Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = colloidal nanohybrids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4008 KiB  
Article
Carboxymethyl Chitosan Cinnamaldehyde Coated SilverNanocomposites for Antifungal Seed Priming in Wheat: A Dual-Action Approach Toward Sustainable Crop Protection
by María Mondéjar-López, María Paz García-Simarro, Lourdes Gómez-Gómez, Oussama Ahrazem and Enrique Niza
Polymers 2025, 17(15), 2031; https://doi.org/10.3390/polym17152031 - 25 Jul 2025
Viewed by 292
Abstract
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde [...] Read more.
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde absorption peaks; ATR-FTIR spectra confirmed polymer–terpene bonding; and TEM analysis evidenced uniform nanoparticle morphology. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic size upon coating (from 59.46 ± 12.63 nm to 110.17 ± 4.74 nm), while maintaining low polydispersity (PDI: 0.29 to 0.27) and stable surface charge (zeta potential ~ −30 mV), suggesting colloidal stability and homogeneous polymer encapsulation. Antifungal activity was evaluated against Fusarium oxysporum, Penicillium citrinum, Aspergillus niger, and Aspergillus brasiliensis. The minimum inhibitory concentration (MIC) against F. oxysporum was significantly reduced to 83 μg/mL with AgNP–CMC=CIN, compared to 708 μg/mL for uncoated AgNPs, and was comparable to the reference fungicide tebuconazole (52 μg/mL). Seed priming with AgNP–CMC=CIN led to improved germination (85%) and markedly reduced fungal colonization, while maintaining a favorable phytotoxicity profile. These findings highlight the potential of polysaccharide-terpene-functionalized biogenic AgNPs as a sustainable alternative to conventional fungicides, supporting their application in precision agriculture and integrated crop protection strategies. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Figure 1

17 pages, 14141 KiB  
Article
Integrating Cu2O Colloidal Mie Resonators in Structurally Colored Butterfly Wings for Bio-Nanohybrid Photonic Applications
by Gábor Piszter, Krisztián Kertész, Dávid Kovács, Dániel Zámbó, Ana Cadena, Katalin Kamarás and László Péter Biró
Materials 2024, 17(18), 4575; https://doi.org/10.3390/ma17184575 - 18 Sep 2024
Cited by 2 | Viewed by 1487
Abstract
Colloidal Cu2O nanoparticles can exhibit both photocatalytic activity under visible light illumination and resonant Mie scattering, but, for their practical application, they have to be immobilized on a substrate. Butterfly wings, with complex hierarchical photonic nanoarchitectures, constitute a promising substrate for [...] Read more.
Colloidal Cu2O nanoparticles can exhibit both photocatalytic activity under visible light illumination and resonant Mie scattering, but, for their practical application, they have to be immobilized on a substrate. Butterfly wings, with complex hierarchical photonic nanoarchitectures, constitute a promising substrate for the immobilization of nanoparticles and for the tuning of their optical properties. The native wax layer covering the wing scales of Polyommatus icarus butterflies was removed by simple ethanol pretreatment prior to the deposition of Cu2O nanoparticles, which allowed reproducible deposition on the dorsal blue wing scale nanoarchitectures via drop casting. The samples were investigated by optical and electron microscopy, attenuated total reflectance infrared spectroscopy, UV–visible spectrophotometry, microspectrophotometry, and hyperspectral spectrophotometry. It was found that the Cu2O nanoparticles integrated well into the photonic nanoarchitecture of the P. icarus wing scales, they exhibited Mie resonance on the glass slides, and the spectral signature of this resonance was absent on Si(100). A novel bio-nanohybrid photonic nanoarchitecture was produced in which the spectral properties of the butterfly wings were tuned by the Cu2O nanoparticles and their backscattering due to the Mie resonance was suppressed despite the low refractive index of the chitinous substrate. Full article
Show Figures

