Challenges and Research Progress in Zinc Anode Interfacial Stability
Abstract
:1. Introduction
2. Issues and Challenges Facing Zinc Anodes
2.1. Zinc Dendrite
2.2. Hydrogen Evolution Reaction
2.3. Surface Corrosion and Passivation
3. Zinc Anode Stabilization Strategies and Research Progress
3.1. Separator Design
3.2. Anode Structure Optimization
3.3. Surface Protection Layer
3.3.1. Carbon-Based Material Protection Layer
3.3.2. Inorganic Non-Metallic Protective Layer
3.3.3. Protective Layer of Polymer
Protective Layer | Electrolyte | Current Density | Cyclic Life | Reference |
---|---|---|---|---|
NGO | 2M Zn(SO4)2 | 1 mA cm−2 | 1200 h | [71] |
TiO2 | 2M Zn(SO4)2 | 0.2 mA cm−2 | 160 h | [77] |
ZnO | 2M Zn(SO4)2 | 0.2 mA cm−2 | 1000 h | [78] |
IS | 2M Zn(SO4)2 | 0.5 mA cm−2 | 3000 h | [84] |
SEBS-MA | 2M Zn(SO4)2 | 3 mA cm−2 | 3200 h | [85] |
Zn@Nafion-Zn-X | 2M Zn(SO4)2 | 3 mA cm−2 | 10,000 h | [87] |
3.4. Optimization of Electrolyte Composition
3.4.1. “Salt-in-Water” Electrolytes
3.4.2. Aqueous Low-Eutectic Electrolyte
3.4.3. Electrolyte Additives
4. Structural Characteristics of Polymer-Based Materials and Their Application in Aqueous Zinc Electrodes
5. Conclusions
- (1)
- Optimization of the solvation structure and additive species of electrolytes to develop electrolytes that maintain stability across a broad temperature spectrum. Extreme high temperatures accelerate the reaction kinetics and exacerbate the uncontrollable side reactions at the zinc anode interface, while low temperatures slow down the kinetics, increase the cell polarization, and impede the desolvation mechanism of zinc ions. Therefore, the development of electrolytes adapted to a wide temperature range is of considerable importance in promoting the commercialization of aqueous zinc-ion batteries.
- (2)
- Organic–inorganic composite protective layer materials were designed to enhance the zinc anode interface stability. Although the pure polymer protective layer can provide some protection, it suffers from low ionic conductivity [112], insufficient mechanical strength and stability, and is prone to be pierced and detached by zinc dendritic crystals; whereas the inorganic non-metallic protective layer, despite its high hardness, is brittle, has difficulty adapting to the volume change in the zinc anode in the charging and discharging process, and is prone to brittle cracking. By preparing organic–inorganic composites, the synergistic optimization of protective layer performance can be achieved to overcome the limitations of single materials.
- (3)
- Adoption of advanced characterization and monitoring techniques. Current zinc anode interfacial stability studies rely on non-in situ methods, and more sophisticated and sensitive characterization and real-time detection techniques need to be developed in order to deeply explore their working principles. The integration of electrochemistry, spectroscopy, microscopy, and structural analysis for comprehensive characterization of aqueous zinc-ion batteries is essential to advance their development and performance optimization.
