Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = comb polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1828 KB  
Article
Preparation of Comb-Shaped Polyether with PDMS and PEG Side Chains and Its Application in Polymer Electrolytes
by Tomoya Enoki, Ryuta Kosono, Nurul Amira Shazwani Zainuddin, Takahiro Uno and Masataka Kubo
Molecules 2025, 30(15), 3201; https://doi.org/10.3390/molecules30153201 - 30 Jul 2025
Viewed by 405
Abstract
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization [...] Read more.
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization of PEO at room temperature by cross-linking or introducing a branched structure are currently being investigated. In this study, we synthesized new comb-type ion-conducting polyethers with two different side chains such as polydimethylsiloxane (PDMS) and polyethylene glycol monomethyl ether (mPEG) segments as flexible and ion-conducting segments, respectively. The introduction of the PDMS segment was found to prevent a decrease in ionic conductivity in the low-temperature region, but led to an ionic conductivity decrease in the high temperature region. On the other hand, the introduction of mPEG segments improved ionic conductivity in the high-temperature region. The introduction of mPEG segments with longer chains resulted in a significant decrease in ionic conductivity in the low-temperature region. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices—2nd Edition)
Show Figures

Figure 1

23 pages, 3687 KB  
Review
Challenges and Research Progress in Zinc Anode Interfacial Stability
by Jing Li, Qianxin Liu, Zixuan Zhou, Yaqi Sun, Xidong Lin, Tao Yang and Funian Mo
Energies 2025, 18(10), 2592; https://doi.org/10.3390/en18102592 - 16 May 2025
Viewed by 671
Abstract
Aqueous zinc-ion batteries are regarded a promising energy storage system due to their high safety, low cost, high theoretical specific capacity (820 mAh g−1), and low redox potential (−0.76 V). However, in practice, uneven Zn2+ deposition on the surface of [...] Read more.
Aqueous zinc-ion batteries are regarded a promising energy storage system due to their high safety, low cost, high theoretical specific capacity (820 mAh g−1), and low redox potential (−0.76 V). However, in practice, uneven Zn2+ deposition on the surface of the zinc anode can lead to the uncontrolled growth of zinc dendrites, which can puncture the separator and trigger a short-circuit in the cell. In addition, the inherent thermodynamic instability of weakly acidic electrolytes is prone to trigger side reactions like hydrogen evolution reaction and corrosion, further weakening the stability of the zinc anode. These problems not only affect the cycle life of the battery, but also lead to a significant decrease in electrochemical performance. Therefore, how to effectively inhibit the unwanted side reactions and guide the uniform deposition of Zn2+ to suppress the growth of dendrites becomes a key challenge in constructing a stable zinc anode/electrolyte interface. Therefore, this paper systematically combs through the main bottlenecks and root causes that hinder the interfacial stability of zinc anodes at present, and summarizes the existing solutions and the progress made. On this basis, this paper also analyzes the application potential of polymer materials in enhancing the interfacial stability of zinc anodes, which provides new ideas for the direction of subsequent research. Full article
Show Figures