Figure 1

18 pages, 3394 KiB  
Article
Synthesis and Characterization of Maghemite Nanoparticles Functionalized with Poly(Sodium 4-Styrene Sulfonate) Saloplastic and Its Acute Ecotoxicological Impact on the Cladoceran Daphnia magna
by Juan A. Ramos-Guivar, Renzo Rueda-Vellasmin, Erich V. Manrique-Castillo, F. Mendoza-Villa, Noemi-Raquel Checca-Huaman and Edson C. Passamani
Polymers 2024, 16(11), 1581; https://doi.org/10.3390/polym16111581 - 3 Jun 2024
Cited by 1 | Viewed by 1488
Abstract
Using a modified co-precipitation method, 11(2) nm γ-Fe2O3 nanoparticles functionalized with PSSNa [Poly(sodium 4-styrenesulfonate)] saloplastic polymer were successfully synthesized, and their structural, vibrational, electronic, thermal, colloidal, hyperfine, and magnetic properties were systematically studied using various analytic techniques. The results showed [...] Read more.
Using a modified co-precipitation method, 11(2) nm γ-Fe2O3 nanoparticles functionalized with PSSNa [Poly(sodium 4-styrenesulfonate)] saloplastic polymer were successfully synthesized, and their structural, vibrational, electronic, thermal, colloidal, hyperfine, and magnetic properties were systematically studied using various analytic techniques. The results showed that the functionalized γ-Fe2O3/PSSNa nanohybrid has physicochemical properties that allow it to be applied in the magnetic remediation process of water. Before being applied as a nanoadsorbent in real water treatment, a short-term acute assay was developed and standardized using a Daphnia magna biomarker. The ecotoxicological tests indicated that the different concentrations of the functionalized nanohybrid may affect the mortality of the Daphnia magna population during the first 24 h of exposure. A lethal concentration of 533(5) mg L−1 was found. At high concentrations, morphological changes were also seen in the body, heart, and antenna. Therefore, these results suggested the presence of alterations in normal growth and swimming skills. The main changes observed in the D. magna features were basically caused by the PSSNa polymer due to its highly stable colloidal properties (zeta potential > −30 mV) that permit a direct and constant interaction with the Daphnia magna neonates. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 10178 KiB  
Article
Spermine Oxidase–Substrate Electrostatic Interactions: The Modulation of Enzyme Function by Neighboring Colloidal ɣ-Fe2O3
by Graziano Rilievo, Massimiliano Magro, Federica Tonolo, Alessandro Cecconello, Lavinia Rutigliano, Aura Cencini, Simone Molinari, Maria Luisa Di Paolo, Cristian Fiorucci, Marianna Nicoletta Rossi, Manuela Cervelli and Fabio Vianello
Biomolecules 2023, 13(12), 1800; https://doi.org/10.3390/biom13121800 - 15 Dec 2023
Cited by 2 | Viewed by 2033
Abstract
Protein–nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for [...] Read more.
Protein–nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical–physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein–nanoparticle conjugation as a means to modulate biological functions. Full article
(This article belongs to the Special Issue Polyamine Metabolism and Function)
Show Figures

