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Abstract: Aerogels have been defined as solid colloidal or polymeric networks of nanoparticles that
are expanded throughout their entire volume by a gas. They have high surface areas, low thermal
conductivities, low dielectric constants, and high acoustic attenuation, all of which are very attractive
properties for applications that range from thermal and acoustic insulation to dielectrics to drug
delivery. However, one of the most important impediments to that potential has been that most efforts
have been concentrated on monolithic aerogels, which are prone to defects and their production
requires long and costly processing. An alternative approach is to consider manufacturing aerogels
in particulate form. Recognizing that need, the European Commission funded “NanoHybrids”, a 3.5
years project under the Horizon 2020 framework with 12 industrial and academic partners aiming at
aerogel particles from bio- and synthetic polymers. Biopolymer aerogels in particulate form have
been reviewed recently. This mini-review focuses on the emerging field of particulate aerogels from
synthetic polymers. That category includes mostly polyurea aerogels, but also some isolated cases of
polyimide and phenolic resin aerogels. Particulate aerogels covered include powders, micro granules
and spherical millimeter-size beads. For the benefit of the reader, in addition to the literature, some
new results from our laboratory concerning polyurea particle aerogels are also included.

Keywords: aerogels; polyurea; polyimide; phenolic resin; polybenzoxazine; resorcinol-formaldehyde;
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1. Introduction

Aerogels have been defined as solid colloidal or polymeric networks of nanoparticles expanded
throughout their entire volume by a gas [1,2]. With silica aerogels as a well-known example, aerogels
have been called “frozen smoke”, and in practice they are highly open porous ultra-lightweight
materials [3–5], consisting of up to more than 90% v/v of empty space. They are prepared by removing
pore-filling solvents from wet-gels without substantial volume reduction or network compaction.
Typically, that is carried out by turning the pore-filling solvent into a supercritical fluid that is
released slowly like a gas. That process allows aerogels to retain the structural shape of their wet-gel
precursors [5].

Silica aerogels were first prepared by S. S. Kistler in the 1930s [6,7]. Besides silica, he successfully
prepared other metal oxide aerogels along with some organic aerogels [8,9]. Kistler’s first silica aerogels
were commercialized through Monsanto Chemical Company [10]. However, time-consuming gelation
and solvent exchanges were the main drawbacks of Kistler’s method. A new method for aerogels
synthesis using alkoxides as precursors was published by J. B. Peri in 1966 [11]. Research efforts have
subsequently extended this class of materials to non-silica inorganic oxides, natural and synthetic
organic polymers, carbons, metals and ceramic materials [12].

As with any porous material, the bulk physical properties are influenced by the size and
shape of the pores. Most aerogels are mesoporous materials with pore sizes in the 2–50 nm range.
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The solid network has a complex hierarchical structure coming from aggregation of smaller primary
particles to fractal porous secondary particles, eventually agglomerating to a structure resembling a
“pearl-necklace”. The finely structured porous skeletal framework together with the small size pores
provides aerogels with high surface areas, low thermal conductivities, low dielectric constants, and
high acoustic attenuation [4,13–15]. Those properties make aerogels promising materials for a wide
variety of areas, including, but not limited to, energy storage [16–19], thermal [18,20–25] and acoustic
insulation [20,21], dielectrics [20], gas and humidity adsorption [20,24,26], for space applications [20],
gas sensors [26], environmental remediation [27,28], catalysis [4,17,24,26,29–31], biomedicine [19,25,32],
and the food industry [24,32]. However, monolithic aerogels are prone to cracks and defects [33]
and their production requires long processing times, which may hinder their potential. One way
toward efficient preparation and processing is to consider manufacturing aerogels in particulate
rather than in monolithic form [34]. In response to that need, the European Commission is funding
“NanoHybrids” [35], a 3.5 year program under the Horizon 2020 framework with 12 industrial and
academic partners aiming at the development of technology for aerogel particles production from bio-
and synthetic polymers. The production of biopolymer aerogels in particulate form [36–38] has been
reported in recent publications. Synthetic polymer aerogels in powder, micro granule and spherical
millimeter-size bead form are reviewed here.

Silica aerogels, arguably the archetypical example of aerogels, have been synthesized as monoliths
(relatively difficult to manufacture in cm-size and above), composite blankets (the main product of the
aerogel thermal insulation industry), and as powders and granules (also commercially available) [39].
For certain applications, particulate aerogels are preferable over monoliths. For example, silica aerogel
microspheres (120 ± 30 µm in diameter; mean pore size: 14 nm) perform better than silica aerogel
monoliths toward filtration of air to remove latex spheres (20–2000 nm) [40], and silica aerogel granules
(150–250 µm and 50–500 µm) outperform high efficiency particulate air (HEPA) filters in solid and oily
aerosol collection [41]. Silica aerogel granules (0.01–4 mm) have also shown high thermal insulation
(thermal conductivity as low as 0.019 W m−1 K−1) as well as acoustic insulation (transmission loss as
high as 15 dB at 1700 Hz) properties, both improving with decreasing size and increasing packing
density of the granules [42]. Hollow and granular silica aerogel microspheres have been prepared
from rice husk ash and have found applications in drug delivery [43].

Silica aerogel microparticles (155 µm to 1.7 mm) have been synthesized from tetramethylorthosilicate
via emulsion gelation and CO2 supercritical extraction [44]. Silica aerogel granules have been prepared
from polyethoxysiloxanes in a one-pot process requiring minimal amounts of solvent and processing
time [45]. Uniform mm-sized silica aerogel beads have been synthesized from sodium silicate and
tetraethoxysilane (hydrophobic beads), or from trimethylchlorosilane (hydrophilic beads) [46], or from
tetraethoxysilane by extrusion of the silica sol into an oil phase through nozzles [47].

Carbon aerogel beads have been prepared by pyrolysis of resorcinol-formaldehyde [48–53]
or polybenzoxazine [54] beads. This kind of aerogels are chemically inert, have high electric
conductivity and adjustable internal characteristics; thus, they can find applications in electrodes or
in supercapacitors [49,51,52], with specific capacitance as high as 215 F g–1 [49]. They have also been
applied as adsorbents for phenol, with adsorption capacity of 29.3 mg g–1 [53].

