Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA
Abstract
:1. Introduction
2. Experimental Methods
2.1. PVA Material with TGA
2.2. Kinetic Equations Derivation
2.3. Thermodynamic Parameters of PET Pyrolysis
3. Results and Discussion
3.1. The TG Analysis
3.2. Model-Free Methods
3.3. Model-Fitting Methods
3.4. Thermodynamic Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abraham, A.; Soloman, P.A.; Rejini, V.O. Preparation of chitosan-polyvinyl alcohol blends and studies on thermal and mechanical properties. Procedia Technol. 2016, 24, 741–748. [Google Scholar] [CrossRef]
- George, J.; Sabapathi, S.N.; Siddaramaiah. Water soluble polymer-based nanocomposites containing cellulose nanocrystals. In Eco-Friendly Polymer Nanocomposites: Processing and Properties; Springer: Berlin/Heidelberg, Germany, 2015; pp. 259–293. [Google Scholar]
- Sarkodie, B.; Feng, Q.; Xu, C.; Xu, Z. Desizability and Biodegradability of Textile Warp Sizing Materials and Their Mechanism: A Review. J. Polym. Environ. 2023, 31, 3317–3337. [Google Scholar] [CrossRef]
- Patel, B.M.; Bhrambhatt, D. Nonwoven Technology; Textile Technology; M. S. University: Vadodara, India, 2008; pp. 1–54. [Google Scholar]
- Sheik, S.; Sheik, S.; Nairy, R.; Nagaraja, G.K.; Prabhu, A.; Rekha, P.D.; Prashantha, K. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Int. J. Biol. Macromol. 2018, 116, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, P.; Niazi, M.B.K.; Jahan, Z.; Rafiq, S.; Ahmad, T.; Sikander, U.; Javaid, F. Improving functional properties of PVA/starch-based films as active and intelligent food packaging by incorporating propolis and anthocyanin. Polym. Polym. Compos. 2021, 29, 1472–1484. [Google Scholar] [CrossRef]
- Channa, I.A.; Ashfaq, J.; Gilani, S.J.; Chandio, A.D.; Yousuf, S.; Makhdoom, M.A.; Jumah, M.N.B. Sustainable and Eco-Friendly Packaging Films Based on Poly (Vinyl Alcohol) and Glass Flakes. Membranes 2022, 12, 701. [Google Scholar] [CrossRef]
- Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm. 2020, 573, 118803. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, E.A.; Kenawy, E.R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef]
- Thong, C.C.; Teo, D.C.L.; Ng, C.K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Constr. Build. Mater. 2016, 107, 172–180. [Google Scholar] [CrossRef]
- Kazaryan, R.; Khvan, V. Environmentally friendly building materials for residential high-rise construction. In E3S Web of Conferences; EDP Sciences: Les Ulis Cedex A, France, 2019; Volume 91, p. 02008. [Google Scholar]
- Asthana, N.; Pal, K.; Aljabali, A.A.; Tambuwala, M.M.; de Souza, F.G.; Pandey, K. Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. J. Mol. Struct. 2021, 1229, 129592. [Google Scholar] [CrossRef]
- Islam, M.S. Polyvinyl Alcohol and Polyvinyl Acetate. In Industrial Applications of Biopolymers and Their Environmental Impact; CRC: Boca Raton, FL, USA, 2020; pp. 135–152. [Google Scholar]
- de Oliveira, M.J.S.; Bezerra, M.V.F.; Loiola, R.A.; de Lima, G.S.; da Rocha, G.H.O.; de Oliveira, R.T.D.; Barioni, É.D. Effects of slime toy poisoning in children and teenagers. Rev. Paul. De Pediatria. 2022, 41, e2021357. [Google Scholar] [CrossRef]
- Yan, X.; Fang, J.; Gu, J.; Zhu, C.; Qi, D. Flame Retardancy, Thermal and Mechanical Properties of Novel Intumescent Flame Retardant/MXene/Poly (Vinyl Alcohol) Nanocomposites. Nanomaterials 2022, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Z.; Bian, H. A combined kinetic analysis for thermal characteristics and reaction mechanism based on non-isothermal experiments: The case of poly(vinyl alcohol) pyrolysis. Therm. Sci. Eng. Prog. 2023, 39, 101692. [Google Scholar] [CrossRef]