Figure 1

18 pages, 2767 KiB  
Article
Polymer-Stabilized Silver (Gold)–Zinc Oxide Nanoheterodimer Structures as Antimicrobials
by Nadezhda A. Samoilova, Maria A. Krayukhina, Alexander V. Naumkin, Alexander A. Korlyukov, Nelya M. Anuchina and Dmitry A. Popov
Appl. Sci. 2023, 13(20), 11121; https://doi.org/10.3390/app132011121 - 10 Oct 2023
Cited by 3 | Viewed by 1473
Abstract
A simple one-pot method is proposed for obtaining the colloidal nanohybrid structures of silver (gold) and zinc oxide as well as nanostructures doped with zinc ions. The copolymers of maleic acid were used for the stabilization of nanoheterostructures. To characterize the preparation, UV–Vis [...] Read more.
A simple one-pot method is proposed for obtaining the colloidal nanohybrid structures of silver (gold) and zinc oxide as well as nanostructures doped with zinc ions. The copolymers of maleic acid were used for the stabilization of nanoheterostructures. To characterize the preparation, UV–Vis spectroscopy, TEM, FTIR, XPS, and XRD were used. The bactericidal properties of the nanoheterostructures were studied in relation to the fungus C. albicans and the bacteria E. coli and S. aureus, used in planktonic form. In general, the samples containing nanosilver were the most active, and the preparations containing gold nanoparticles were the least active. The minimum inhibitory concentrations (MICs) of the Ag/ZnO samples, based on all copolymers, were in the ranges of 1.4–1.7 μg/mL for C. albicans, 2.9–6.8 μg/mL for E. coli, and 23–27 μg/mL for S. aureus; the MIC values of Au/ZnO samples were 472 μg/mL for S. aureus and 945 μg/mL for C. albicans and E. coli. The additional introduction of zinc cations into heterodimers had practically no effect on the antimicrobial properties of the composites. For all prepared composites and all tested microorganisms, the fractional inhibitory concentration indexes were in the range of 0.5–2.2, which indicates a close-to-additive contribution of the bioactive components in the samples used in the bactericidal process. Full article
(This article belongs to the Special Issue Functional Polymers: Synthesis, Properties and Applications)
Show Figures

Figure 1

18 pages, 8000 KiB  
Article
Iridium-Based Nanohybrids: Synthesis, Characterization, Optical Limiting, and Nonlinear Optical Properties
by Nikolaos Chazapis, Michalis Stavrou, Georgia Papaparaskeva, Alexander Bunge, Rodica Turcu, Theodora Krasia-Christoforou and Stelios Couris
Nanomaterials 2023, 13(14), 2131; https://doi.org/10.3390/nano13142131 - 22 Jul 2023
Cited by 4 | Viewed by 2838
Abstract
The present work reports on the synthesis and characterization of iridium (Ir)-based nanohybrids with variable chemical compositions. More specifically, highly stable polyvinylpyrrolidone (PVP) nanohybrids of the PVP-IrO2 and PVP-Ir/IrO2 types, as well as non-coated Ir/IrO2 nanoparticles, are synthesized using different [...] Read more.
The present work reports on the synthesis and characterization of iridium (Ir)-based nanohybrids with variable chemical compositions. More specifically, highly stable polyvinylpyrrolidone (PVP) nanohybrids of the PVP-IrO2 and PVP-Ir/IrO2 types, as well as non-coated Ir/IrO2 nanoparticles, are synthesized using different synthetic protocols and characterized in terms of their chemical composition and morphology via X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM), respectively. Furthermore, their nonlinear optical (NLO) response and optical limiting (OL) efficiency are studied by means of the Z-scan technique, employing 4 ns laser pulses at 532 and 1064 nm. The results demonstrate that the PVP-Ir/IrO2 and Ir/IrO2 systems exhibit exceptional OL performance, while PVP-IrO2 presents very strong saturable absorption (SA) behavior, indicating that the present Ir-based nanohybrids could be strong competitors to other nanostructured materials for photonic and optoelectronic applications. In addition, the findings denote that the variation in the content of IrO2 nanoparticles by using different synthetic pathways significantly affects the NLO response of the studied Ir-based nanohybrids, suggesting that the choice of the appropriate synthetic method could lead to tailor-made NLO properties for specific applications in photonics and optoelectronics. Full article
Show Figures