In that regard, although there is a vast literature for monolithic aerogels derived from synthetic
polymers, including aerogels based on phenolic resins (e.g., resorcinol-formaldehyde [19,55–61],
polybenzoxazines [62–66], polyureas [67–69], polyimides [70–74], polyamides (KevlarTM-like) [74–76],
polyurethanes [77–83], as well as aerogels derived via Ring Opening Metathesis Polymerization
(ROMP), including polynorbornene and polydicyclopentadiene [81,84–87], only a few examples of
synthetic polymer aerogel particles are known, and they have become the subject of this mini-review.
Those polymeric materials include mostly polyurea aerogels, and a few examples of polyimide and
phenolic resin aerogels. Phenolic resin aerogel beads were synthesized as precursors of carbon aerogels
in bead form, and characterization was mainly focused on the carbons.
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2. Polyurea (PUA) Aerogels

Polyureas (PUA) are a class of polymers that can be defined as the product of the reaction between
an isocyanate and an amine, as shown in Scheme 1a. PUA can be a good elastomer, with good
mechanical properties, chemical stability, thermal shock abrasion resistance, flexibility and water
repellence. Those properties depend on the chemical identity and structure of isocyanates and amines,
hydrogen bonding and the polymerization conditions. The nucleophilic addition of the amine to
the isocyanate is fast and catalyst-free (aromatic isocyanates are more reactive than aliphatic ones
because of the electron-withdrawing properties of the aromatic groups), which are advantages for the
production of aerogels using sol-gel processing.

Materials 2019, 12, 1543 3 of 25 

 

phenolic resin aerogels. Phenolic resin aerogel beads were synthesized as precursors of carbon 
aerogels in bead form, and characterization was mainly focused on the carbons. 

2. Polyurea (PUA) Aerogels 

Polyureas (PUA) are a class of polymers that can be defined as the product of the reaction 
between an isocyanate and an amine, as shown in Scheme 1a. PUA can be a good elastomer, with 
good mechanical properties, chemical stability, thermal shock abrasion resistance, flexibility and 
water repellence. Those properties depend on the chemical identity and structure of isocyanates and 
amines, hydrogen bonding and the polymerization conditions. The nucleophilic addition of the 
amine to the isocyanate is fast and catalyst-free (aromatic isocyanates are more reactive than aliphatic 
ones because of the electron-withdrawing properties of the aromatic groups), which are advantages 
for the production of aerogels using sol-gel processing. 

 
Scheme 1. Synthesis of PUA aerogels from isocyanates and amines (a), isocyanates and water (b), or 
isocyanates and boric acid (c). 

In a more economical approach, PUA can also be formed from the reaction of isocyanates with 
water, as shown in Scheme 1b [67]. Isocyanates and water form unstable carbamic acids, which 
decompose by eliminating carbon dioxide and yield amines. Those amines react with the remaining 
isocyanates yielding ureas. Although this route to ureas needs a catalyst (triethylamine), it is 
advantageous because it bypasses the use of multifunctional amines, which can be expensive. 
Aerogels prepared from the reaction of triisocyanate Desmodur N3300 (Scheme 2) with water 
showed that their nanomorphology depended on the concentration of the isocyanate in the sol and 
was nearly independent of the concentrations of water and catalyst, which mainly affected the 
gelation time and the density of the materials. By replacing the triisocyanate Desmodur N3300 with 
the more rigid aromatic Desmodur RE (Scheme 2), the skeletal framework seemed more particulate 
than fibrous, even at lower densities. Additionally, variations on the nanomorphology of the porous 
samples can be achieved with different gelation solvents [68]. 

Scheme 1. Synthesis of PUA aerogels from isocyanates and amines (a), isocyanates and water (b), or
isocyanates and boric acid (c).

In a more economical approach, PUA can also be formed from the reaction of isocyanates
with water, as shown in Scheme 1b [67]. Isocyanates and water form unstable carbamic acids,
which decompose by eliminating carbon dioxide and yield amines. Those amines react with the
remaining isocyanates yielding ureas. Although this route to ureas needs a catalyst (triethylamine),
it is advantageous because it bypasses the use of multifunctional amines, which can be expensive.
Aerogels prepared from the reaction of triisocyanate Desmodur N3300 (Scheme 2) with water showed
that their nanomorphology depended on the concentration of the isocyanate in the sol and was nearly
independent of the concentrations of water and catalyst, which mainly affected the gelation time and
the density of the materials. By replacing the triisocyanate Desmodur N3300 with the more rigid
aromatic Desmodur RE (Scheme 2), the skeletal framework seemed more particulate than fibrous, even
at lower densities. Additionally, variations on the nanomorphology of the porous samples can be
achieved with different gelation solvents [68].
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Another approach is the synthesis of PUA aerogels from the reaction of Desmodur RE with
anhydrous H3BO3 (Scheme 1c) [69]. The by-product, B2O3, is soluble and could be easily washed off

the porous network, leaving behind pure PUA. The same reaction proceeded with a number of mineral
acids, such as H3PO4, H3PO3, H2SeO3, H6TeO6, H5IO6 and H3AuO3, but the corresponding oxides are
insoluble and remained within the polymer. PUA aerogels obtained with this method were chemically
identical, except in minute details at the nanoscopic level, to PUA aerogels obtained via reaction of
Desmodur RE with water. That reaction pathway is distinctly different from the conventional path
followed by isocyanates with carboxylic acids to amides, and has not been explored for particulate
PUA aerogels yet. However, that approach is highly promising for metal- and metal-salt doped PUA
aerogel beads and carbons and is currently under investigation.

2.1. PUA Aerogel Powders and Granules

Several PUA powders with aerogel-like internal structure have been synthesized via reaction
of tetrakis(4-aminophenyl)methane (TAPM; Scheme 3) with a variety of alkyl diisocyanates
(1,4-diisocyanatobutane (BDI), 1,6-diisocyanatohexane (HDI), toluene 2,4-diisocyanate (2,4-TDI),
1,8-diisocyanatooctane (ODI), 1,12-diisocyanatododecane (DDI), 4,4′-methylenebis(phenyl isocyanate)
(MDI), p-phenylene diisocyanate (PDI); Scheme 2) in DMF at room temperature (r.t.), followed by
precipitation induced by addition of a large volume of a non-solvent (acetone) just before gelation [88,89].
The precipitate was washed 3 times with acetone and was dried at 150 ◦C under vacuum. The product
consisted of spherical particles, the size of which was larger (on the order of hundreds of nm—see
Figure 1) than the gel network nanoparticles (about 9–30 nm, measured with dynamic light scattering)
and depended on the chemical identity of the diisocyanate. The largest particles were obtained with
the isocyanate with the largest aliphatic chain (DDI). Pore sizes were in the range of 5–9 Å, with higher
percentage in the range of 5–6 Å for BDI and HDI derived samples. BET surface areas measured
with N2 sorption (19–68 m2 g–1) were much lower than surface areas measured with CO2 sorption
(170–240 m2 g–1). On geometric grounds, and assuming a density of 1 g cm–3, it was calculated that BET
surface areas corresponded to the external surface area of the particles shown in SEM. Therefore, it was
concluded that micropores could be sampled only by CO2, and not by N2. Based on those differential
gas sorption characteristics, it was proposed that such PUA powders are suitable for application in gas



Materials 2019, 12, 1543 5 of 24

separations (e.g., CO2, N2 and CH4). The best separations were achieved with TAPM-BDI derived PUA
powder, which had a CO2/N2 selectivity of 65.5 mol mol–1 and a CO2/CH4 selectivity of 8.3 mol mol–1.
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Figure 1. SEM images of PUA powders precipitated into acetone from the sols of the monomer pairs,
as indicated, at 50% reaction conversion. Initial solution concentration: 0.04 g mL–1. Scale bar: 400 nm.
Adapted from Ref. [89] with permission from The Royal Society of Chemistry.