Figure 1

19 pages, 8444 KB  
Review
Hybrid Photonic Integrated Circuits for Wireless Transceivers
by Tianwen Qian, Ben Schuler, Y. Durvasa Gupta, Milan Deumer, Efstathios Andrianopoulos, Nikolaos K. Lyras, Martin Kresse, Madeleine Weigel, Jakob Reck, Klara Mihov, Philipp Winklhofer, Csongor Keuer, Laurids von Emden, Marcel Amberg, Crispin Zawadzki, Moritz Kleinert, Simon Nellen, Davide de Felipe, Hercules Avramopoulos, Robert B. Kohlhaas, Norbert Keil and Martin Schelladd Show full author list remove Hide full author list
Photonics 2025, 12(4), 371; https://doi.org/10.3390/photonics12040371 - 12 Apr 2025
Cited by 1 | Viewed by 1738
Abstract
Recent advancements in hybrid photonic integrated circuits (PICs) for wireless communications are reviewed, with a focus on innovations developed at Fraunhofer HHI. This work leverages hybrid integration technology, which combines indium phosphide (InP) active elements, silicon nitride (Si3N4) low-loss [...] Read more.
Recent advancements in hybrid photonic integrated circuits (PICs) for wireless communications are reviewed, with a focus on innovations developed at Fraunhofer HHI. This work leverages hybrid integration technology, which combines indium phosphide (InP) active elements, silicon nitride (Si3N4) low-loss waveguides, and high-efficient thermal-optical tunable polymers with micro-optical functions to achieve fully integrated wireless transceivers. Key contributions include (1) On-chip optical injection locking for generating phase-locked optical beat notes at 45 GHz, enabled by cascaded InP phase modulators and hybrid InP/polymer tunable lasers with a 3.8 GHz locking range. (2) Waveguide-integrated THz emitters and receivers, featuring photoconductive antennas (PCAs) with a 22× improved photoresponse compared to top-illuminated designs, alongside scalable 1 × 4 PIN-PD and PCA arrays for enhanced power and directivity. (3) Beam steering at 300 GHz using a polymer-based optical phased array (OPA) integrated with an InP antenna array, achieving continuous steering across 20° and a 10.6 dB increase in output power. (4) Demonstration of fully integrated hybrid wireless transceiver PICs combining InP, Si3N4, and polymer material platforms, validated through key component characterization, on-chip optical frequency comb generation, and coherent beat note generation at 45 GHz. These advancements result in compact form factors, reduced power consumption, and enhanced scalability, positioning PICs as an enabling technology for future high-speed wireless networks. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

12 pages, 4033 KB  
Article
Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration
by Zehua Chen, Mianrui Li, Shengguang Qi and Li Du
Molecules 2025, 30(2), 395; https://doi.org/10.3390/molecules30020395 - 18 Jan 2025
Viewed by 1428
Abstract
Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In [...] Read more.
Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization. Combining the enhanced interfacial contact and the introduction of ionic liquid, a continuous and fast Li+ transport channel at the electrolyte–cathode interface is established, ultimately enhancing the overall performance of solid-state lithium batteries. The composite solid electrolytes (CSEs) exhibit an ionic conductivity of 0.44 mS cm−1 at 60 °C. LiFePO4//Li cells deliver a high discharge capacity (154 mAh g−1 at 0.5 C) and cycling stability (with a retention rate of more than 80% at 0.5 C after 200 cycles) at 60 °C. Full article
Show Figures

Figure 1

42 pages, 9445 KB  
Review
Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules
by Majad Khan
Polymers 2024, 16(18), 2629; https://doi.org/10.3390/polym16182629 - 18 Sep 2024
Cited by 18 | Viewed by 5989
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns [...] Read more.
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule’s chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

13 pages, 6214 KB  
Article
Polymeric Carbon Nitride-CNTs-Ferric Oxide All-Solid Z-Scheme Heterojunction with Improved Photocatalytic Activity towards Organic Dye Removal
by Xinxin Yang, Rongcai Gong, Zhaocen Dong, Guiqing Liu, Yunyi Han, Yuwei Hou, Yanjun Li, Meili Guan, Xuezhong Gong and Jianguo Tang
Catalysts 2024, 14(8), 516; https://doi.org/10.3390/catal14080516 - 9 Aug 2024
Cited by 5 | Viewed by 1153
Abstract
Polymeric carbon nitride (PCN) is a kind of polymeric semiconductor that is widely popular in photocatalysis-related energy and environmental fields. However, the photocatalytic activity is still limited due to its poor conductivity and low charge separation efficiency. In this work, benzene rings were [...] Read more.
Polymeric carbon nitride (PCN) is a kind of polymeric semiconductor that is widely popular in photocatalysis-related energy and environmental fields. However, the photocatalytic activity is still limited due to its poor conductivity and low charge separation efficiency. In this work, benzene rings were introduced to adjust the electronic structure of PCN, and then a PCN-based all-solid Z-scheme heterojunction was fabricated by combing multiwall carbon nanotubes (CNTs) and ferric oxide through precipitation and the in situ deposit method. Upon optimizing the ratio between PCN, CNTs, and Fe2O3, (PCN:CNTs:Fe2O3 = 10:1:3 by weight), the composites expressed superior photocatalytic degradation activity towards methylene blue (MB) and crystal violet (CV) compared with pristine PCN and Fe2O3. The MB degradation percentage achieved 90% in 75 min, and the CV up to 99.6% within 50 min. The Z-scheme mechanism was verified by band alignment and metal selective deposition. The CNTs in the heterojunction played the role of an electron shuttling mediator and hence improved charge separation efficiency. This work provides ideas for the construction of polymer-inorganic all-solid Z-scheme photocatalysts for practical applications. Full article
(This article belongs to the Special Issue Recent Advances in g-C3N4-Based Photocatalysts)
Show Figures