Figure 1

17 pages, 2727 KiB  
Article
One-Pot Synthesis of Colloidal Hybrid Au (Ag)/ZnO Nanostructures with the Participation of Maleic Acid Copolymers
by Nadezhda A. Samoilova, Maria A. Krayukhina, Alexander A. Korlyukov, Zinaida S. Klemenkova, Alexander V. Naumkin and Yaroslav O. Mezhuev
Polymers 2023, 15(7), 1670; https://doi.org/10.3390/polym15071670 - 27 Mar 2023
Cited by 5 | Viewed by 2128
Abstract
One-pot synthesis of colloidal Au/ZnO and Ag/ZnO nanohybrid structures was carried out. The copolymers of maleic acid—poly(N-vinyl-2-pyrrolidone-alt-maleic acid), poly(ethylene-alt-maleic acid), or poly(styrene-alt-maleic acid) were used as templates for the sorption of cations of metals-precursors and stabilization of [...] Read more.
One-pot synthesis of colloidal Au/ZnO and Ag/ZnO nanohybrid structures was carried out. The copolymers of maleic acid—poly(N-vinyl-2-pyrrolidone-alt-maleic acid), poly(ethylene-alt-maleic acid), or poly(styrene-alt-maleic acid) were used as templates for the sorption of cations of metals-precursors and stabilization of the resulting nanoheterostructures. Simultaneous production of two types of nanoparticles has been implemented under mild conditions in an aqueous alkaline medium and without additional reagents. Equimolar ratios of the metal cations and appropriate load on all copolymers were used: molar ratio of maleic acid monomeric units of copolymer/gold (silver)cations/zinc cations was 1/0.15/0.23 (1/0.3/0.15). The process of obtaining the heterostructures was studied using UV-Vis spectroscopy. The kinetics of the formation of heterostructures was influenced by the nature of the maleic acid copolymer and noble metal cations used. A high reaction rate was observed in the case of using zinc and gold cations-precursors and a copolymer of maleic acid with N-vinylpyrrolidone as a stabilizer of nanoparticles. The structure of the synthesized polymer-stabilized heterostructures was studied using instrumental methods of analysis—XPS, FTIR, PXRD, and TEM. Under the conditions used, stable colloidal solutions of heterodimers were obtained, and such structure can be converted to a solid state and back without loss of properties. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites III)
Show Figures

Figure 1

23 pages, 2534 KiB  
Review
Metal-Polymer Nanoconjugates Application in Cancer Imaging and Therapy
by André Q. Figueiredo, Carolina F. Rodrigues, Natanael Fernandes, Duarte de Melo-Diogo, Ilídio J. Correia and André F. Moreira
Nanomaterials 2022, 12(18), 3166; https://doi.org/10.3390/nano12183166 - 13 Sep 2022
Cited by 16 | Viewed by 3648
Abstract
Metallic-based nanoparticles present a unique set of physicochemical properties that support their application in different fields, such as electronics, medical diagnostics, and therapeutics. Particularly, in cancer therapy, the plasmonic resonance, magnetic behavior, X-ray attenuation, and radical oxygen species generation capacity displayed by metallic [...] Read more.
Metallic-based nanoparticles present a unique set of physicochemical properties that support their application in different fields, such as electronics, medical diagnostics, and therapeutics. Particularly, in cancer therapy, the plasmonic resonance, magnetic behavior, X-ray attenuation, and radical oxygen species generation capacity displayed by metallic nanoparticles make them highly promising theragnostic solutions. Nevertheless, metallic-based nanoparticles are often associated with some toxicological issues, lack of colloidal stability, and establishment of off-target interactions. Therefore, researchers have been exploiting the combination of metallic nanoparticles with other materials, inorganic (e.g., silica) and/or organic (e.g., polymers). In terms of biological performance, metal-polymer conjugation can be advantageous for improving biocompatibility, colloidal stability, and tumor specificity. In this review, the application of metallic-polymer nanoconjugates/nanohybrids as a multifunctional all-in-one solution for cancer therapy will be summarized, focusing on the physicochemical properties that make metallic nanomaterials capable of acting as imaging and/or therapeutic agents. Then, an overview of the main advantages of metal-polymer conjugation as well as the most common structural arrangements will be provided. Moreover, the application of metallic-polymer nanoconjugates/nanohybrids made of gold, iron, copper, and other metals in cancer therapy will be discussed, in addition to an outlook of the current solution in clinical trials. Full article
Show Figures