PUA powders with aerogel-like internal structure have been also produced by varying the
conditions of mechanical agitation at 30 ◦C of sols from 2,4-TDI (Scheme 2) and 4,4′-oxydianiline
(4,4′-ODA; Scheme 3) in acetone, and in selected cases also in acetonitrile [90]. The reaction was run
always under conditions of precipitation polymerization. The typical total monomer concentration
(2,4-TDI+4,4′-ODA) in the sol was 1% w/w. Resulting powders were compared among themselves,
viz. with no reference to monolithic aerogels. Precipitates were collected by centrifugation, washed
with acetone and dried at 60 ◦C to powdery products. No application of vacuum during drying
was reported. As-prepared PUA powders were thermally stable (degradation started at 260 ◦C), and
insoluble in several solvent systems at 70 ◦C under reciprocating shaking for 6 h. Those solvent
systems included acetic acid, toluene, acrylonitrile, m-cresol, THF, a mixture of HCl(aq)/acetone (1:1
v/v) and aqueous alkali (1.0 mol L–1). Fibrous morphologies with fiber diameters ≤100 nm were
reported under conditions without stirring, stirring at low stirring rates (100 rpm), or with reciprocating
stirring. Higher stirring rates (600 rpm) produced granular polymers. Nanomorphology, however,
was a complicated function of several parameters: For example, with no stirring at all, the network
nanomorphology changed from fibrous to particulate (granular aggregates) by lowering the reaction
temperature from 30 to 0 ◦C. Similarly, using reciprocated stirring, nanomorphology changed from
fibrous to particulate by increasing the total monomer concentration (2,4-TDI+4,4′-ODA) from 1 to
5% w/w (Figure 2). Nanofibers were obtained with monomer concentrations lower than 2% w/w
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(Figure 2). Running the reaction in acetonitrile (all other parameters being the same, i.e., reciprocating
stirring, [2,4-TDI+4,4′-ODA] = 1% w/w, 30 ◦C) yielded large (5–20 µm in diameter) spherical particles
rather than fibers (Figure 3). Switching from fibers in acetone [67] to large micron-size particles in
acetonitrile [68] has also been reported with monolithic PUA aerogels synthesized from Desmodur
N3300, an aliphatic triisocyanate, and water. Overall, all morphological changes observed in PUA
aerogels as a function of solvent and monomer concentration have been attributed recently to the
kinetics and the mechanism of the gelation process, that is phase separation of solid colloidal particles
versus liquid oligomers [91].
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reciprocating shaking (150 oscillations per minute). Monomer concentration: 1.0% w/w [90]. Adapted
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PUA aerogel powders have been fabricated from the reaction of Desmodur N3300 (Scheme 2)
with water in organic solvents (acetone or propylene carbonate). Three methods have been employed:
vigorous agitation of the sol, suspension, and emulsion gelation, using the experimental setup shown in
Figure 4. The synthetic procedures are described in the Supplementary Material section. Formulations
and gelation times are reported in Tables S1–S4. Acetone was used in order to relate the properties
of aerogel powders with those of monoliths from the literature [67]. Propylene carbonate was used
because it is not miscible with hexane, thereby it can be used for suspension and emulsion gelation. In
propylene carbonate the release of CO2 was vigorous; therefore, well-shaped monoliths could not be
obtained. The concentration of the monomer (Desmodur N3300) was varied between 2.75 and 11%
w/w. Wet-powders were dried with supercritical fluid (SCF) CO2 in an autoclave to provide aerogel
powders or granules.
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Figure 4. (a) Experimental setup for the synthesis of PUA aerogel powders with disruption of
gelation (vigorous agitation, 250–300 rpm; suspension and emulsion polymerization, 400 rpm). (b) The
half-moon shaped blade used for agitation.

For the same monomer concentration, powders obtained from propylene carbonate sols via
vigorous agitation consisted of larger particles (on the order of 1 mm; Figure 5a) than those obtained
from acetone (on the order of a few hundred microns or smaller; Figure 5b). Aerogel powders were
characterized in comparison to corresponding monolithic aerogels in terms of skeletal and bulk densities
and BET surface areas (determined with N2-sorption porosimetry; Table 1). The skeletal densities
were in general somewhat higher for samples prepared in propylene carbonate. The BET surface
areas were consistently 2–3 times higher in powders prepared in acetone versus powders prepared in
propylene carbonate (Table 1). Average pore diameters in the range of 1.7–300 nm were all in the range
of 10–30 nm for all powders. Compared to monoliths with the same monomer concentration, powders
had almost identical bulk and skeletal densities, and slightly lower BET surface areas (e.g., 162 versus
222 m2 g–1 for monomer concentration 5.5% w/w). It is interesting that the tapped densities of PUA
powders (Table 2) increased with increasing concentration of Desmodur N3300 in the sol. The fact that
the tapped densities of PUA powders varied with the monomer concentration in the sol signifies that
vigorous agitation disrupts gelation at some higher aggregate level, beyond primary and secondary
particles. As noted experimentally, even larger aggregates seem to coagulate with one another upon
standing into larger chunks upon standing.
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Figure 5. Photographs and SEM images at different magnifications of PUA powders prepared from
Desmodur N3300 and water in propylene carbonate (a) or acetone (b) via vigorous agitation of the
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each frame.

Powders were also obtained via suspension polymerization in propylene carbonate/hexane
mixtures (volume ratio = 1:3). In terms of particle shape and size, suspension polymerization versus
vigorous agitation gave remarkably different results: sols with low monomer concentration (5.5%
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w/w) under suspension polymerization gave much smaller particles (<500 microns) relative to simple
vigorous agitation that gave mm-size particles (Figure 5). Higher monomer concentration sols (11%
w/w) under suspension polymerization gave more-or-less uniform spherical particles, about 120 µm in
diameter (Figure 6). Under higher magnification (Figure 6) the large spherical particles consisted of
micron-size spherical knots, connected with fibers. Based on the fact that the BET surface area of those
samples was lower than the BET surface area of the lower concentration samples (97 versus 140 m2 g–1;
Table 1), it is presumed that the spherical knots shown in Figure 6 did not have an internal structure.
Average pore diameters in the range of 1.7–300 nm were in the range of 20–30 nm for all powders.
The skeletal (Table 1) and tapped (Table 2) densities of samples prepared via this method were similar
to those obtained via the vigorous agitation method. The BET surface area of the lower concentration
sample via suspension polymerization was about 3 times higher (m2 g–1) than the BET surface area of
the sample via simple vigorous agitation (140 versus 52 m2 g–1; Table 1).
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Figure 6. Photograph and SEM images at different magnifications of PUA powder prepared from
Desmodur N3300 and water in propylene carbonate/hexane via suspension polymerization (monomer
concentration: 11% w/w). Scale lengths are indicated in the right-bottom corner of each frame.