Figure 1

13 pages, 2109 KB  
Article
Elucidation of Dithiol-yne Comb Polymer Architectures by Tandem Mass Spectrometry and Ion Mobility Techniques
by Kayla Williams-Pavlantos, Abdol Hadi Mokarizadeh, Brennan J. Curole, Scott M. Grayson, Mesfin Tsige and Chrys Wesdemiotis
Polymers 2024, 16(12), 1665; https://doi.org/10.3390/polym16121665 - 12 Jun 2024
Cited by 1 | Viewed by 1653
Abstract
Polymers have a wide range of applications depending on their composition, size, and architecture. Varying any of these three characteristics can greatly impact the resulting chemical, physical, and mechanical properties. While many techniques are available to determine polymer composition and size, determining the [...] Read more.
Polymers have a wide range of applications depending on their composition, size, and architecture. Varying any of these three characteristics can greatly impact the resulting chemical, physical, and mechanical properties. While many techniques are available to determine polymer composition and size, determining the exact polymer architecture is more challenging. Herein, tandem mass spectrometry (MS/MS) and ion mobility mass spectrometry (IM-MS) methods are utilized to derive crucial architectural information about dithiol-yne comb polymers. Based on their unique fragmentation products and IM drift times, dithiol-yne oligomers with distinct architectures were successfully differentiated and characterized. Additionally, experimental collision cross-sections (Ω) derived via IM-MS were compared to theoretically extracted Ω values from molecular dynamics simulated structures to deduce the architectural motif of these comb oligomers. Overall, this work demonstrates the benefits of combining various mass spectrometry techniques in order to gain a complete understanding of a complex polymer mixture. Full article
(This article belongs to the Special Issue Advanced Analytical Methods for Applied Polymeric Science)
Show Figures

Graphical abstract

17 pages, 2429 KB  
Article
Controlled Amphiphilicity and Thermo-Responsiveness of Functional Copolymers Based on Oligo(Ethylene Glycol) Methyl Ether Methacrylates
by Aggeliki Christopoulou, Charalampos Kazamiakis, Zacharoula Iatridi and Georgios Bokias
Polymers 2024, 16(11), 1456; https://doi.org/10.3390/polym16111456 - 22 May 2024
Cited by 3 | Viewed by 2152
Abstract
In this work, comb homopolymers as well as comb-type copolymers of thermo-responsive oligo(ethylene glycol methyl ether methacrylate)s, OEGMAs, with various chain lengths (DEGMA, PEGMA500, and PEGMA950 containing 2, 9, or 19 repeating ethylene glycol units, respectively) were synthesized through free [...] Read more.
In this work, comb homopolymers as well as comb-type copolymers of thermo-responsive oligo(ethylene glycol methyl ether methacrylate)s, OEGMAs, with various chain lengths (DEGMA, PEGMA500, and PEGMA950 containing 2, 9, or 19 repeating ethylene glycol units, respectively) were synthesized through free radical (co)polymerization. For the copolymers, either the functional hydrophobic glycidyl methacrylate (GMA) or the inert hydrophilic N,N-dimethylacrylamide (DMAM) were selected as comonomers. The self-assembly and thermo-responsive behavior of the products was investigated through Nile Red fluorescence probing, turbidimetry, and dynamic light scattering (DLS). Interestingly, it was found that all OEGMA-based homopolymers exhibit a tendency to self-organize in aqueous media, in addition to thermo-responsiveness. The critical aggregation concentration (CAC) increases with the number of repeating ethylene oxide units in the OEGMA macromonomers (CAC was found to be 0.003, 0.01, and 0.03% w/v for the homopolymers PDEGMA, PPEGMA500, and PPEGMA950, respectively). Moreover, the CAC of the copolymers in aqueous media is highly affected by the incorporation of hydrophobic GMA or hydrophilic DMAM units, leading to lower or higher values, respectively. Thus, the CAC decreases down to 0.003% w/v for the GMA-richest copolymer of PEGMA950, whereas CAC increases up to 0.01% w/v for the DMAM-richest copolymer of DEGMA. Turbidimetry and DLS studies proved that the thermo-sensitivity of the polymers is governed by several parameters such as the number of repeating ethylene glycol groups in the side chains of the OEGMAs, the molar percentage of the hydrophobic or hydrophilic comonomers, along with the addition of salts in the aqueous polymer solutions. Thus, the cloud point of the homopolymer PDEGMA was found at 23 °C and it increases to 33.5 °C for the DMAM-richest copolymer of DEGMA. Lastly, the formation of a hydrogel upon heating aqueous mixtures of the GMA-comprising copolymers with silica nanoparticles overnight is strong evidence of the functional character of these polymers. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers: Fabrication and Application)
Show Figures