Funding
Conflicts of Interest
References
- Li, C.; Xie, X.; Liang, S.; Zhou, J. Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries. Energy Environ. Mater. 2020, 3, 146–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Howe, J.D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Lett. 2021, 6, 404–412. [Google Scholar] [CrossRef]
- Gou, Q.; Luo, H.; Zhang, Q.; Deng, J.; Zhao, R.; Odunmbaku, O.; Wang, L.; Li, L.; Zheng, Y.; Li, J.; et al. Electrolyte Regulation of Bio-Inspired Zincophilic Additive toward High-Performance Dendrite-Free Aqueous Zinc-Ion Batteries. Small 2023, 19, e2207502. [Google Scholar] [CrossRef]
- Shaaban, I.A. Conformational analysis, infrared/Raman spectral assignment, and electronic structural studies of 1,3-dimethyl-2-imidazolidinone using quantum chemical calculations. J. Mol. Struct. 2019, 1175, 708–720. [Google Scholar] [CrossRef]
- Chang, N.; Li, T.; Li, R.; Wang, S.; Yin, Y.; Zhang, H.; Li, X. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535. [Google Scholar] [CrossRef]
- Shi, J.; Sun, T.; Bao, J.; Zheng, S.; Du, H.; Li, L.; Yuan, X.; Ma, T.; Tao, Z. “Water-in-Deep Eutectic Solvent” Electrolytes for High-Performance Aqueous Zn-Ion Batteries. Adv. Funct. Mater. 2021, 31, 202102035. [Google Scholar] [CrossRef]
- Qin, H.; Kuang, W.; Hu, N.; Zhong, X.; Huang, D.; Shen, F.; Wei, Z.; Huang, Y.; Xu, J.; He, H. Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries. Adv. Funct. Mater. 2022, 32, 202206695. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, B.; Zhu, J.; Li, G.; Li, Q.; Ye, R.; Fan, J.; Zhi, C. Manipulating Electric Double Layer Adsorption for Stable Solid-Electrolyte Interphase in 2.3 Ah Zn-Pouch Cells. Angew. Chem. Int. Ed. Engl. 2023, 62, e202302583. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, L.; Zhang, X.; Ren, Y.; Wei, T.; Li, Z.; Huang, Y.; Zhang, H.; Cao, G.; Hu, L. Facet-Termination Promoted Uniform Zn (100) Deposition for High-Stable Zinc-Ion Batteries. Adv. Energy Mater. 2023, 13, 202301517. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Lv, S.; Zhong, L.; Yue, C.; Zhan, S.; Zhao, L.; Wang, C.; Li, X.; Liu, X.; et al. Anion-promoted CB [6] macromolecule dissolution for stable Zn-ion batteries. Energy Environ. Sci. 2024, 17, 4758–4769. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, X.; Luo, M.; Cao, K.; Lu, Y.; Xu, B.B.; Pan, H.; Tao, K.; Jiang, Y. Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode. Adv. Funct. Mater. 2021, 31, 202103514. [Google Scholar] [CrossRef]
- Meng, C.; He, W.; Jiang, L.; Huang, Y.; Zhang, J.; Liu, H.; Wang, J.J. Ultra-Stable Aqueous Zinc Batteries Enabled by β-Cyclodextrin: Preferred Zinc Deposition and Suppressed Parasitic Reactions. Adv. Funct. Mater. 2022, 32, 202207732. [Google Scholar] [CrossRef]
- Yu, H.; Chen, D.; Ni, X.; Qing, P.; Yan, C.; Wei, W.; Ma, J.; Ji, X.; Chen, Y.; Chen, L. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 2023, 16, 2684–2695. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Xi, B.; Chen, W.; Jia, Y.; Feng, J.; Xiong, S. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano 2021, 15, 9244–9272. [Google Scholar] [CrossRef]
- Das, S.K.; Mahapatra, S.; Lahan, H. Aluminium-ion batteries: Developments and challenges. J. Mater. Chem. A 2017, 5, 6347–6367. [Google Scholar] [CrossRef]
- Hafizi, M.; Hassani, S.; Yousefi-Mashhour, H.; Kalantarian, M.M.; Javaheri, M.; Massoudi, A. First principle investigation on properties of MnO2 as an electrode material for Li, Na, Mg, and Al -ion batteries. Comput. Condens. Matter 2024, 38, e00886. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Fang, K.; Wang, H.; Ning, J.; Hu, Y. Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism. Adv. Energy Mater. 2023, 13, 2302187. [Google Scholar] [CrossRef]