The use of surfactant in powder formation was studied using two types of surfactants: CTAB
(cetyltrimethylammonium bromide; Scheme 4) and NIKKOL BL-9EX (polyoxyethylene alkyl ether
of lauryl alcohol; Scheme 4), at two different concentrations each: 0.7% and 3.5% w/w relative to the
continuous phase. The use of CTAB as surfactant in sols with monomer concentration 5.5% w/w
resulted in PUA powders of lower bulk (and tapped) density, compared with PUA samples obtained
via vigorous agitation or suspension polymerization (Table 1). On the other hand, skeletal densities of
all samples were almost identical (Table 1). The BET surface area was higher when the low (0.7% w/w)
concentration of surfactant was used, while higher concentration (3.5% w/w) of surfactant provided
the same value of BET surface area as suspension polymerization. The use of CTAB in sols with
higher monomer concentrations (11% w/w) did not show any improvement in terms of densities and
BET surface areas, compared to suspension polymerization (Table 1). The use of NIKKOL BL-9EX as
surfactant did not affect the values of bulk and tapped density of PUA powders obtained with low
monomer concertation (5.5% w/w), but PUA powders obtained with higher monomer concertation (11%
w/w) were more dense than powders obtained via suspension polymerization (Table 1). The highest
BET surface area (197 m2 g–1; Table 1) was measured with high surfactant concentration and low
monomer concentration. The use of NIKKOL BL-9EX at higher monomer concentration sols did not
show any improvement in terms of BET surface areas compared to suspension polymerization; the
same observation was also made for CTAB. In terms of particle shape and size, in the presence of CTAB
low monomer concentration sols gave similar particles (Figure 7a) to those obtained via suspension
polymerization, while high monomer concentration sols gave bigger (on the order of 1 mm) and
less uniform particles. At very low monomer concentration (2.75% w/w) most of the particles were
spherical, but they could not be separated ( Figure 7b–c). In the case of NIKKOL BL-9EX, powder
morphology depended on the concentration of the monomer. At lower concentrations powders were
fine, smooth and fluffy, whilst at higher concentrations powders were more granular (Figure 7d).
Average pore diameters in the range of 1.7–300 nm were on the order of 20–30 nm for all powders. Some
recipes started showing spherical particles, but they were neither uniform nor could they be separated.
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Figure 7. Photographs and SEM images at different magnifications of PUA powders prepared from
Desmodur N3300 in propylene carbonate/hexane via emulsion polymerization. (a) CTAB 3.5% w/w;
monomer concentration: 5.5% w/w. (b) CTAB 0.7% w/w; monomer concentration: 2.75% w/w. (c)
CTAB 3.5% w/w; monomer concentration: 2.75% w/w. (d) NIKKOL BL-9EX 0.7% w/w; monomer
concentration: 11% w/w. Scale lengths are indicated in the right-bottom corner of each frame.

PUA aerogel granules were also obtained from the reaction of aromatic Desmodur RE (Scheme 2)
with water in DMF, and in the mixtures DMF/hexane and propylene carbonate/hexane (volume ratio
= 1:3), using the experimental setup shown in Figure 4. The synthetic procedures are described
in the Supplementary Material section. Formulations and gelation times are reported in Table S5.
The concentration of the monomer (TIPM) was 4% w/w. Wet-powders were dried with SCF CO2 in an
autoclave to provide aerogel powders, which consisted of irregular granules. Desmodur RE was used
as received, i.e., 27% w/w solution of TIPM in ethyl acetate. Ethyl acetate played the role of a third
solvent that rendered DMF and PC miscible with hexane. DMF/hexane, and PC/hexane mixtures here
were single-systems, thereby the role of hexane was to: (a) dilute the sol; (b) decrease the solubility of
the growing polymer; and, (c) induce early phase-separation of smaller particles. Thus, all powders
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from Desmodur RE can be classified as products of precipitation polymerization, which therefore may
be considered as a variant of vigorous agitation. Aerogel powders were characterized in comparison to
the corresponding monolithic aerogels in terms of skeletal density and BET surface areas (determined
with N2-sorption porosimetry; Table 1). Bulk densities could not be measured accurately, because
the materials consisted of relatively large particles of irregular shape and size. Powders obtained
from DMF consisted of chunks and coarse powder Figure 8a), while those obtained from DMF/hexane
were more even, consisting of particles of a more uniform size (on the order of 1 mm) and shape
(Figure 8b). Powders obtained from PC/hexane consisted of bigger particles. The skeletal densities
of PUA powders prepared in DMF or DMF/hexane were almost identical and very similar with the
skeletal density of the monoliths (Table 1). In propylene carbonate/hexane the skeletal density was
slightly higher. The BET surface areas were higher when hexane was used; the highest value was
obtained in propylene carbonate/hexane (481 m2 g–1; Table 1). In all samples a 15–38% of the total
surface area was assigned to micropores (Table 1), which in turn was attributed to the rigid structure
of the aromatic triisocyanate—in accord with previous observations in similar materials [81,82,92].
Average pore diameters in the range of 1.7–300 nm were all found between 10 nm and 30 nm for all
powders, and followed the same trend with the values obtained for the BET surface areas.
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and (b) DMF/hexane via precipitation polymerization. Scale lengths are indicated in the right-bottom
corner of each frame.