Figure 1

13 pages, 10798 KB  
Article
Effects and Mechanism of Hyperbranched Phosphate Polycarboxylate Superplasticizers on Reducing Viscosity of Cement Paste
by Jing Chen, Changhui Yang, Yan He, Futao Wang and Chao Zeng
Materials 2024, 17(8), 1896; https://doi.org/10.3390/ma17081896 - 19 Apr 2024
Cited by 2 | Viewed by 1475
Abstract
The adsorption behavior and dispersing capability of hyperbranched phosphated polycarboxylate superplasticizers (PCEs) containing phosphate monoester and phosphate diester were investigated. The hyperbranched structures were constructed using a special monomer dimethylaminoethyl methacrylate (DMAMEA) to create the branches during the polymerization. Meanwhile, the polymer architectures [...] Read more.
The adsorption behavior and dispersing capability of hyperbranched phosphated polycarboxylate superplasticizers (PCEs) containing phosphate monoester and phosphate diester were investigated. The hyperbranched structures were constructed using a special monomer dimethylaminoethyl methacrylate (DMAMEA) to create the branches during the polymerization. Meanwhile, the polymer architectures were tailored by varying the content of phosphate monoester and phosphate diester in the backbone via free radical solution polymerization. In contrast to comb-like PCE, hyperbranched PCEs presented a weaker dispersion capability at w/c = 0.29, but with a lower water-to-cement ratio (w/c), the hyperbranched PCEs exhibited a better dispersion capability than the comb-like PCEs. The dynamic light scattering (DLS) and transmission electron microscope (TEM) analysis showed that the adsorption layer of hyperbranched PCEs were thicker than that of comb-like PCEs. A thicker adsorption layer thickness generated thinner diffusion water layer thickness. The increase of the free water amount due to the thinner water diffusion layer is the key mechanism for improving the dispersibility and decreasing the viscosity of cement paste. Full article
(This article belongs to the Special Issue Advanced Cement and Concrete Composites - Volume 2)
Show Figures