- Manjunatha, R.; Yuan, J.; Hongwei, L.; Deng, S.Q.; Ezeigwe, E.R.; Zuo, Y.; Dong, L.; Li, A.; Yan, W.; Zhang, F.; et al. Facile carbon cloth activation strategy to boost oxygen reduction reaction performance for flexible zinc-air battery application. Carbon Energy 2022, 4, 762–775. [Google Scholar] [CrossRef]
- Yao, L.; Wang, G.; Zhang, F.; Chi, X.; Liu, Y. Highly-reversible and recyclable zinc metal batteries achieved by inorganic/organic hybrid separators with finely tunable hydrophilic–hydrophobic balance. Energy Environ. Sci. 2023, 16, 4432–4441. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, B.; Wu, X.; Li, X.; Guo, Z.; Liu, J.; Cao, D.; Huang, X.; Duan, J.; Mo, D.; et al. An Ion-Management Membrane with Vertically Aligned Uniform Electronegative Nanochannels Toward Dendrite-Free Lithium Metal Anodes. Adv. Energy Mater. 2024, 14, 2401377. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, D.; Zhao, N.; Wang, Y.; Yang, M.; Ruan, J.; Yang, G.; Mi, H.; He, C.; Zhang, P. Novel Concept of Separator Design: Efficient Ions Transport Modulator Enabled by Dual-Interface Engineering Toward Ultra-Stable Zn Metal Anodes. Adv. Funct. Mater. 2022, 32, 2112936. [Google Scholar] [CrossRef]
- Liu, X.; Wang, K.; Liu, Y.; Zhao, F.; He, J.; Wu, H.; Wu, J.; Liang, H.P.; Huang, C. Constructing an ion-oriented channel on a zinc electrode through surface engineering. Carbon Energy 2023, 5, e343. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021, 41, 343–353. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Han, R.X.; Mei, L.; Liu, J.L.; Sun, J.C.; Yang, K.; Zhao, J.W. Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Mater. Today Energy 2021, 19, 100608. [Google Scholar] [CrossRef]
- Zuo, L.; Ma, Q.; Xiao, P.; Guo, Q.; Xie, W.; Lu, D.; Yun, X.; Zheng, C.; Chen, Y. Upgrading the Separators Integrated with Desolvation and Selective Deposition toward the Stable Lithium Metal Batteries. Adv. Mater. 2023, 36, e2311529. [Google Scholar] [CrossRef]
- Dong, J.; Peng, H.; Wang, J.; Wang, C.; Wang, D.; Wang, N.; Fan, W.; Jiang, X.; Yang, J.; Qian, Y. Molecular deciphering of hydrophobic, Zinc-philic and robust Amino-functionalized Polysilane for Dendrite-free Zn Anode. Energy Storage Mater. 2023, 54, 875–884. [Google Scholar] [CrossRef]
- Dong, J.; Su, L.; Peng, H.; Wang, D.; Zong, H.; Wang, G.; Yang, J. Spontaneous Molecule Aggregation for Nearly Single-Ion Conducting Sol Electrolyte to Advance Aqueous Zinc Metal Batteries: The Case of Tetraphenylporphyrin. Angew. Chem. Int. Ed. 2024, 63, e202401441. [Google Scholar] [CrossRef]
- Peng, H.; Liu, C.; Wang, N.; Wang, C.; Wang, D.; Li, Y.; Chen, B.; Yang, J.; Qian, Y. Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy Environ. Sci. 2022, 15, 1682–1693. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, S.; Hong, H.; Wang, S.; Zhu, J.; Zhi, C. Interface regulation and electrolyte design strategies for zinc anodes in high-performance zinc metal batteries. iScience 2025, 28, 111751. [Google Scholar] [CrossRef]
- Peng, H.; Wang, D.; Zhang, F.; Yang, L.; Jiang, X.; Zhang, K.; Qian, Z.; Yang, J. Improvements and Challenges of Hydrogel Polymer Electrolytes for Advanced Zinc Anodes in Aqueous Zinc-Ion Batteries. ACS Nano 2024, 18, 21779–21803. [Google Scholar] [CrossRef]
- Xin, Y.; Qi, J.; Xie, H.; Ge, Y.; Wang, Z.; Zhang, F.; He, B.; Wang, S.; Tian, H. 3D Ternary Alloy Artificial Interphase Toward Ultra-Stable and Dendrite-Free Aqueous Zinc Batteries. Adv. Funct. Mater. 2024, 34, 2403222. [Google Scholar] [CrossRef]