Owing to the irregular shape of the particles, the flow characteristics of the powders were assessed
by calculating the percent compressibility index (100(ρt–ρb)/ρt) and the Hausner ratio (ρt/ρb; Table 2),
from bulk (ρb) and tapped (ρt) density data [93]. The flow characteristics of powders are classified as
excellent, good, fair, passable, poor and very poor, for compressibility index values (%) in the range of
1–10, 11–15, 16–20, 21–25, 26–31 and 32–37, or Hausner ratio values in the range of 1.00–1.11, 1.12–1.18,
1.19–1.25, 1.26–1.34, 1.35–1.45 and 1.46–1.59, respectively. Overall, according to those methods the
flow characteristics of most PUA aerogel powders were classified as passable, poor or very poor,
except for three samples: (a) PUA powder synthesized from Desmodur RE and water in DMF/hexane
showed fair flow characteristics; (b) PUA powder synthesized from Desmodur N3300 and water
(monomer concentration: 11% w/w) in propylene carbonate/hexane with NIKKOL BL-9EX (0.7% w/w)
showed good flow characteristics; and, (c) PUA powder synthesized from Desmodur N3300 and water
(monomer concentration: 2.75% w/w) in propylene carbonate/hexane with CTAB (3.5% w/w) showed
excellent flow characteristics.
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2.2. PUA Aerogel Spherical Beads

Spherical PUA beads were synthesized from the reaction of Desmodur N3300 (Scheme 2) (in
propylene carbonate) and ethylene diamine (Scheme 3) in heavy mineral oil, via the dripping method
at r.t. and SCF drying. The synthetic method is simple, cost-efficient and suitable for large-scale
production of PUA aerogel beads. The beads (Figure 9) can be 2–4 mm in diameter with narrow size
distributions (full width at half maximum: 0.3–0.4 mm) and they have low density (0.16 g cm–3), high
porosity (>87% v/v), and high surface area (200 m2 g–1). Analogous monoliths had similar density
and porosity, but much lower surface area (70 m2 g–1). To our knowledge this work comprises the
first-time report of uniform, millimeter-size PUA particles via a method that can be easily applied for
large-scale production. The material properties of those beads were similar to those of chemically
related and morphologically similar monoliths reported in the literature [67] from the reaction of the
same triisocyanate with water in acetone, suggesting that nanostructure rather than minor differences
in chemical composition is the property-determining factor. SEM (Figure 10) showed that the surface
of the beads had a different morphology from their interior, which may be explained by the diffusion
profile of ethylenediamine in the propylene carbonate droplets [94]. The water contact angle in the
interior of the beads (by sanding) was about 102o. Dividing that value by the porosity of the beads
gave a ratio of about 1.2. That ratio is referred to as the K-index, which was introduced recently as
a means to quantify nanomorphology [91]. The development of the K-index was based on a vast
array of monolithic polyurea aerogels, and therefore it applies directly to the nanomorphology of the
PUA beads. High aspect ratio (caterpillar-like) nanostructures are expected to have K-index = 1.2, in
agreement with both the SEM of PUA beads (Figure 10) and the ratio of the experimental contact angle
of water droplets (102o) over the porosity of the beads (87% v/v).
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Table 1. Selected properties of particulate PUA aerogels.

Sample
I.D.

Particle
Diameter

Bulk Density
ρb (g cm–3)

Skeletal Density
ρs (g cm–3)

BET Surf. Area
σ (m2 g–1)

[Micropore Surf. Area]a

Particle Radiusb

(nm)

Particle Monolith Particle Monolith Particle Monolith Particle Monolith

N3300-H2O 2.75% acetone <20 µm 0.023 ± 0.001 0.028 ± 0.002 1.35 ± 0.02 1.31 ± 0.06 162 ± 9 159 ± 8 13.7 ± 0.8 14.4 ± 1.0

N3300-H2O 5.5% acetone <20 µm 0.048 ± 0.001 0.07 ± 0.01 1.182 ± 0.006 1.20 ± 0.01 162 ± 8 222 ± 13 15.7 ± 0.8 11.3 ± 0.7

N3300-H2O 11% acetone <50 µm 0.113 ± 0.008 0.126 ± 0.001 1.166 ± 0.007 1.19 ± 0.01 113 ± 7 165 ± 9 22.8 ± 1.4 15.3 ± 0.8
N3300-H2O 2.75% PC 1–2 mm 0.036 ± 0.001 c 1.39 ± 0.03 c 95 ± 5 c 22.7 ± 1.3 c

N3300-H2O 5.5% PC 1–2 mm 0.058 ± 0.001 c 1.37 ± 0.03 c 52 ± 3 c 42.1 ± 2.6 c

N3300-H2O 11% PC - d c d c d c d c

N3300-H2O 5.5% PC/hexane <500 µm 0.060 ± 0.001 1.36 ± 0.03 140 ± 7 15.8 ± 0.9
N3300-H2O 11% PC/hexane 120 µm 0.034 ± 0.001 1.29 ± 0.02 97 ± 6 24.0 ± 1.5
N3300-H2O 2.75% CTAB 0.7% <200 µm 0.045 ± 0.003 1.24 ± 0.01 141 ± 8 17.2 ± 1.0
N3300-H2O 5.5% CTAB 0.7% 100–200 µm 0.025 ± 0.002 1.38 ± 0.04 174 ± 10 12.5 ± 0.8
N3300-H2O 11% CTAB 0.7% ~1 mm 0.033 ± 0.001 1.32 ± 0.02 80 ± 4 28.4 ± 1.5
N3300-H2O 2.75% CTAB 3.5% <200 µm 0.057 ± 0.001 1.29 ± 0.01 162 ± 9 14.4 ± 0.8

N3300-H2O 5.5% CTAB 3.5% 200–250 µm 0.038 ± 0.003 1.28 ± 0.01 144 ± 8 16.3 ± 0.9

N3300-H2O 11% CTAB 3.5% ~1 mm 0.035 ± 0.002 1.29 ± 0.01 51 ± 3 45.6 ± 2.7
N3300-H2O 5.5% NIKKOL BL-9EX 0.7% <100 µm 0.078 ± 0.002 1.66 ± 0.08 4 ± 1 452 ± 115
N3300-H2O 11% NIKKOL BL-9EX 0.7% ~1 mm 0.094 ± 0.001 1.41 ± 0.03 85 ± 5 25.0 ± 1.6
N3300-H2O 5.5% NIKKOL BL-9EX 3.5% ~100 µm 0.052 ± 0.003 1.47 ± 0.06 197 ± 11 10.4 ± 0.7

N3300-H2O 11% NIKKOL BL-9EX 3.5% 0.5–1 mm 0.077 ± 0.001 1.50 ± 0.07 76 ± 4 26.3 ± 1.9
RE-H2O 4% DMF ~500 µm e 0.393 ± 0.033 1.254 ± 0.001 1.353 ± 0.009 215 ± 12 [15] 205 ± 11 [20] 11.1 ± 0.6 10.8 ± 0.6
RE-H2O 4% DMF/hexane ~1 mm 0.30 ± 0.01 1.264 ± 0.001 394 ± 21 [43] 6.0 ± 0.3
RE-H2O 4% PC/hexane ~1 mm e 1.324 ± 0.008 481 ± 24 [22] 4.7 ± 0.2
N3300-EDA 11% [94] 2.68 ± 0.16 mm 0.166 ± 0.001 0.110 ± 0.001 1.246 ± 0.005 1.236 ± 0.006 197 ± 12 73 ± 4 12.2 ± 0.7 33.2 ± 1.8

a Micropore surface area via t-plot analysis, according to the Harkins and Jura. b Calculated via: r = 3/(ρs × σ). c Monoliths of irregular shape. d Owing to fast reaction the entire sol gelled
and subsequently the gel was broken by the mechanical stirrer into large monolithic pieces. e Small amount of powder, not sufficient for this measurement. Most of the sample was in the
form of large chunks and lumps. PC: propylene carbonate.
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Table 2. Flow characteristics of particulate PUA aerogels.