Figure 1

22 pages, 13293 KB  
Article
Research on Delamination Damage Quantification Detection of CFRP Bending Plate Based on Lamb Wave Mode Control
by Quanpeng Yu, Shiyuan Zhou, Yuhan Cheng and Yao Deng
Sensors 2024, 24(6), 1790; https://doi.org/10.3390/s24061790 - 10 Mar 2024
Cited by 7 | Viewed by 2185
Abstract
The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the [...] Read more.
The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the signal difference coefficient (SDC) was introduced to quantify delamination damage and evaluate the sensitivity of A0-mode and S0-mode Lamb waves to delamination damage. The simulation results show that compared with the S0-mode Lamb wave, the A0-mode Lamb wave exhibits higher delamination damage sensitivity. The delamination damage can be quantified based on the strong correlation between the SDC and the delamination damage size. The control effect of the linear array PZT phase time-delay method on the Lamb wave mode was investigated by simulation. The phase time-delay method realizes the generation of a single-mode Lamb wave, which can separately excite the A0-mode and S0-mode Lamb wave to identify delamination damage of different sizes. The A0-mode Lamb wave was excited by the developed one-dimensional miniaturized linear comb transducer (LCT), which was used to conduct the detection experiment on the CFRP bending plate with delamination damage sizes of Φ6.0 mm, Φ10.0 mm, and Φ15.0 mm. The experimental results verify the correctness of the simulation. According to the Hermite interpolation results of the finite-element simulation data, the relationship between the delamination damage size and the SDC was fitted by the Gaussian function and Rational function, which can accurately quantify the delamination damage. The absolute error of the delamination damage quantification with Gaussian and Rational fitting expression does not exceed 0.8 mm and 0.7 mm, and the percentage error is not more than 8% and 7%. The detection and signal processing methods employed in the present research are easy to operate and implement, and accurate delamination damage quantification results have been obtained. Full article
(This article belongs to the Special Issue Advanced Sensing and Evaluating Technology in Nondestructive Testing)
Show Figures

Figure 1

13 pages, 2584 KB  
Article
Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA
by Zaid Abdulhamid Alhulaybi and Ibrahim Dubdub
Polymers 2024, 16(5), 629; https://doi.org/10.3390/polym16050629 - 26 Feb 2024
Cited by 13 | Viewed by 3359
Abstract
Thermogravimetric Analysis (TGA) serves a pivotal technique for evaluating the thermal behavior of Polyvinyl alcohol (PVA), a polymer extensively utilized in the production of fibers, films, and membranes. This paper targets the kinetics of PVA thermal degradation using high three heating rate range [...] Read more.
Thermogravimetric Analysis (TGA) serves a pivotal technique for evaluating the thermal behavior of Polyvinyl alcohol (PVA), a polymer extensively utilized in the production of fibers, films, and membranes. This paper targets the kinetics of PVA thermal degradation using high three heating rate range 20, 30, and 40 K min−1. The kinetic study was performed using six model-free methods: Freidman (FR), Flynn-Wall-Qzawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY) for the determination of the activation energy (Ea). TGA showed two reaction stages: the main one at 550–750 K and the second with 700–810 K. But only the first step has been considered in calculating Ea. The average activation energy values for the conversion range (0.1–0.7) are between minimum 104 kJ mol−1 by VY to maximum 199 kJ mol−1 by FR. Model-fitting has been applied by combing Coats–Redfern (CR) with the master plot (Criado’s) to identify the most convenient reaction mechanism. Ea values gained by the above six models were very similar with the average value of (126 kJ mol−1) by CR. The reaction order models-Second order (F2) was recommended as the best mechanism reaction for PVA pyrolysis. Mechanisms were confirmed by the compensation effect. Finally, (∆H, ∆G, and ∆S) parameters were presented and proved that the reaction is endothermic. Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling of Polymers II)
Show Figures