Graphical abstract

17 pages, 3215 KiB  
Article
Gold/Pentablock Terpolymer Hybrid Multifunctional Nanocarriers for Controlled Delivery of Tamoxifen: Effect of Nanostructure on Release Kinetics
by Maria-Teodora Popescu and Constantinos Tsitsilianis
Molecules 2022, 27(12), 3764; https://doi.org/10.3390/molecules27123764 - 11 Jun 2022
Cited by 2 | Viewed by 1791
Abstract
Here, we describe the preparation and characterization of organic/inorganic hybrid polymer multifunctional nanocarriers. Novel nanocomposites of gold nanoparticles using pH-responsive coordination pentablock terpolymers of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide)-b-poly(ε-caprolactone), bearing or not bearing partially quaternized vinylpyridine moieties, [...] Read more.
Here, we describe the preparation and characterization of organic/inorganic hybrid polymer multifunctional nanocarriers. Novel nanocomposites of gold nanoparticles using pH-responsive coordination pentablock terpolymers of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide)-b-poly(ε-caprolactone), bearing or not bearing partially quaternized vinylpyridine moieties, were studied. The template morphology of the coordination pentablock terpolymer at physiological pH ranges from crew-cut to multicompartmentalized micelles which can be tuned by chemical modification of the central block. Additionally, the presence of 2VP groups allows the coordination of gold ions, which can be reduced in situ to construct gold@polymer nanohybrids. Furthermore, the possibility of tuning the gold distribution in the micelles, through partial quaternization of the central P2VP block, was also investigated. Various morphological gold colloidal nanoparticles such as gold@core-corona nanoparticles and gold@core-gold@corona nanoparticles were synthesized on the corresponding template of the pentablock terpolymer, first by coordination with gold ions, followed by reduction with NaBH4. The pentablock and gold@pentablock nanoparticles could sparingly accommodate a water-soluble drug, Tamoxifen (TAX), in their hydrophobic micellar cores. The nanostructure of the nanocarrier remarkably affects the TAX delivery kinetics. Importantly, the hybrid gold@polymer nanoparticles showed prolonged release profiles for the guest molecule, relative to the corresponding bare amphiphilic pentablock polymeric micelles. These Gold@pentablock terpolymer hybrid nanoparticles could act as a multifunctional theranostic nanoplatform, integrating sustainable pH-controlled drug delivery, diagnostic function and photothermal therapy. Full article
(This article belongs to the Special Issue Design of Functional Polymer Materials for Drug Controlled Release)
Show Figures

Figure 1

17 pages, 3660 KiB  
Article
About the Influence of PEG Spacers on the Cytotoxicity of Titanate Nanotubes-Docetaxel Nanohybrids against a Prostate Cancer Cell Line
by Alexis Loiseau, Julien Boudon, Céline Mirjolet, Véronique Morgand and Nadine Millot
Nanomaterials 2021, 11(10), 2733; https://doi.org/10.3390/nano11102733 - 15 Oct 2021
Cited by 4 | Viewed by 2591
Abstract
The association between chemotherapeutic drugs and metal oxide nanoparticles has sparked a rapidly growing interest in cancer nanomedicine. The elaboration of new engineered docetaxel (DTX)-nanocarriers based on titanate nanotubes (TiONts) was reported. The idea was to maintain the drug inside cancer cells and [...] Read more.
The association between chemotherapeutic drugs and metal oxide nanoparticles has sparked a rapidly growing interest in cancer nanomedicine. The elaboration of new engineered docetaxel (DTX)-nanocarriers based on titanate nanotubes (TiONts) was reported. The idea was to maintain the drug inside cancer cells and avoid multidrug resistance mechanisms, which often limit drug efficacy by decreasing their intracellular concentrations in tumor cells. HS-PEGn-COOH (PEG: polyethylene glycol, n = 3000, 5000, 10,000) was conjugated, in an organic medium by covalent linkages, on TiONts surface. This study aimed to investigate the influence of different PEG derivatives chain lengths on the TiONts colloidal stability, on the PEGn density and conformation, as well as on the DTX biological activity in a prostate cancer model (human PC-3 prostate adenocarcinoma cells). In vitro tests highlighted significant cytotoxicities of the drug after loading DTX on PEGn-modified TiONts (TiONts-PEGn-DTX). Higher grafting densities for shorter PEGylated chains were most favorable on DTX cytotoxicity by promoting both colloidal stability in biological media and cells internalization. This promising strategy involves a better understanding of nanohybrid engineering, particularly on the PEGylated chain length influence, and can thus become a potent tool in nanomedicine to fight against cancer. Full article
(This article belongs to the Special Issue Advanced Studies in Nano-BioAnalytical Physico-Chemistry)
Show Figures