Sample
I.D.

Bulk Density
ρb (g cm–3)

Tapped Density
ρt (g cm–3)

Compressibility
Index a

Hausner
Ratio b Flow Quality

N3300-H2O 2.75% acetone 0.023 ± 0.001 0.036 ± 0.001 36 1.57 very poor

N3300-H2O 5.5% acetone 0.048 ± 0.001 0.063 ± 0.005 24 1.31 passable

N3300-H2O 11% acetone 0.113 ± 0.008 0.166 ± 0.008 32 1.47 very poor
N3300-H2O 2.75% PC 0.036 ± 0.001 0.047 ± 0.001 23 1.31 passable
N3300-H2O 5.5% PC 0.058 ± 0.001 0.078 ± 0.002 26 1.34 passable
N3300-H2O 5.5% PC/hexane 0.060 ± 0.001 0.078 ± 0.001 23 1.30 passable

N3300-H2O 11% PC/hexane 0.034 ± 0.001 0.050 ± 0.001 32 1.47 very poor
N3300-H2O 2.75% CTAB 0.7% 0.045 ± 0.003 0.068 ± 0.001 34 1.51 very poor
N3300-H2O 5.5% CTAB 0.7% 0.025 ± 0.002 0.038 ± 0.001 34 1.52 very poor
N3300-H2O 11% CTAB 0.7% 0.033 ± 0.001 0.045 ± 0.001 27 1.36 poor
N3300-H2O 2.75% CTAB 3.5% 0.057 ± 0.001 0.059 ± 0.002 3 1.04 excellent

N3300-H2O 5.5% CTAB 3.5% 0.038 ± 0.003 0.059 ± 0.005 36 1.55 very poor

N3300-H2O 11% CTAB 3.5% 0.035 ± 0.002 0.050 ± 0.003 30 1.43 poor
N3300-H2O 5.5% NIKKOL BL-9EX 0.7% 0.078 ± 0.002 0.104 ± 0.004 25 1.33 passable
N3300-H2O 11% NIKKOL BL-9EX 0.7% 0.094 ± 0.001 0.107 ± 0.003 12 1.14 good
N3300-H2O 5.5% NIKKOL BL-9EX 0.7% 0.052 ± 0.003 0.074 ± 0.003 30 1.42 poor

N3300-H2O 11% NIKKOL BL-9EX 0.7% 0.077 ± 0.001 0.097 ± 0.002 21 1.26 passable
RE-H2O 4% DMF/hexane 0.30 ± 0.01 0.36 ± 0.03 17 1.20 fair

a Compressibility index: 100(ρt − ρb)/ρt. b Hausner ratio: ρt/ρb; ρb: bulk density, ρt: tapped density.
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3. Polyimide (PI) Aerogels

Polyimides (PI) are a class of engineering plastics, and are utilized for high temperature applications.
PIs are synthesized commercially by two methods: (a) condensation (>190 ◦C) of aromatic dianhydrides
and amines (the DuPont route; Scheme 5a) [95], and (b) crosslinking (>300 ◦C) of norbornene end-capped
imide oligomers (referred to as the PMR route; PMR: polymerization of monomer reactants) [96,97].
PI aerogels based on the DuPont route were reported in a 2006 US patent [70]. An alternative method
for the synthesis of PI aerogels was reported in 2010. That method was based on the reaction of aromatic
dianhydrides with multifunctional isocyanates at room temperature [71,73] (Scheme 5b). Both the
DuPont route and the isocyanate route yield chemically identical products. The main advantages of
the isocyanate route are: the low cost of the isocyanates, no sacrificial reagents needed (versus acetic
anhydride and pyridine by the DuPont route) needed, and the only byproduct is CO2 (versus HCl
from the DuPont route). Detailed structural analysis with small angle neutron scattering (SANS) has
revealed that materials synthesized in N-methyl pyrrolidone (NMP) via either route consist of similar
size primary and secondary particles; SEM, however, has shown that secondary particles assembled
differently: into fibers in the isocyanate route, and into globular aggregates in the amine route [70].
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solvent-exchanged with cyclohexane, which was removed under vacuum at about 10 °C yielding 
PAA aerogels that were imidized by heating successively at 100, 200 and finally at 300 °C. If addition 
of acetone into the gel-like PAA product was accompanied by vigorous mechanical stirring, the end 
product was an aerogel powder rather than a monolith. In contrast to the report of Kong et al. on 
PUA powders (see above) [90], vigorous agitation did not disrupt the microfibrous network structure 
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Scheme 5. Synthesis of chemically identical polyimide (PI) aerogels via two different routes: (a)
from a dianhydride and a diamine (the DuPont route), (b) from the same dianhydride and the
corresponding diisocyanate to the diamine of part (a). PMDA: pyromellitic dianhydride; 4,4′-MDA:
4,4′-diaminodiphenylmethane; and, 4,4′-MDI: 4,4′-methylenebis(phenyl isocyanate).

3.1. Particulate PI Aerogels

Nanofibrous PI powders (Figure 11) have been produced by mechanical agitation of a gel-like
poly(amic acid) (PAA), which was obtained from pyromellitic dianhydride (PMDA; Scheme 5) and
4,4′-methylenedianiline (4,4′-MDA; Scheme 5) in THF/MeOH mixed solvent [98]. Interestingly, rather
than a real gel (i.e., an elastic solid), the gel-like PAA product was a clear glass-like viscous solution that,
upon addition of acetone, phase-separated into an opaque-white wet-gel. The authors pointed out that
a gel-like PAA product was obtained only from the specific monomers; other starting materials yielded
only viscous solutions of the corresponding PAAs. Subsequently, acetone was solvent-exchanged
with cyclohexane, which was removed under vacuum at about 10 ◦C yielding PAA aerogels that
were imidized by heating successively at 100, 200 and finally at 300 ◦C. If addition of acetone into
the gel-like PAA product was accompanied by vigorous mechanical stirring, the end product was an
aerogel powder rather than a monolith. In contrast to the report of Kong et al. on PUA powders (see
above) [90], vigorous agitation did not disrupt the microfibrous network structure of the PI, which was
identical in both monoliths and powders. This new, green, scalable and economic process provided PI
aerogel particles with nanofibrous morphology, low density (0.175 g cm–1) and high thermal stability.
Their decomposition temperatures were above 500 ◦C.
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Centre GmbH: Ref. [98]. 