- Yang, F.; Yuwono, J.A.; Hao, J.; Long, J.; Yuan, L.; Wang, Y.; Liu, S.; Fan, Y.; Zhao, S.; Davey, K.; et al. Understanding H2 Evolution Electrochemistry to Minimize Solvated Water Impact on Zinc-Anode Performance. Adv. Mater. 2022, 34, e2206754. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Yang, H.; Zhou, H. Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective. ACS Energy Lett. 2022, 7, 2515–2530. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.; Park, Y.; Choi, J.W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044. [Google Scholar] [CrossRef]
- Han, C.; Li, W.; Liu, H.K.; Dou, S.; Wang, J. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880. [Google Scholar] [CrossRef]
- Yang, Q.; Li, L.; Hussain, T.; Wang, D.; Hui, L.; Guo, Y.; Liang, G.; Li, X.; Chen, Z.; Huang, Z.; et al. Stabilizing Interface pH by N-Modified Graphdiyne for Dendrite-Free and High-Rate Aqueous Zn-Ion Batteries. Angew. Chem. Int. Ed. 2021, 61, e202112304. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Chen, X.; Fu, Q.; Wang, S.; Zhang, G.; Xie, C.; Li, X.; Fu, Q. Temperature-dependence of Zn deposition/stripping behavior in aqueous Zn-based flow batteries. J. Energy Chem. 2025, 107, 260–268. [Google Scholar] [CrossRef]
- Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Yuan, H.; Xiong, F.; Liu, Q.; An, Y.; Zhang, J.; Wu, L.; Sun, J.; Zhang, Y.-W.; et al. Achieving highly reversible zinc metal anode via surface termination chemistry. Sci. Bull. 2023, 68, 2993–3002. [Google Scholar] [CrossRef]
- Xie, Z.-L.; Zhu, Y.; Du, J.-Y.; Yang, D.-Y.; Chen, H.; Wang, Z.; Huang, G.; Zhang, X.-B. In situ converting the native passivation layer into a fast ion transport interphase to boost the stability of zinc anodes. Green Energy Environ. 2025; in press. [Google Scholar] [CrossRef]
- Wang, S.-B.; Ran, Q.; Yao, R.-Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X.-Y.; Jiang, Q. Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2014, 5. [Google Scholar] [CrossRef]
- Lee, B.-S.; Cui, S.; Xing, X.; Liu, H.; Yue, X.; Petrova, V.; Lim, H.-D.; Chen, R.; Liu, P. Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Appl. Mater. Interfaces 2018, 10, 38928–38935. [Google Scholar] [CrossRef]
- Ma, H.; Chen, H.; Chen, M.; Li, A.; Han, X.; Ma, D.; Zhang, P.; Chen, J. Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries. Nat. Commun. 2025, 16, 1014. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Cao, J.; Javed, M.S.; Xiong, S.; Liu, C.; Chen, Z. 3D printed PC/SiOC@Zn hybrid composite as dendrite-free anode for Zn-Ion battery. Nano Energy 2022, 100, 107505. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhai, S.; Shui, L.; Shi, Y.; Chen, X.; Wang, G.; Chen, F. Dendrite-free Zn anode supported with 3D carbon nanofiber skeleton towards stable zinc ion batteries. J. Colloid Interface Sci. 2022, 623, 1181–1189. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Huang, X.; Zhu, L.; Tang, Y.; Ji, X.; Wang, H. Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendrite-Free Zn Anode. Small 2020, 16, e2000929. [Google Scholar] [CrossRef]
- Han, J.; Euchner, H.; Kuenzel, M.; Hosseini, S.M.; Groß, A.; Varzi, A.; Passerini, S. A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO2 Batteries. ACS Energy Lett. 2021, 6, 3063–3071. [Google Scholar] [CrossRef]
- Cao, Q.; Gao, Y.; Pu, J.; Zhao, X.; Wang, Y.; Chen, J.; Guan, C. Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 2023, 14, 641. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, C.; Xu, L.; Huang, K.; Wu, H.; Cai, W.; Zhang, Y. A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy Mater. 2022, 2, 200032. [Google Scholar] [CrossRef]