Figure 1

19 pages, 5383 KB  
Article
Eco-Conscious Approach to Thermoresponsive Star-Comb and Mikto-Arm Polymers via Enzymatically Assisted Atom Transfer Radical Polymerization Followed by Ring-Opening Polymerization
by Tomasz Fronczyk, Anna Mielańczyk, Olesya Klymenko, Karol Erfurt and Dorota Neugebauer
Molecules 2024, 29(1), 55; https://doi.org/10.3390/molecules29010055 - 21 Dec 2023
Cited by 3 | Viewed by 1670
Abstract
This study explores the synthesis, characterization, and application of a heterofunctional initiator derived from 2-hydroxypropyl cyclodextrin (HP-β-CD), having eight bromoester groups and thirteen hydroxyl groups allowing the synthesis of mikto-arm star-shaped polymers. The bromoesterification of HP-β-CD was achieved using α-bromoisobutyryl bromide as the [...] Read more.
This study explores the synthesis, characterization, and application of a heterofunctional initiator derived from 2-hydroxypropyl cyclodextrin (HP-β-CD), having eight bromoester groups and thirteen hydroxyl groups allowing the synthesis of mikto-arm star-shaped polymers. The bromoesterification of HP-β-CD was achieved using α-bromoisobutyryl bromide as the acylation reagent, modifying the cyclodextrin (CD) molecule as confirmed by electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy analysis, and differential scanning calorimetry (DSC) thermograms. The initiator’s effectiveness was further demonstrated by obtaining star-comb and mikto-arm polymers via an enzymatically assisted atom transfer radical polymerization (ATRP) method and subsequent ring-opening polymerization (ROP). The ATR polymerization quality and control depended on the type of monomer and was optimized by the way of introducing the initiator into the reaction mixture. In the case of ATRP, high conversion rates for poly(ethylene oxide) methyl ether methacrylate (OEOMA), with molecular weights (Mn) of 500 g/mol and 300 g/mol, were achieved. The molecular weight distribution of the obtained polymers remained in the range of 1.23–1.75. The obtained star-comb polymers were characterized by different arm lengths. Unreacted hydroxyl groups in the core of exemplary star-comb polymers were utilized in the ROP of ε-caprolactone (CL) to obtain a hydrophilic mikto-arm polymer. Cloud point temperature (TCP) values of the synthesized polymers increased with arm length, indicating the polymers’ reduced hydrophobicity and enhanced solvation by water. Atomic force microscopy (AFM) analysis revealed the ability of the star-comb polymers to create fractals. The study elucidates advancements in the synthesis and utilization of hydrophilic sugar-based initiators for enzymatically assisted ATRP in an aqueous solution for obtaining complex star-comb polymers in a controlled manner. Full article
Show Figures

Figure 1

14 pages, 2448 KB  
Article
Synthesis and Application of a Novel Multi-Branched Block Polyether Low-Temperature Demulsifier
by Shaohui Jiang, Qingsong Li, Botao Xu, Tao Zou, Yan Zhang, Wei Ping and Qiang Ma
Molecules 2023, 28(24), 8109; https://doi.org/10.3390/molecules28248109 - 15 Dec 2023
Cited by 5 | Viewed by 1809
Abstract
In this paper, a low-temperature thick oil demulsifier with high polarity was prepared by introducing ethylene oxide, propylene oxide block, and butylene oxide using m-diphenol as a starting agent. The main reasons for the difficulty involved in the low-temperature emulsification of extractive fluids [...] Read more.
In this paper, a low-temperature thick oil demulsifier with high polarity was prepared by introducing ethylene oxide, propylene oxide block, and butylene oxide using m-diphenol as a starting agent. The main reasons for the difficulty involved in the low-temperature emulsification of extractive fluids were explained by analyzing the synthetic influencing factors and infrared spectra of the star comb polymer (PR-D2) and by analyzing the four fractions, interfacial energies, and zeta potentials of crude oils from the Chun and Gao fields. The effects of PR-D2 surfactant on the emulsification performance of crude oil recovery fluids were investigated via indoor and field experiments. The experimental results indicate that the optimal synthesis conditions for this emulsion breaker are as follows: a quality ratio of ionic reaction intermediates and meso-diphenol of R = 10:1; 1 g of the initiator; a polymerization temperature of 80 °C; and a reaction time of 8 h. Colloidal asphaltenes in the crude oil were the main factor hindering the low-temperature demulsification of the Gao oilfield’s extractive fluids, and the reason for the demulsification difficulty of the extractive fluids in the Chun oilfield is that the temperature of demulsification is lower than the wax precipitation point. The demulsification rate of the Chun oilfield’s extractive fluids reached more than 98% when the PR-D2 concentration reached 150 mg/L at 43 °C. The demulsification rate of the Gao oilfield’s extractive fluids reached more than 98% at a PR-D2 concentration of 150 mg/L at 65 °C. The field experiments show that the Chun oilfield’s extractive fluids can still demulsify after the temperature is reduced to 43 °C in winter. The emulsification temperature of the Gao oilfield’s extractive fluids was reduced from 73 °C to 68 °C, with an excellent demulsification effect. Full article
Show Figures