PI aerogel particles have been prepared in DMF/cyclohexane emulsions [54]. A solution 
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Scheme 3) in DMF at r.t. 1,3,5-Triaminophenoxybenzene (TAB; Scheme 3) was added to the sol, 
followed by drop-wise addition of acetic anhydride and pyridine. The resulting PI sol was dispersed 
in cyclohexane, using Span 85 and Hypermer 1599 as surfactants. The microparticles were washed 
with acetone and dried using SCF CO2. The resulting PI aerogel particles had mean diameters of 40.0 
μm, pore volumes of 3.38 cm3 g–1, and a fibrous internal microstructure, similar to the one observed 
in the corresponding aerogel monoliths (Figure 12b). Their BET surface areas were lower than those 
of the monoliths (512 versus 717 m2 g–1), which was attributed to the shorter aging period. 
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in Figure 13 [99]. PAAs were synthesized via polymerization of PMDA and 4,4′-oxydianiline (4,4′-
ODA; Scheme 3) in NMP, and were transformed to PI spherical microparticles by gradually heating 
the solution at 250 °C in an autoclave (Figure 13). Acetone was used to fill the space between the 
autoclave and the reaction vessel. Under the conditions of the reaction (temperature of 250 °C and 
pressure above 4.66 MPa), acetone is a supercritical fluid, and its high pressure prevented NMP from 
evaporating. The particles (Figure 14) were spherical with diameters ranging from 3.6 to 4.9 μm, BET 
surface areas of 103 m2 g–1, porosities of 80% v/v, typical pore sizes at around 15 nm (Figure 14), and 
good thermal stability (>500 °C). Qualitatively, they also showed good oil adsorption capacity. 
Analogous PI aerogel monoliths reported were synthesized from PMDA and 4,4′-ODA, with 1,3,5-
tris(4-aminophenyl)benzene (TAPB) as crosslinker, in NMP. Morphologically, the internal structure 
of those monoliths was more fibrous than the internal structure of spherical particles (Figure 15) [100]. 

Figure 11. Photograph (a) and SEM image (b) of PI aerogel powders obtained from the imidization
of PMDA/4,4′-MDA-derived PAA. Adapted by permission from Springer Nature Customer Service
Centre GmbH: Ref. [98].

PI aerogel particles have been prepared in DMF/cyclohexane emulsions [54]. A solution consisting
of PAA oligomers was prepared by dissolving PMDA and 2,2′-dimethylbenzidine (DMBZ; Scheme 3)
in DMF at r.t. 1,3,5-Triaminophenoxybenzene (TAB; Scheme 3) was added to the sol, followed by
drop-wise addition of acetic anhydride and pyridine. The resulting PI sol was dispersed in cyclohexane,
using Span 85 and Hypermer 1599 as surfactants. The microparticles were washed with acetone and
dried using SCF CO2. The resulting PI aerogel particles had mean diameters of 40.0 µm, pore volumes
of 3.38 cm3 g–1, and a fibrous internal microstructure, similar to the one observed in the corresponding
aerogel monoliths (Figure 12b). Their BET surface areas were lower than those of the monoliths (512
versus 717 m2 g–1), which was attributed to the shorter aging period.
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Figure 12. SEM images of: (a) PI aerogel microparticles, (b) their skeletal networks in comparison with
corresponding monoliths, and (c) the surface of PI aerogel microparticles. Adapted with permission
from Ref. [54]. Copyright 2016 American Chemical Society.

3.2. PI Aerogel Spherical Beads

Millimeter-size PI aerogel particles have been synthesized using the experimental setup shown in
Figure 13 [99]. PAAs were synthesized via polymerization of PMDA and 4,4′-oxydianiline (4,4′-ODA;
Scheme 3) in NMP, and were transformed to PI spherical microparticles by gradually heating the
solution at 250 ◦C in an autoclave (Figure 13). Acetone was used to fill the space between the
autoclave and the reaction vessel. Under the conditions of the reaction (temperature of 250 ◦C and
pressure above 4.66 MPa), acetone is a supercritical fluid, and its high pressure prevented NMP
from evaporating. The particles (Figure 14) were spherical with diameters ranging from 3.6 to
4.9 µm, BET surface areas of 103 m2 g–1, porosities of 80% v/v, typical pore sizes at around 15 nm
(Figure 14), and good thermal stability (>500 ◦C). Qualitatively, they also showed good oil adsorption
capacity. Analogous PI aerogel monoliths reported were synthesized from PMDA and 4,4′-ODA, with
1,3,5-tris(4-aminophenyl)benzene (TAPB) as crosslinker, in NMP. Morphologically, the internal structure
of those monoliths was more fibrous than the internal structure of spherical particles (Figure 15) [100].
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4. Phenolic Resin Aerogels (Including Polybenzoxazines)

Resorcinol-formaldehyde (RF) aerogels and polybenzoxazine (PBO) aerogels are the main carbon
aerogel precursors [14,56,58,60].

RF aerogels were first prepared in 1989 via base-catalyzed gelation of aqueous solutions of
resorcinol and formaldehyde (up to 7 days at 85 ◦C), followed by aging (>3 days in CF3COOH at
45 ◦C) and drying from SCF CO2 [56–59]. Acid-catalyzed processes have also been reported (Scheme 6)
and include reactions in: (a) HClO4/acetone at 45 ◦C followed by 3 days of aging [101], (b) aqueous
HNO3 at 80 ◦C (2 day gelation, 7 days aging) [102], (c) acetic acid at room temperature (1 day gelation,
aging for 3 days at 50 ◦C and 3 days at 90 ◦C) [103,104], and (d) HCl/CH3CN at 80 ◦C (gelation within
minutes, no aging) [55]. RF aerogels obtained by the acid-catalyzed routes are chemically similar to the
ones obtained via the base-catalyzed aqueous gelation process.
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Polybenzoxazines (PBOs) are phenolic resins with high mechanical strength, inherent flame
retardancy, low water retention, exceptional thermal properties (high glass transition and decomposition
temperatures), and high carbonization yields [105]. Although benzoxazines were known since
1944 [106], the systematic study of their polymers began 50 years later [107]. PBOs are typically prepared
via thermally induced ring-opening polymerization of suitable benzoxazine (BO) monomers, with
most known the condensation product of bisphenol A, aniline, and formaldehyde (Scheme 7) [107–110].
Monolithic PBO aerogels have been synthesized via polymerization of that monomer in xylene at
130 ◦C for 96 h (heat-induced polymerization) [62,63], or in DMF at room temperature for a few
hours (HCl-catalyzed polymerization) [64]. The HCl-catalyzed polymerization imposed additional
crosslinking that resulted in higher surface areas and lower thermal conductivity.
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4.1. RF Aerogel Beads

RF aerogel spherical particles have been synthesized by various methods: (a) emulsion
polymerization in water/cyclohexane, using K2CO3 as basic catalyst and a surfactant of the non-ionic
sorbitan alkyl ester series by NOF Corp, followed by solvent exchange with acetone and drying from
SCF CO2 [48], (b) inverse suspension polymerization in water/peanut oil, with Na2CO3 as catalyst,
followed by solvent exchange with alcohol and drying under alcohol supercritical conditions [49],
and (c) an injection emulsification method, in which a syringe pump was used to inject droplets of
an aqueous solution, containing resorcinol, formaldehyde and Na2CO3, into the continuous phase of
cyclohexane, containing Span 80 as emulsifier, followed by solvent exchange with acetone and drying
from SCF CO2 [53]. However, in all those cases, the RF aerogel particles were not characterized, as the
authors were more interested in the products of their pyrolysis.