- Wu, B.; Wu, Y.; Lu, Z.; Zhang, J.; Han, N.; Wang, Y.; Li, X.-M.; Lin, M.; Zeng, L. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 2021, 9, 4734–4743. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, S.; Fang, G.; Sun, H.; Cao, X.; Zhou, J.; Pan, A.; Liang, S. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 2021, 55, 549–556. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, W.; Tian, Q.; Han, X.; Tan, Y.; Chen, J.; Wong, C.-P. Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. J. Energy Chem. 2022, 71, 539–546. [Google Scholar] [CrossRef]
- Hu, Y.-F.; Zhou, L.-F.; Gong, H.; Jia, H.; Chen, P.; Wang, Y.-S.; Liu, L.-Y.; Du, T. An integrated dendrite-free zinc metal electrode for corrosion inhibition in aqueous system. Korean J. Chem. Eng. 2022, 39, 2353–2360. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liu, W.; Ni, X.; Qing, P.; Zhao, Q.; Wei, W.; Ji, X.; Ma, J.; Chen, L. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 2021, 9, 8452–8461. [Google Scholar] [CrossRef]
- Bhoyate, S.; Mhin, S.; Jeon, J.-E.; Park, K.; Kim, J.; Choi, W. Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode. ACS Appl. Mater. Interfaces 2020, 12, 27249–27257. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J.-g.; Liu, X.; Wei, B. Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery. ACS Appl. Mater. Interfaces 2018, 10, 25446–25453. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, G.; Liu, J.; Robson, M.J.; Yu, J.; Wang, Y.; Zhang, Z.; Kwok, S.C.T.; Ciucci, F. Bifunctional Hydrated Gel Electrolyte for Long-Cycling Zn-Ion Battery with NASICON-Type Cathode. Adv. Funct. Mater. 2021, 31, 2105717. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, K.; Li, X.; Zhang, S.; Wu, Y.; Zhou, Y.; Meng, K.; Sun, C.; He, Q.; Fan, W.; et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, J.; Lu, Q.; Dong, H.; Karnaushenko, D.D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H.; Qu, Z.; et al. A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery. Adv. Mater. 2021, 33, e2007497. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Pan, J.; Tian, F.; Zeng, S.; Yang, J.; Qian, Y. Polypyrrole-controlled plating/stripping for advanced zinc metal anodes. Mater. Today Energy 2020, 17, 100443. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Hu, Z.; Li, J.; Li, J.; Zhang, Y.; Wang, C.; Cui, G. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949. [Google Scholar] [CrossRef]
- Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode. Adv. Funct. Mater. 2020, 30, 2000599. [Google Scholar] [CrossRef]
- Liu, M.; Cai, J.; Ao, H.; Hou, Z.; Zhu, Y.; Qian, Y. NaTi2(PO4)3 Solid-State Electrolyte Protection Layer on Zn Metal Anode for Superior Long-Life Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2020, 30, 2004885. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Yang, Y.; Huang, F.; Zhu, M.; Ang, B.T.W.; Xue, J.M. Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. Adv. Funct. Mater. 2021, 31, 2101607. [Google Scholar] [CrossRef]
- Wang, A.; Zhou, W.; Huang, A.; Chen, M.; Chen, J.; Tian, Q.; Xu, J. Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid Interface Sci. 2020, 577, 256–264. [Google Scholar] [CrossRef]
- Li, Z.; Wu, L.; Dong, S.; Xu, T.; Li, S.; An, Y.; Jiang, J.; Zhang, X. Pencil Drawing Stable Interface for Reversible and Durable Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2020, 31, 2006495. [Google Scholar] [CrossRef]