Figure 1

13 pages, 4815 KB  
Article
Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder
by Nicol Alejandra Munguía-Fernández, Jhonathan Rafael Castillo-Saenz, Oscar Manuel Perez-Landeros, Roumen Nedev, David Mateos, Judith Paz, Mariel Suárez, Mario Alberto Curiel-Alvarez, Nicola Nedev and Abraham Arias
Crystals 2023, 13(12), 1672; https://doi.org/10.3390/cryst13121672 - 11 Dec 2023
Cited by 1 | Viewed by 2132
Abstract
Zinc oxide nanopowder was synthesized by the coprecipitation method. FT-IR and EDS analyses were performed to qualitatively determine the composition of the nanopowder. FE-SEM images revealed the morphology of the nanopowder formed by clusters of nanoparticles. An XRD analysis confirmed the wurtzite structure [...] Read more.
Zinc oxide nanopowder was synthesized by the coprecipitation method. FT-IR and EDS analyses were performed to qualitatively determine the composition of the nanopowder. FE-SEM images revealed the morphology of the nanopowder formed by clusters of nanoparticles. An XRD analysis confirmed the wurtzite structure with a crystallite size of ~21.2 nm. UV–Vis measurements were performed to determine the ZnO bandgap (~3.05 eV) using the Tauc plot method in the absorbance spectra. The ZnO nanopowder and two comb-like metal contacts were confined and compacted between two polymeric layers by a low-temperature thermal lamination method, resulting in a flexible Polymer/ZnO/Metal/ZnO/Polymer structure. Part of each comb-like metal was kept uncovered by a polymeric layer in order to be used for electrical characterization. I-V measurements of the flexible structure were performed in the dark and under UV illumination, showing the capacity to detect UV radiation and its potential application as a visible-blind UV sensor. A facile and low-cost flexible optoelectronic device is presented, avoiding using high-vacuum or high-temperature technology. This new and novel approach to developing optoelectronic devices proposes using powder materials as semiconducting active regions instead of thin films; this could eliminate the cracking and delamination problems of flexible devices based on thin film technology. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 12102 KB  
Article
Synthesis and Performance Evaluation of Graphene-Based Comb Polymer Viscosity Reducer
by Zhengdong Xu, Mingjie Li, Yidan Kong, Changjun Long, Yankun Sun, Guohua Liu, Chunhui Yu, Yi Lu, Junpu An and Fan Yang
Energies 2023, 16(15), 5779; https://doi.org/10.3390/en16155779 - 3 Aug 2023
Cited by 7 | Viewed by 1611
Abstract
The high viscosity of heavy oil makes it difficult to realize its economic value. Therefore, improving the fluidity of heavy oil can effectively improve the economic benefit of the development of heavy oil resources. Oil-soluble viscosity reducers can utilize functional groups in monomers [...] Read more.
The high viscosity of heavy oil makes it difficult to realize its economic value. Therefore, improving the fluidity of heavy oil can effectively improve the economic benefit of the development of heavy oil resources. Oil-soluble viscosity reducers can utilize functional groups in monomers to break up asphaltene aggregates to improve the flow of crude oil. Graphene can be used to insert and split asphaltene aggregates through sliding phenomena and π–π interaction with colloidal asphaltene, thereby improving the fluidity of heavy oil. In this study, a graphene nanocomposite viscosity reducer was synthesized from lipophilic-modified graphene and a polymer viscosity reducer. The net viscosity reduction rate reached 80.0% at 400 ppm. Compared with a polymer viscosity reducer, the viscosity reduction effect of a graphene nanocomposite viscosity reducer was improved by about 7%. Structural characterization of a graphene nanocomposite viscosity reducer was characterized with infrared spectroscopy and a thermogravimetric test. The mechanism of a graphene nanocomposite viscosity reducer splitting asphaltene aggregates was verified with scanning electron microscopy. This study provides a theoretical and practical basis for the research and development of a novel nanocomposite viscosity reducer. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery with the Assistance of Sealaplugology)
Show Figures

Figure 1

Back to TopTop