RF aerogel foam beads, with diameter of 1 mm and a smooth membrane covering their surface
(Figure 16) have been synthesized by dropwise addition of the aqueous resorcinol/formaldehyde/Na2CO3

solution in a CCl4/mineral oil mixture, which had equal density to the RF sol and also contained a basic
phase-transfer catalyst (triethylamine or tri(n-butyl)amine) [111]. After the droplets gelled, they were
solvent exchanged with 2-propanol and underwent SCF CO2 drying. Those aerogels had densities in the



Materials 2019, 12, 1543 18 of 24

range of 104–184 mg cm−3, increasing with decreased concentration of the catalyst and decreased length of
its alkyl chain. The cell size of the foams (from SEM images) ranged from 55 to 93 nm when trimethylamine
was used and from 40 to 46 nm when tri(n-butyl)amine was used; in both cases, cell sizes increased with
the catalyst concentration. In analogy to what has been observed with PUA beads [94] (Figure 10), the
morphology of the surface of the RF aerogel beads was smoother (especially when tri(n-butyl)amine was
used as catalyst), while internally all RF beads had more or less the same structure (Figure 16).
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tri(n-butyl)amine (c, d: 0.039% w/w). Scale bar: 2 µm. Reprinted by permission of Taylor & Francis
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4.2. PBO Aerogel Beads

There is only one example in the literature for particulate PBO aerogels. Reported fabrication of
PBO aerogel particles from the reaction of 4,4′-isopropylidenediphenol, aniline and paraformaldehyde
catalyzed by HCl [54]. The synthetic process was similar to the one described for PI aerogel powders
derived from PMDA, DMBZ and TAB, as described in the previous section [54]. Compared to PIs, PBO
particles had a more regular spherical shape, particulate (instead of fibrous) microstructure (Figure 17)
and lower BET surface areas, which did not differ significantly to the ones of the corresponding
monoliths (55.4–57.8 m2 g–1). However, PBO microparticles had twice the pore volume in the
1.7–300 nm range than the corresponding monoliths (0.20 versus 0.10 cm3 g−1), which was attributed
to lower shrinkage. The mean diameter of PBO microspheres was 32.7 µm and they had a 100 nm thick
dense skin layer. SEM images showed that the internal structure of PBO microparticles consisted of
smaller spheres itself.
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Figure 17. SEM image of: (a) PBO aerogel microparticles (inset: surface of the sphere), (b) fractured
surface of PBZ aerogel microparticles, and (c,d) ensemble of spherical polybenzoxazine domains that
formed the internal structure of aerogel microparticles and monolith, respectively. Adapted with
permission from Ref. [54]. Copyright 2016 American Chemical Society.

5. Conclusions

Despite the vast literature on monolithic aerogels derived from synthetic polymers, including
aerogels based on phenolic resins (e.g., resorcinol-formaldehyde and polybenzoxazines), polyureas,
polyimides, polyamides, polyurethanes, and ROMP-derived aerogels, including polynorbornene and
polydicyclopentadiene, only a few examples of synthetic polymer aerogels in particulate form have
been described in the literature up to date, and have therefore been the subject of this mini-review.
Aerogels classified as particulate include materials in the form of powders, irregular granules and
spherical beads. Polymeric aerogels prepared in those forms include mostly polyurea aerogels derived

http://www.tandfonline.com
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from the reaction of isocyanates with amines or water under four different conditions: (a) disruption
of gelation by vigorous agitation of the sol (powders and granules), (b) addition of non-solvents in
the sol (powders and granules), (c) emulsion polymerization with surfactants (powders, granules.
microspheres), and (d) dripping of the sol in a non-solvent (millimeter-size beads). Polyimide aerogels
have also been synthesized from pyromellitic dianhydride and amines via (a) vigorous agitation
of the sol (powders), (b) emulsion polymerization (powders), and (c) by mixing of polyamic acid
sols with acetone as a supercritical fluid (spherical particles). Finally, phenolic type aerogels from
resorcinol-formaldehyde and polybenzoxazine have been prepared in particulate form (beads) via
emulsion and suspension polymerization processes, as well as with the dripping method. Table 3
summarizes all methods that have been utilized for the preparation of particulate aerogels from
synthetic polymers. Manufacturing aerogels in a particulate rather than a monolithic form renders the
bulk product rather insensitive to defects (e.g., cracks), reduces processing times, broadens the horizon
of possible applications (as adsorbers, desiccants, additives for foods, cosmetics, construction materials,
vehicles for drug delivery, etc.) via the one size fits all approach, and overall brings aerogels closer
to consumer products. With respect to the most well-established application of aerogels as thermal
insulators, the empty space between the particles compromises thermal conductivity. A solution to
that problem will involve the packing of multi-dispersed particles.

Table 3. Summary of the synthetic methods used for the preparation of aerogel particles from synthetic
polymers reviewed in this work.

Type of Aerogel Synthetic Method References

Polyurea (PUA) Precipitation polymerization [88–90]

Vigorous agitation this work

Suspension polymerization this work

Emulsion polymerization this work

Dripping method [94]
Polyimide (PI) Mechanical agitation [98]

Emulsion polymerization [54]
Heating in an autoclave [99]

Resorcinol-formaldehyde (RF) Emulsion polymerization [48]

Inverse suspension
polymerization [49]

Injection emulsification [53]

Dripping method [111]
Polybenzoxazine (PBO) Emulsion polymerization [54]
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Experimental Section (1. Materials; 2. Methods and Equipment; 3. Synthetic Procedures), Table S1: Formulations
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of PUA powders from Desmodur N3300 for preparation in PC via Vigorous Agitation, Table S3: Formulations of
PUA powders from Desmodur N3300 for preparation in PC/hexane via Suspension Polymerization, Table S4:
Formulations of PUA powders from Desmodur N3300 for preparation in PC/hexane via Emulsion Polymerization,
Table S5: Formulations of PUA powders from Desmodur RE for preparation via Vigorous Agitation or via
Precipitation Polymerization.
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