- Dong, L.; Yang, W.; Yang, W.; Tian, H.; Huang, Y.; Wang, X.; Xu, C.; Wang, C.; Kang, F.; Wang, G. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 2020, 384, 123355. [Google Scholar] [CrossRef]
- Xia, A.; Pu, X.; Tao, Y.; Liu, H.; Wang, Y. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 2019, 481, 852–859. [Google Scholar] [CrossRef]
- Yang, Y. Comment on “Powering sustainable development within planetary boundaries” by I. M. Algunaibet, C. Pozo, A. Galán-Martín, M.A.J. Huijbregts, N. Mac Dowell and G. Guillén-Gosálbez, Energy Environ. Sci. 2019, 12, 1890. Energy Environ. Sci. 2020, 13, 310–312. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Huang, R.; Wei, G.; Liu, A.; Li, L.; Chen, R. Ultrathin Surface Coating of Nitrogen-Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc-Ion Batteries. Adv. Mater. 2021, 33, 2101649. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Yang, Y.; Liu, G.; Zhu, R.; Huang, J.; Chen, Z.; Gao, Z.; Chen, X.; Qie, L. Redirected Zn Electrodeposition by an Anti-Corrosion Elastic Constraint for Highly Reversible Zn Anodes. Adv. Funct. Mater. 2020, 31, 2001867. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Gu, C.; Zhang, X.; Okhawilai, M.; Wang, S.; Han, J.; Qin, J.; Huang, Y. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 2021, 89, 106322. [Google Scholar] [CrossRef]
- Cheng, W.; Di, H.; Shi, Z.; Zhang, D. Synthesis of ZnS/CoS/CoS2@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery. J. Alloys Compd. 2020, 831, 154607. [Google Scholar] [CrossRef]
- Qi, Z.; Xiong, T.; Chen, T.; Yu, C.; Zhang, M.; Yang, Y.; Deng, Z.; Xiao, H.; Lee, W.S.V.; Xue, J. Dendrite-Free Anodes Enabled by a Composite of a ZnAl Alloy with a Copper Mesh for High-Performing Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 28129–28139. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Zou, P.; Wang, G.; Xiong, Y.; Liu, Y.; Ren, F.; Xiong, X. Nitrogen-doped carbon decorated TiO2/Ti3C2Tx MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 28129–28139. [Google Scholar] [CrossRef]
- Li, B.; Xue, J.; Lv, X.; Zhang, R.; Ma, K.; Wu, X.; Dai, L.; Wang, L.; He, Z. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode. Surf. Coat. Technol. 2021, 421, 127367. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, S.; Li, Y.; Zheng, Z.; Dong, L. Sieve-Like interface built by ZnO porous sheets towards stable zinc anodes. J. Colloid Interface Sci. 2023, 630, 676–684. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, X.; Xia, Y.; Zhang, Y.; Fu, L.; Liu, L.; Yu, N.; Huang, Q.; Wang, B.; Hu, X.; et al. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries. Adv. Sci. 2021, 8, 2100309. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Liu, D.; Liu, M.; Zhou, T.; Qi, K.; Shi, L.; Zhu, Y.; Qian, Y. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129. [Google Scholar] [CrossRef]
- Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, D. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Acc. Chem. Res. 2019, 52, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hee Ryu, G.; An, G.H. Enhanced zinc-ion batteries through the coating of surface-functionalized graphene on the anode: A promising solution for uniform zinc plating. Appl. Surf. Sci. 2023, 635, 157634. [Google Scholar] [CrossRef]
- Purusottam Reddy, B.; Reddy Prasad, P.; Mallikarjuna, K.; Chandra Sekhar, M.; Lee, Y.-W.; Suh, Y.; Park, S.-H. Mn–Co Prussian blue analogue cubic frames for efficient aqueous Zn ion batteries. Microporous Mesoporous Mater. 2023, 362, 112793. [Google Scholar] [CrossRef]
- Jiao, S.; Fu, J.; Wu, M.; Hua, T.; Hu, H. Ion Sieve: Tailoring Zn2+ Desolvation Kinetics and Flux toward Dendrite-Free Metallic Zinc Anodes. ACS Nano 2021, 16, 1013–1024. [Google Scholar] [CrossRef]
