, and Normal Distribution. Prism. Sains J. Pengkaj. Ilmu Dan Pembelajaran Mat. Dan IPA IKIP Mataram 2025, 13, 322–334. [Google Scholar] [CrossRef]
- Verbeke, W. Agriculture and the food industry in the information age. Eur. Rev. Agric. Econ. 2005, 32, 347–368. [Google Scholar] [CrossRef]
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual. Prefer. 2007, 18, 997–1007. [Google Scholar] [CrossRef]
- Mezei, L.V.; Johnson, T.E.; Goodman, S.; Collins, C.; Bastian, S.E. Meeting the demands of climate change: Australian consumer acceptance and sensory profiling of red wines produced from non-traditional red grape varieties. Oeno ONE 2021, 55, 29–46. [Google Scholar] [CrossRef]
- Bianchi, C. Retail internationalisation from emerging markets: Case study evidence from Chile. Int. Mark. Rev. 2009, 26, 221–243. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Knight, M.; Quinones, C.; Doherty, C.J.; Jagadish, S.K. Genome-wide association study and gene network analyses reveal potential candidate genes for high night temperature tolerance in rice. Sci. Rep. 2021, 11, 6747. [Google Scholar] [CrossRef]
- Tian, Z.; Qian, Q.; Liu, Q.; Yan, M.; Liu, X.; Yan, C.; Liu, G.; Gao, Z.; Tang, S.; Zeng, D. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. USA 2009, 106, 21760–21765. [Google Scholar] [CrossRef]
- Gong, D.; Zhang, X.; He, F.; Chen, Y.; Li, R.; Yao, J.; Zhang, M.; Zheng, W.; Yu, G. Genetic improvements in rice grain quality: A review of elite genes and their applications in molecular breeding. Agronomy 2023, 13, 1375. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, C.; Li, Q.; Liu, Q. Genetic control of grain appearance quality in rice. Biotechnol. Adv. 2022, 60, 108014. [Google Scholar] [CrossRef]
- Wilkins, O.; Hafemeister, C.; Plessis, A.; Holloway-Phillips, M.-M.; Pham, G.M.; Nicotra, A.B.; Gregorio, G.B.; Jagadish, S.K.; Septiningsih, E.M.; Bonneau, R. EGRINs (Environmental Gene Regulatory Influence Networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 2016, 28, 2365–2384. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef]
- Parab, S.; Tiwari, S.; Rajarammohan, S.; Singla-Pareek, S.L.; Pareek, A. A New Era of CRISPR Technology to Improve Climate Resilience in Rice. In Gene Editing in Plants: CRISPR-Cas and Its Applications; Kumar, A., Arora, S., Ogita, S., Yau, Y.-Y., Mukherjee, K., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 179–192. [Google Scholar]
Quality Class | Region/Countries | Benchmark Varieties | Quality Parameters | Climate Vulnerability | Cooking/Eating Quality Response | Adaptive Practices | Reference |
---|---|---|---|---|---|---|---|
Medium-Grain Japonica | Temperate East Asia (Japan, China, and Korea), Australia, and USA (California) | Koshihikari (Japan), Reiziq (Australia), and Calrose (USA) | Soft texture, low-moderate amylose (16–18%), glossy appearance, and good milling quality | Heat stress: decreased amylose content, increased chalkiness, altered crystallinity and gelatinisation temperature, and increased protein content Elevated CO2: increased yield, decreased protein and quality | Heat stress produces stickier, softer rice; increased protein potentially reduces stickiness and increases grain hardness | Precision irrigation methods to save water while maintaining milling quality Adjusting planting dates to avoid critical grain-filling during heat peaks Use of cold- and heat-tolerant varieties (e.g., Sherpa) | [4,31,32,33,34,35] |
Short Grain (Sushi Rice) | Japan, Korea, and Australia | Koshihikari (Japan), Opus (Australia) | Very low amylose (15–16%), high stickiness, and glossy appearance | Heat stress: increased chalkiness, grain cracking, and protein content; reduced grain size and amylose and starch contents. Elevated CO2: increased yield, decreased protein, and increased chalkiness | Texture becomes inconsistent; eating quality in Koshihikari improves under moderate stress but deteriorates under severe stress | Proper irrigation with nitrogen management to improve grain quality Varietal screening and selection for heat tolerance Crop shading or protective structures during heat waves | [36,37,38,39] |
Aromatic Rice (Jasmine Type) | Thailand, Australia, and USA | Thai Hom Mali, KDML105 (Thailand), and Topaz (Australia) | Medium amylose (17–19%), distinctive aroma (2AP), and soft texture | Heat stress: reduced 2-acetyl-1-pyrroline production, increased chalkiness Drought/salinity: increased 2AP concentration but reduced yield | Heat stress causes loss of characteristic fragrance; moderate salinity stress can enhance aroma while reducing other quality parameters | Integrated pest and salinity management to maintain aroma and yield Breeding for stable 2AP production under drought/heat Use of microclimate management, e.g., water timing, mulching | [40,41,42,43] |
Arborio (Risotto) | Italy, Australia | Arborio, Carnaroli (Italy), and Vialone (Australia) | High amylopectin, intermediate amylose (18–19%), chalky centre, and ability to maintain a firm, al dente core when cooked, releasing enough starch to create a creamy risotto | Less tolerant to combined stressors, particularly vulnerable to heat during grain filling | Deterioration in distinctive creamy consistency and texture essential for risotto preparation | Avoidance of combined stresses through irrigation scheduling Selection of varieties with better heat resilience during grain fill Localised nitrogen and water management to maintain texture | [44,45,46] |