Graphical abstract

12 pages, 2285 KiB  
Article
Bovine Serum Albumin-Coated Niclosamide-Zein Nanoparticles as Potential Injectable Medicine against COVID-19
by Sanoj Rejinold N, Goeun Choi, Huiyan Piao and Jin-Ho Choy
Materials 2021, 14(14), 3792; https://doi.org/10.3390/ma14143792 - 7 Jul 2021
Cited by 20 | Viewed by 4819
Abstract
(1) Background: COVID-19 has affected millions of people worldwide, but countries with high experimental anti-SARS-CoV-2 vaccination rates among the general population respectively show progress in achieving general herd immunity in the population (a combination of natural and vaccine-induced acquired immunity), resulting in a [...] Read more.
(1) Background: COVID-19 has affected millions of people worldwide, but countries with high experimental anti-SARS-CoV-2 vaccination rates among the general population respectively show progress in achieving general herd immunity in the population (a combination of natural and vaccine-induced acquired immunity), resulting in a significant reduction in both newly detected infections and mortality rates. However, the longevity of the vaccines’ ability to provide protection against the ongoing pandemic is still unclear. Therefore, it is of utmost importance to have new medications to fight against the pandemic at the earliest point possible. Recently, it has been found that repurposing already existing drugs could, in fact, be an ideal strategy to formulate effective medication for COVID-19. Though there are many FDA-approved drugs, it has been found that niclosamide (NIC), an anthelmintic drug, has significantly high potential against the SARS-CoV-2 virus. (2) Methods: Here we deployed a simple self-assembling technique through which Zein nanoparticles were successfully used to encapsulate NIC, which was then coated with bovine serum albumin (BSA) in order to improve the drugs’ stability, injectablity, and selectivity towards the virus-infected cells. (3) Results: The particle size for the BSA-stabilized Zein-NIC nanohybrid was found to be less than 200 nm, with excellent colloidal stability and sustained drug release properties. In addition, the nanohybrid showed enhanced drug release behavior under serum conditions, indicating that such a hybrid drug delivery system could be highly beneficial for treating COVID-19 patients suffering from high endothelial glycocalyx damage followed by a cytokine storm related to the severe inflammations. Full article
(This article belongs to the Special Issue Drug Delivery: Recent Developments and Future Prospects)
Show Figures