- Lee, S.; Song, G.; Kim, S.; Han, D.-Y.; Park, J.H.; Cho, S.; Son, H.B.; Kim, G.; Kang, S.J.; Park, S. Ion-selective and chemical-protective elastic block copolymer interphase for durable zinc metal anode. Cell Rep. Phys. Sci. 2022, 3, 101070. [Google Scholar] [CrossRef]
- Ding, Y.; Cai, C.; Ma, L.; Wang, J.; Mercer, M.P.; Liu, J.; Kramer, D.; Yu, X.; Xue, D.; Zhi, C.; et al. Tailoring MnO2 Cathode Interface via Organic–Inorganic Hybridization Engineering for Ultra-Stable Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2025, 15, 2402819. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, Q.; Wu, X.; Chen, X.; Yang, J.; Wang, Y.; Qin, R.; Ding, S.; Song, Y.; Wu, J.; et al. An Interface-Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultra-Long-Life Aqueous Zinc Metal Anodes. Angew. Chem. Int. Ed. 2020, 59, 16594–16601. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Y.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463. [Google Scholar] [CrossRef]
- Le Fevre, L.W.; Ejigu, A.; Todd, R.; Forsyth, A.J.; Dryfe, R.A.W. High temperature supercapacitors using water-in-salt electrolytes: Stability above 100 °C. Chem. Commun. 2021, 57, 5294–5297. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, P.; Sun, J.; Liu, Y.; Li, F.; Xu, H.; Ye, R.; Tie, Z.; Sun, L.; Jin, Z. Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 2024, 53, 10335–10369. [Google Scholar] [CrossRef]
- Feng, D.; Cao, F.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small 2021, 17, 2103195. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhu, K.; Jiang, W.; Yang, H.; Ma, M.; Zhao, L.; Yang, W. Highly 002-Oriented Dendrite-Free Anode Achieved by Enhanced Interfacial Electrostatic Adsorption for Aqueous Zinc-Ion Batteries. ACS Nano 2024, 18, 21184–21197. [Google Scholar] [CrossRef]
- Liu, G.; Tang, Y.; Wei, Y.; Li, H.; Yan, J.; Feng, Z.; Du, W.; Yang, Q.; Ye, M.; Zhang, Y.; et al. Hydrophobic Ion Barrier-Enabled Ultradurable Zn (002) Plane Orientation towards Long-Life Anode-Less Zn Batteries. Angew. Chem. Int. Ed. Engl 2024, 63, e202407639. [Google Scholar] [CrossRef]
- Zong, Q.; Li, R.; Wang, J.; Zhang, Q.; Pan, A. Tailoring the Whole Deposition Process from Hydrated Zn2+ to Zn0 for Stable and Reversible Zn Anode. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409957. [Google Scholar] [CrossRef]
- Yao, R.; Qian, L.; Sui, Y.; Zhao, G.; Guo, R.; Hu, S.; Liu, P.; Zhu, H.; Wang, F.; Zhi, C.; et al. A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Adv. Energy Mater. 2021, 12, 2102780. [Google Scholar] [CrossRef]
- Huang, H.; Xie, D.; Zhao, J.; Rao, P.; Choi, W.M.; Davey, K.; Mao, J. Boosting Reversibility and Stability of Zn Anodes via Manipulation of Electrolyte Structure and Interface with Addition of Trace Organic Molecules. Adv. Energy Mater. 2022, 12, 2202419. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, K.; Huo, W.; Wang, Y.; Yao, G.; Gu, X.; Cheng, H.; Mai, L.; Hu, C.; Wang, X. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 2019, 62, 275–281. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Shuai, Y.; Cui, X.; Nie, L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf. B Biointerfaces 2014, 113, 223–229. [Google Scholar] [CrossRef]
- Guo, J.; Shang, X.; Chen, P.; Huang, X. How does carrageenan cause colitis? A review. Carbohydr. Polym. 2023, 302, 120374. [Google Scholar] [CrossRef]