- Mittal, A.; Garg, S.; Bajpai, S. Thermal decomposition kinetics and properties of grafted barley husk reinforced PVA/starch composite films for packaging applications. Carbohydr. Polym. 2020, 240, 116225. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Liu, Y.; Li, T.; Ma, P.; Bai, H.; Xie, Y.; Chen, M.; Dong, W. Structure and thermal behaviors of poly(vinyl alcohol)/surfactant composites: Investigation of molecular interaction and mechanism. Polym. Adv. Technol. 2018, 29, 2224–2229. [Google Scholar] [CrossRef]
- Radoor, S.; Kandel, D.R.; Park, K.; Jayakumar, A.; Karayil, J.; Lee, J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. Chemosphere 2024, 350, 140990. [Google Scholar] [CrossRef]
- Khalid, F.; Roy, A.S.; Parveen, A.; Roberto Castro-Muñoz, R. Fabrication of the cross-linked PVA/TiO2/C nanocomposite membrane for alkaline direct methanol fuel cells. Mater. Sci. Eng. B 2024, 299, 116929. [Google Scholar] [CrossRef]
- Reguieg, F.; Ricci, L.; Bouyacoub, N.; Belbachir, M.; Bertoldo, M. Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT. Polym. Bull. 2020, 77, 929–948. [Google Scholar] [CrossRef]
- Chowdhury, T.; Wang, Q. Study on Thermal Degradation Processes of Polyethylene Terephthalate Microplastics Using the Kinetics and Artificial Neural Networks Models. Processes 2023, 11, 496. [Google Scholar] [CrossRef]
- Aboulkas, A.; El Harfi, K.; El Bouadili, A. Thermal degradation behaviors of polyethylene and polypropylene. Part I Pyrolysis kinetics and mechanisms. Energy Convers. Manag. 2010, 51, 1363–1369. [Google Scholar] [CrossRef]
- Dubdub, I.; Al-Yaari, M. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Polymers 2020, 12, 891. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Mohamed, A.; Abdelnaby, M.A. Pyrolysis Kinetic Behavior and Thermodynamic Analysis of PET Nonwoven Fabric. Materials 2023, 16, 6079. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Drozin, D.; Sozykin, S.; Ivanova, N.; Olenchikova, T.; Krupnova, T.; Krupina, N.; Avdin, V. Kinetic calculation: Software tool for determining the kinetic parameters of the thermal decomposition process using the Vyazovkin Method. SoftwareX 2020, 11, 100359. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
Method | Formula | Draw | |
---|---|---|---|
FR | (3) | ||
FWO | (4) | ||
KAS | (5) | ||
STK | (6) | ||
K | (7) | ||
VY | (8) | minimizing the function |
Method | Formula | |
---|---|---|
CR | (9) | |
Criado | (10) |
Model Series | Reaction Mechanism | Code | ||
---|---|---|---|---|
F | Reaction order models–1st order | F1 | 1 − α | |
2nd order | F2 | |||
3rd order | F3 | |||
D | Diffusion model–1 dimension | D1 | ||
2 dimension | D2 | |||
3 dimension | D3 | |||
A | Nucleation models–2 dimension | A2 | ||
3 dimension | A3 | |||
4 dimension | A4 | |||
R | Geometrical contraction models–One dimension | R1 | 1 | |
- sphere | R2 | |||
- cylinder | R3 | |||
P | Nucleation models–2-Power law | P2 | ||
3-Power law | P3 | |||
4-Power law | P4 |
Test No. | Heating Rate (K min−1) | Symbol | Step 1 Reaction | Step 2 Reaction | ||||
---|---|---|---|---|---|---|---|---|
On-Set Temp. (K) | Peak Temp. (K) | Final Temp. (K) | On-Set Temp. (K) | Peak Temp. (K) | FinalTemp. (K) | |||
1 | 20 | PVA20 | 550 | 620 | 700 | 700 | 740 | 790 |