Graphical abstract

16 pages, 2764 KiB  
Article
Fabrication of Silver-Decorated Graphene Oxide Nanohybrids via Pulsed Laser Ablation with Excellent Antimicrobial and Optical Limiting Performance
by Parvathy Nancy, Jiya Jose, Nithin Joy, Sivakumaran Valluvadasan, Reji Philip, Rodolphe Antoine, Sabu Thomas and Nandakumar Kalarikkal
Nanomaterials 2021, 11(4), 880; https://doi.org/10.3390/nano11040880 - 30 Mar 2021
Cited by 31 | Viewed by 4270
Abstract
The demand for metallic nanoparticle ornamented nanohybrid materials of graphene oxide (GO) finds copious recognition by virtue of its advanced high-tech applications. Far apart from the long-established synthesis protocols, a novel laser-induced generation of silver nanoparticles (Ag NPs) that are anchored onto the [...] Read more.
The demand for metallic nanoparticle ornamented nanohybrid materials of graphene oxide (GO) finds copious recognition by virtue of its advanced high-tech applications. Far apart from the long-established synthesis protocols, a novel laser-induced generation of silver nanoparticles (Ag NPs) that are anchored onto the GO layers by a single-step green method named pulsed laser ablation has been exemplified in this work. The second and third harmonic wavelengths (532 nm and 355 nm) of an Nd:YAG pulsed laser is used for the production of Ag NPs from a bulk solid silver target ablated in an aqueous solution of GO to fabricate colloidal Ag-GO nanohybrid materials. UV-Vis absorption spectroscopy, Raman spectroscopy, and TEM validate the optical, structural, and morphological features of the hybrid nanomaterials. The results revealed that the laser-assisted in-situ deposition of Ag NPs on the few-layered GO surface improved its antibacterial properties, in which the hybrid nanostructure synthesized at a longer wavelength exhibited higher antibacterial action resistance to Escherichia coli (E. coli) than Staphylococcus aureus (S. aureus) bacteria. Moreover, nonlinear optical absorption (NLA) of Ag-GO nanohybrid was measured using the open aperture Z-scan technique. The Z-scan results signify the NLA properties of the Ag-GO hybrid material and have a large decline in transmittance of more than 60%, which can be employed as a promising optical limiting (OL) material. Full article
(This article belongs to the Special Issue Graphene-Based Nanomaterials)
Show Figures

Figure 1

26 pages, 5869 KiB  
Review
Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer
by Jana K. Alwattar, Amina T. Mneimneh, Kawthar K. Abla, Mohammed M. Mehanna and Ahmed N. Allam
Pharmaceutics 2021, 13(3), 355; https://doi.org/10.3390/pharmaceutics13030355 - 8 Mar 2021
Cited by 40 | Viewed by 3611
Abstract
The epoch of nanotechnology has authorized novel investigation strategies in the area of drug delivery. Liposomes are attractive biomimetic nanocarriers characterized by their biocompatibility, high loading capacity, and their ability to reduce encapsulated drug toxicity. Nevertheless, various limitations including physical instability, lack of [...] Read more.
The epoch of nanotechnology has authorized novel investigation strategies in the area of drug delivery. Liposomes are attractive biomimetic nanocarriers characterized by their biocompatibility, high loading capacity, and their ability to reduce encapsulated drug toxicity. Nevertheless, various limitations including physical instability, lack of site specificity, and low targeting abilities have impeded the use of solo liposomes. Metal nanocarriers are emerging moieties that can enhance the therapeutic activity of many drugs with improved release and targeted potential, yet numerous barriers, such as colloidal instability, cellular toxicity, and poor cellular uptake, restrain their applicability in vivo. The empire of nanohybrid systems has shelled to overcome these curbs and to combine the criteria of liposomes and metal nanocarriers for successful theranostic delivery. Metallic moieties can be embedded or functionalized on the liposomal systems. The current review sheds light on different liposomal-metal nanohybrid systems that were designed as cellular bearers for therapeutic agents, delivering them to their targeted terminus to combat one of the most widely recognized diseases, cancer. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Tumor Targeting Nanotechnology)
Show Figures