Non-Fragrant Long Grain | USA, Australia, and Temperate Eastern Europe | Wells (USA), Doongara (Australia), and Rapan (Russia) | High amylose (22–25%), separate grains when cooked, and firm texture, some have low glycaemic index | Heat/water stress: increased chalkiness, reduced grain dimensions Salinity: decreased amylose content | Dry, separate grain characteristics may be compromised; increased stickiness under salinity stress | Management of salinity and water stress through improved drainage and irrigation control Use of drought-tolerant varieties Precision nutrient application to mitigate quality loss | [47,48,49] |
Basmati | Northern India, Pakistan, and Australia | Pusa Basmati 1121, Basmati (India/Pakistan), and Basmati Signature (Australia) | High amylose (22-24%), distinctive aroma (2AP), and exceptional kernel elongation during cooking | Temperature fluctuations affect elongation and aroma; high temperature shortens grain filling and reduces starch and amylose contents | Reduced aroma and grain elongation; compromised fluffiness and grain separation valued in premium markets | Timing planting to avoid heat stress during grain fill Breeding for aroma retention and grain elongation under temperature fluctuations Adoption of integrated crop management systems | [37,50,51,52] |
Stressor | Australia | East Asia | Europe | California |
---|---|---|---|---|
Heat stress (>35 °C) | High | Medium | Low | High |
Cold stress (<15 °C) | Medium | High | Medium | Low |
Water limitation | High | Low | Medium | Medium |
Salinity stress | Medium | Low | Low | Low |
CO2 effects | High | High | High | High |
Stress Type | Primary Sensors | Key Pathways Affected | Quality Impact | Sensitive Varieties | Adaptation Strategy | Reference |
---|---|---|---|---|---|---|
Heat (>35 °C) | Heat shock protein activation, membrane stabilisation | GBSS activity reduction, starch biosynthesis disruption | Amylose ↓, Chalk ↑ | Koshihikari, Calrose, medium-grain japonica | Heat-tolerant varieties, adjusted planting dates | [141,142] |
Drought | ABA accumulation, osmotic adjustment | Enhanced nitrogen metabolism (GS upregulation), altered 2AP biosynthesis | Protein ↑, Aroma ↑ | Drought-sensitive varieties, medium-grain japonica | Water-efficient varieties, AWD, drought-tolerant varieties | [143,144] |
Cold (<15 °C) | Membrane adaptation, enzyme kinetics modification | Reduced metabolic rates, impaired grain filling | Filling duration ↓, grain weight ↓ | Cold-sensitive varieties, tropical japonica | Cold-tolerant varieties (e.g., Sherpa) | [79,145] |
Salinity (50–100 mM) | Ion transport regulation, osmotic balance maintenance | HKT transporter activity, compatible solute accumulation | Variable response depending on tolerance level | Salt-sensitive > tolerant varieties | Salt-tolerant germplasm, improved drainage | [146,147,148] |
Elevated CO2 | Enhanced photosynthesis, altered C:N balance | Modified carbon partitioning, reduced nitrogen concentration | Grain size↑, protein↓ | Japonica > indica sensitivity | CO2-responsive breeding targets | [149,150] |
Tool/Approach | Description | Climate Relevance/Function | Reference |
---|---|---|---|
Hyperspectral Imaging | Uses visible and NIR wavelengths to detect internal grain traits like protein and chalkiness | Enables early detection of stress-induced quality deterioration and identification of resilient phenotypes | [192,193] |
Near-Infrared Spectroscopy (NIRS) | Rapid, non-destructive multi-trait analysis | Evaluates amylose content, grain dimensions, chalkiness, and head rice yield under stress conditions | [193,194] |
Machine Learning Algorithms | Data-driven models (e.g., Random Tree, ANN) predict multiple quality traits from spectral data | Increases predictive accuracy of grain quality responses to combined stressors | [195,196,197] |
Genomic Profiling | Identifies quality-related loci and barcodes climate-resilient varieties | Accelerates breeding for stable grain quality under stress | [198] |
Metabolomic Profiling | Measures biochemical pathways and stress-response metabolites | Links physiological mechanisms to quality maintenance across environments | [199] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, Y.; Ovenden, B.; Sreenivasulu, N.; Butardo, V., Jr. Climate Adaptation Strategies for Maintaining Rice Grain Quality in Temperate Regions. Biology 2025, 14, 801. https://doi.org/10.3390/biology14070801
Fernando Y, Ovenden B, Sreenivasulu N, Butardo V Jr. Climate Adaptation Strategies for Maintaining Rice Grain Quality in Temperate Regions. Biology. 2025; 14(7):801. https://doi.org/10.3390/biology14070801
Chicago/Turabian StyleFernando, Yvonne, Ben Ovenden, Nese Sreenivasulu, and Vito Butardo, Jr. 2025. "Climate Adaptation Strategies for Maintaining Rice Grain Quality in Temperate Regions" Biology 14, no. 7: 801. https://doi.org/10.3390/biology14070801
APA StyleFernando, Y., Ovenden, B., Sreenivasulu, N., & Butardo, V., Jr. (2025). Climate Adaptation Strategies for Maintaining Rice Grain Quality in Temperate Regions. Biology, 14(7), 801. https://doi.org/10.3390/biology14070801