- Zhou, T.; Mu, Y.; Chen, L.; Li, D.; Liu, W.; Yang, C.; Zhang, S.; Wang, Q.; Jiang, P.; Ge, G.; et al. Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive. Energy Storage Mater. 2022, 45, 777–785. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Xu, L.; Yang, C.; Hong, M.; Cui, M.; Clifford, B.C.; He, S.; Jing, S.; Yao, Y.; et al. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 2022, 5, 3402–3416. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, F.; Zhang, W.; Yan, H.; Chen, X.; Cheng, S.; Xie, J. Bifunctional Li2Se Mediator to Accelerate Sulfur Conversion and Lithium Deposition Kinetics in Lithium–Sulfurized Polyacrylonitrile Batteries. ACS Appl. Energy Mater. 2023, 6, 7138–7146. [Google Scholar] [CrossRef]
- Liu, Z.-K.; Deng, S.-S.; Zhou, Y.; Tong, Z.; Liu, J.-K.; Wang, Z.; Guo, M.-J.; Deng, L.; Zhen, Y.; Li, J.-T.; et al. On-Site Cross-Linking of Polyacrylamide to Efficiently Bind the Silicon Anode of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 24416–24426. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Mu, X.; Song, Y.; Qin, Z.; Guo, D.; Sun, X.; Liu, X.-X. Protonating imine sites of polyaniline for aqueous zinc batteries. Chem. Commun. 2022, 58, 1693–1696. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Hu, S.; Akhmedov, N.G.; Reed, D.; Li, X.; Liu, X. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 2022, 98, 107269. [Google Scholar] [CrossRef]
- Lin, S.; Wang, F.; Hong, R. Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries. J. Colloid Interface Sci. 2022, 613, 857–865. [Google Scholar] [CrossRef]
- Kang, B.-H.; Li, S.-F.; Yang, J.; Li, Z.-M.; Huang, Y.-F. Uniform Lithium Plating for Dendrite-Free Lithium Metal Batteries: Role of Dipolar Channels in Poly(vinylidene fluoride) and PbZrxTi1–xO3 Interface. ACS Nano 2023, 17, 14114–14122. [Google Scholar] [CrossRef]
- Niu, B.; Wang, J.; Guo, Y.; Li, Z.; Yuan, C.; Ju, A.; Wang, X. Polymers for Aqueous Zinc-Ion Batteries: From Fundamental to Applications Across Core Components. Adv. Energy Mater. 2024, 14, 2303967. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, T.; Chen, L.; Zhu, Z.; Cheng, L.; Gu, S.; Li, Z.; Tong, Z.; Li, H.; Li, Y.; et al. Polymer Chain-Guided Ion Transport in Aqueous Electrolytes of Zn-Ion Batteries. Adv. Energy Mater. 2023, 13, 2300719. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z. Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Adv. Funct. Mater. 2020, 30, 2001263. [Google Scholar] [CrossRef]
- Meng, Z.; Jiao, Y.; Wu, P. Alleviating Side Reactions on Zn Anodes for Aqueous Batteries by a Cell Membrane Derived Phosphorylcholine Zwitterionic Protective Layer. Angew. Chem. Int. Ed. 2023, 62, e202307271. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Wang, C.; Wang, Y.; Ren, Y.; Ge, Y.; Wu, H.; Wang, B.; Chen, D.; Yang, B.; Bin, D.; et al. Phase Inversion-Induced Porous Polymer Coating for High Rate and Stable Zinc Anode. Adv. Funct. Mater. 2024, 34, 2401760. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, Q.; Zhou, Z.; Sun, Y.; Lin, X.; Yang, T.; Mo, F. Challenges and Research Progress in Zinc Anode Interfacial Stability. Energies 2025, 18, 2592. https://doi.org/10.3390/en18102592
Li J, Liu Q, Zhou Z, Sun Y, Lin X, Yang T, Mo F. Challenges and Research Progress in Zinc Anode Interfacial Stability. Energies. 2025; 18(10):2592. https://doi.org/10.3390/en18102592
Chicago/Turabian StyleLi, Jing, Qianxin Liu, Zixuan Zhou, Yaqi Sun, Xidong Lin, Tao Yang, and Funian Mo. 2025. "Challenges and Research Progress in Zinc Anode Interfacial Stability" Energies 18, no. 10: 2592. https://doi.org/10.3390/en18102592
APA StyleLi, J., Liu, Q., Zhou, Z., Sun, Y., Lin, X., Yang, T., & Mo, F. (2025). Challenges and Research Progress in Zinc Anode Interfacial Stability. Energies, 18(10), 2592. https://doi.org/10.3390/en18102592