Graphical abstract

18 pages, 8787 KiB  
Article
Multifunctional Properties of Binary Polyrhodanine Manganese Ferrite Nanohybrids—From the Energy Converters to Biological Activity
by Emilia Zachanowicz, Magdalena Kulpa-Greszta, Anna Tomaszewska, Małgorzata Gazińska, Monika Marędziak, Krzysztof Marycz and Robert Pązik
Polymers 2020, 12(12), 2934; https://doi.org/10.3390/polym12122934 - 8 Dec 2020
Cited by 9 | Viewed by 2913
Abstract
The PRHD@MnFe2O4 binary hybrids have shown a potential for applications in the biomedical field. The polymer cover/shell provides sufficient surface protection of magnetic nanoparticles against adverse effects on the biological systems, e.g., it protects against Fenton’s reactions and the generation [...] Read more.
The PRHD@MnFe2O4 binary hybrids have shown a potential for applications in the biomedical field. The polymer cover/shell provides sufficient surface protection of magnetic nanoparticles against adverse effects on the biological systems, e.g., it protects against Fenton’s reactions and the generation of highly toxic radicals. The heating ability of the PRHD@MnFe2O4 was measured as a laser optical density (LOD) dependence either for powders as well as nanohybrid dispersions. Dry hybrids exposed to the action of NIR radiation (808 nm) can effectively convert energy into heat that led to the enormous temperature increase ΔT 170 °C (>190 °C). High concentrated colloidal suspensions (5 mg/mL) can generate ΔT of 42 °C (65 °C). Further optimization of the nanohybrids amount and laser parameters provides the possibility of temperature control within a biologically relevant range. Biological interactions of PRHD@MnFe2O4 hybrids were tested using three specific cell lines: macrophages (RAW 264.7), osteosarcoma cells line (UMR-106), and stromal progenitor cells of adipose tissue (ASCs). It was shown that the cell response was strongly dependent on hybrid concentration. Antimicrobial activity of the proposed composites against Escherichia coli and Staphylococcus aureus was confirmed, showing potential in the exploitation of the fabricated materials in this field. Full article
(This article belongs to the Special Issue Conducting Polymer-Based Hybrid Nanomaterials)
Show Figures

Figure 1

24 pages, 13363 KiB  
Review
Synthetic Polymer Aerogels in Particulate Form
by Patrina Paraskevopoulou, Despoina Chriti, Grigorios Raptopoulos and George C. Anyfantis
Materials 2019, 12(9), 1543; https://doi.org/10.3390/ma12091543 - 10 May 2019
Cited by 40 | Viewed by 7382
Abstract
Aerogels have been defined as solid colloidal or polymeric networks of nanoparticles that are expanded throughout their entire volume by a gas. They have high surface areas, low thermal conductivities, low dielectric constants, and high acoustic attenuation, all of which are very attractive [...] Read more.
Aerogels have been defined as solid colloidal or polymeric networks of nanoparticles that are expanded throughout their entire volume by a gas. They have high surface areas, low thermal conductivities, low dielectric constants, and high acoustic attenuation, all of which are very attractive properties for applications that range from thermal and acoustic insulation to dielectrics to drug delivery. However, one of the most important impediments to that potential has been that most efforts have been concentrated on monolithic aerogels, which are prone to defects and their production requires long and costly processing. An alternative approach is to consider manufacturing aerogels in particulate form. Recognizing that need, the European Commission funded “NanoHybrids”, a 3.5 years project under the Horizon 2020 framework with 12 industrial and academic partners aiming at aerogel particles from bio- and synthetic polymers. Biopolymer aerogels in particulate form have been reviewed recently. This mini-review focuses on the emerging field of particulate aerogels from synthetic polymers. That category includes mostly polyurea aerogels, but also some isolated cases of polyimide and phenolic resin aerogels. Particulate aerogels covered include powders, micro granules and spherical millimeter-size beads. For the benefit of the reader, in addition to the literature, some new results from our laboratory concerning polyurea particle aerogels are also included. Full article
(This article belongs to the Special Issue Aerogels and Their Functionalization for Practical Applications)
Show Figures

Figure 1

Back to TopTop