2 | 30 | PVA30 | 560 | 630 | 720 | 720 | 750 | 800 |
3 | 40 | PVA40 | 570 | 640 | 730 | 730 | 760 | 810 |
Conversion | FR | FWO | KAS | STK | K | VY | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | |
0.1 | 138 | 0.9623 | 85 | 0.9022 | 79 | 0.8791 | 80 | 0.8801 | 79 | 0.8791 | 71 | NA * | 89 | 0.90056 |
0.2 | 124 | 0.9856 | 105 | 0.9387 | 100 | 0.9264 | 100 | 0.9269 | 100 | 0.9264 | 90 | NA * | 103 | 0.9408 |
0.3 | 129 | 0.9945 | 114 | 0.9623 | 109 | 0.9551 | 110 | 0.9554 | 120 | 0.9623 | 97 | NA * | 113 | 0.96592 |
0.4 | 135 | 1 | 116 | 0.9863 | 112 | 0.9835 | 112 | 0.9836 | 122 | 0.9863 | 130 | NA * | 121 | 0.98794 |
0.5 | 173 | 0.9998 | 136 | 0.9886 | 132 | 0.9866 | 133 | 0.9867 | 143 | 0.9886 | 108 | NA * | 138 | 0.99006 |
0.6 | 226 | 0.9949 | 163 | 0.9978 | 160 | 0.9975 | 161 | 0.9975 | 171 | 0.9978 | 113 | NA * | 166 | 0.9971 |
0.7 | 468 | 0.9278 | 268 | 0.9867 | 271 | 0.9856 | 272 | 0.9856 | 282 | 0.9867 | 121 | NA * | 280 | 0.97448 |
Average | 199 | 0.9807 | 148 | 0.9961 | 138 | 0.9591 | 138 | 0.9594 | 145 | 0.9610 | 104 | NA * | 145 | 0.97126 |
1st Stage | 2nd Stage | |||
---|---|---|---|---|
References | E (kJ mol−1) | Method | E (kJ mol−1) | Method |
Zhao et al. (2023) [16] | 135.97 | FWO | 269.34 | FWO |
133.78 | KAS | 271.16 | KAS | |
142.20 | FR | 234.33 | FR | |
134.05 | AIC | 270.38 | AIC | |
Mittal et al. (2020) [17] | 298.73 | FWO | ||
304.55 | KAS | |||
309.67 | FR | |||
304.64 | Modified CR | |||
Wang et al. (2018) [18] | 122.5 | FWO |
Reaction Mechanism 1 Step Reaction | Code | Test 1 PVA20 | Test 2 PVA30 | Test 3 PVA40 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ea (kJ/mol) | Ln (A0) | R2 | Ea (kJ/mol) | Ln (A0) | R2 | Ea (kJ/mol) | Ln (A0) | R2 | ||
Reaction order models–First order | F1 | 91 | 16.28 | 0.9912 | 92 | 16.67 | 0.9878 | 107 | 19.66 | 0.9868 |
Reaction order models–Second order | F2 | 119 | 22.3 | 0.9969 | 119 | 22.28 | 0.9971 | 139 | 26.14 | 0.9974 |
Reaction order models–Third order | F3 | 152 | 29.21 | 0.9993 | 150 | 28.71 | 0.9998 | 176 | 33.63 | 1 |
Diffusion models–One dimension | D1 | 145 | 25.96 | 0.9829 | 151 | 27.07 | 0.9729 | 174 | 31.31 | 0.9682 |
Diffusion models–Two dimension | D2 | 159 | 28.27 | 0.9864 | 164 | 29.16 | 0.979 | 189 | 33.78 | 0.9757 |
Diffusion models–Three dimension | D3 | 175 | 30.17 | 0.9897 | 179 | 30.81 | 0.9848 | 207 | 35.89 | 0.9828 |
Nucleation models–Two dimension | A2 | 40 | 16.92 | 0.9886 | 41 | 17.37 | 0.9842 | 195 | 33.48 | 0.9783 |
Nucleation models–Three-dimension | A3 | 23 | 19.51 | 0.9848 | 24 | 19.98 | 0.9788 | 48 | 16.56 | 0.9835 |
Nucleation models–Fourth dimension | A4 | 15 | 20.65 | 0.9789 | 15 | 21.08 | 0.9704 | 29 | 19.63 | 0.9788 |
Geometrical contraction models–One dimension phase boundary | R1 | 67 | 12.83 | 0.98 | 70 | 12.95 | 0.9685 | 19 | 20.99 | 0.972 |
Geometrical contraction models–Contracting sphere | R2 | 78 | 12.9 | 0.9865 | 81 | 13.5 | 0.9796 | 82 | 14.26 | 0.9638 |
Geometrical contraction models–Contracting cylinder | R3 | 82 | 13.37 | 0.9882 | 84 | 13.89 | 0.9827 | 94 | 16.14 | 0.9771 |
Nucleation models–Power law | P2 | 9 | 21.34 | 0.931 | 30 | 19.29 | 0.9561 | 98 | 16.64 | 0.9807 |
Nucleation models–Power law | P3 | 15 | 20.69 | 0.9578 | 16 | 21.06 | 0.9355 | 35 | 18.81 | 0.952 |
Nucleation models–Power law | P4 | 28 | 18.97 | 0.9719 | 10 | 21.79 | 0.8981 | 28 | 19.66 | 0.9994 |
Reaction mechanism 2 step reaction | Code | Test 1 PVA20 | Test 2 PVA30 | Test 3 PVA40 | ||||||
Ea (kJ/mol) | Ln (A0) | R2 | Ea (kJ/mol) | Ln (A0) | R2 | Ea (kJ/mol) | Ln (A0) | R2 | ||
Reaction order models–First order | F1 | 29 | 18.85 | 0.9993 | 27 | 19.62 | 1 | 25 | 19.98 | 0.9933 |
Reaction order models–Second order | F2 | 92 | 16.01 | 0.9994 | 85 | 15.1 | 0.9996 | 90 | 16.52 | 0.9932 |
Reaction order models–Third order | F3 | 176 | 31.83 | 0.9991 | 163 | 29.86 | 0.9994 | 176 | 32.92 | 0.9932 |
Diffusion models–One dimension | D1 | 10 | 21.9 | 0.9795 | 9 | 22.39 | 0.9936 | 5 | 22.77 | 0.9961 |
Diffusion models–Two dimension | D2 | 22 | 21 | 0.994 | 20 | 21.6 | 0.9986 | 15 | 23.14 | 0.9961 |
Diffusion models–Three dimension | D3 | 44 | 19 | 0.9986 | 41 | 19.88 | 0.9998 | 36 | 20.68 | 0.9963 |
Nucleation models–Two dimension | A2 | 8 | 22.58 | 0.9977 | 7 | 21.82 | 0.9998 | 6 | 22.03 | 0.9754 |
Nucleation models–Three-dimension | A3 | 1 | 20.5 | 0.9654 | 1 | 21.06 | 0.991 | NA | NA | NA |
Nucleation models–Fourth dimension | A4 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Geometrical contraction models–One dimension phase boundary | R1 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Geometrical contraction models–Contracting sphere | R2 | 10 | 21.94 | 0.9931 | 9 | 22.56 | 0.9986 | 7 | 22.96 | 0.9883 |
Geometrical contraction models–Contracting cylinder | R3 | 16 | 21.89 | 0.9971 | 14 | 22.44 | 0.9996 | 12 | 22.89 | 0.9918 |
Nucleation models–Power law | P2 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Nucleation models–Power law | P3 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Nucleation models–Power law | P4 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Test No. | Ea (kJ/mol) | Ln (A0) | R2 | Reaction Mechanism |
---|---|---|---|---|
1 | 119 | 22.3 | 0.9969 | Reaction order models-Second order (F2) |
2 | 119 | 22.28 | 0.9971 | Reaction order models-Second order (F2) |
3 | 139 | 26.14 | 0.9974 | Reaction order models-Second order (F2) |
Conversion | ln [A0 (min−1)] | |||||
---|---|---|---|---|---|---|
FR | FWO | KAS | STK | K | Average | |
0.1 | 26.06 | 15.37 | 13.66 | 14.26 | 15.85 | 36.88 |
0.2 | 23.32 | 19.52 | 18.19 | 18.79 | 19.58 | 26.40 |
0.3 | 24.43 | 21.48 | 20.29 | 20.89 | 23.18 | 25.48 |
0.4 | 25.52 | 22.07 | 20.90 | 21.49 | 23.36 | 26.08 |
0.5 | 32.43 | 25.78 | 24.89 | 25.50 | 26.98 | 27.40 |
0.6 | 41.86 | 30.70 | 30.16 | 30.76 | 31.57 | 36.88 |
0.7 | 84.54 | 49.87 | 50.30 | 50.90 | 51.29 | 26.40 |
Average | 17.04 | 19.88 | 22.05 | 22.67 | 27.12 | 28.45 |
Heating Rates (K/min) | 20 | 30 | 40 |
---|---|---|---|
Kinetic Parameters | |||
Ea (kJ/mol) | 199 | ||
A (min−1) | 2.30 × 1015 | ||
Tp (K) | 620 | 630 | 640 |
Thermodynamic Parameters | |||
∆H (kJ/mol) | 193.85 | 193.76 | 193.68 |
∆G (kJ/mol) | 172.30 | 171.94 | 171.60 |
∆S (kJ/mol.K) | 0.034767 | 0.034634 | 0.034503 |
Potential Energy Barrier | |||
Ea − ∆H (kJ/mol) * | 5.15 | 5.32 | 5.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhulaybi, Z.A.; Dubdub, I. Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers 2024, 16, 629. https://doi.org/10.3390/polym16050629
Alhulaybi ZA, Dubdub I. Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers. 2024; 16(5):629. https://doi.org/10.3390/polym16050629
Chicago/Turabian StyleAlhulaybi, Zaid Abdulhamid, and Ibrahim Dubdub. 2024. "Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA" Polymers 16, no. 5: 629. https://doi.org/10.3390/polym16050629
APA StyleAlhulaybi, Z. A., & Dubdub, I. (2024). Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers, 16(5), 629. https://doi.org/10.3390/polym16050629