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Abstract: One-pot synthesis of colloidal Au/ZnO and Ag/ZnO nanohybrid structures was carried
out. The copolymers of maleic acid—poly(N-vinyl-2-pyrrolidone-alt-maleic acid), poly(ethylene-alt-
maleic acid), or poly(styrene-alt-maleic acid) were used as templates for the sorption of cations of
metals-precursors and stabilization of the resulting nanoheterostructures. Simultaneous production
of two types of nanoparticles has been implemented under mild conditions in an aqueous alkaline
medium and without additional reagents. Equimolar ratios of the metal cations and appropriate
load on all copolymers were used: molar ratio of maleic acid monomeric units of copolymer/gold
(silver)cations/zinc cations was 1/0.15/0.23 (1/0.3/0.15). The process of obtaining the heterostruc-
tures was studied using UV-Vis spectroscopy. The kinetics of the formation of heterostructures
was influenced by the nature of the maleic acid copolymer and noble metal cations used. A high
reaction rate was observed in the case of using zinc and gold cations-precursors and a copolymer of
maleic acid with N-vinylpyrrolidone as a stabilizer of nanoparticles. The structure of the synthesized
polymer-stabilized heterostructures was studied using instrumental methods of analysis—XPS, FTIR,
PXRD, and TEM. Under the conditions used, stable colloidal solutions of heterodimers were obtained,
and such structure can be converted to a solid state and back without loss of properties.

Keywords: maleic acid copolymers; Au/ZnO and Ag/ZnO nanoparticles; one-pot synthesis

1. Introduction

Lately, a focus has been on the conjugation of two or more nanomaterials to achieve
increased multifunctionality as well as creating opportunities for the next generation
materials (nanohybrids) with enhanced performance [1,2]. Among a variety of hybrid het-
erostructured materials, polyelement nanoparticles and metal-metal oxide heterostructures
are widely studied and applied materials [2–4]. Great interest is caused by composites
based on zinc oxide and metals—silver or gold. Such hybrid nanostructures have received
great research attention because they combine the unique physical and chemical properties
of the ingredients that make up the composite, owing to which a wide variety of areas of
their use are possible. Zinc oxide nanoparticles are characterized by non-toxicity, biosafety,
excellent biological compatibility, high electron transfer rate, good analytical characteristics,
and low cost. Zinc oxide is a kind of wide gap semiconductor (3.37 eV) [5,6]. The inclusion
of silver or gold nanoparticles in the heterostructures introduces additional properties
such as high catalytic, optical sensitivity, and bactericidal activity. These nanoparticles
possess universal biocompatibility, low toxicity, and high chemical stability [7]. So, the
overlap of the spectral range of the incident photon with absorbance wavelength of the
semiconductor (ZnO) and the surface plasmon bands of the plasmonic metal (Ag, Au) pro-
vides a useful tool to predict the enhancement in optical and electrical properties of hybrid
semiconductor-noble metal nanostructures [8–10]. Many publications are devoted to the
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use of Au (Ag)/ZnO hybrid structures as photocatalysts [11–15]. This enhanced photoac-
tivity of Au/ZnO composite materials was resultant from formation of stable and effective
Schottky contact between metal and ZnO surfaces [16]. The photochemical activity of such
heterostructures was used also to synthesize a number of organic compounds [17,18]. In
addition, zinc oxide/gold (silver) heterostructures with plasmonic-enhanced photoelec-
trochemical activity also were used for photoelectrochemical hydrogen generation [19,20].
On the basis of heterodimeric composites, sensor systems were created [21–26]. Moreover,
synthesis of ZnO nanostructures and their functionalization by Au nanoparticles for im-
proved photocatalytic and high performance Li-ion battery anodes were carried out [27].
A large number of studies are devoted to the use of heterostructures mainly contained
silver particles in biomedicine. Enhanced wound healing activity of Ag/ZnO composites
was detected [28]. Virus-like mesopore silica-zinc oxide/Ag nanoparticles collected on
NIR laser irradiation with quercetin were used to improve the elimination the mutated
COVID-19 virus [29]. It is shown that Ag/ZnO complexes and various composites based
on them have antibacterial activity [30–32], including activity against antibiotic-resistant
pathogens [33,34]. The methods of noble metal—zinc oxide heterostructure production
include electrochemical deposition, sputtering, chemical reduction, sol–gel method, tem-
plate method, hydrothermal/solvothermal method, and so on [35–39]. Metal—zinc oxide
heterostructures are mostly obtained by hydrolysis and condensation of intermediates.
Most often, the hydrothermal/solvothermal method includes the use of reducing agents,
different ligands, or surfactants. Obtaining such products is usually a two-step process,
requiring high temperatures and autoclaving at the stage of formation and inclusion of zinc
oxide. In this case, as a rule, conglomerates of nanoparticles are formed [17,19,28,33,40,41].
It seems attractive from the point of view of the simplicity of obtaining and further use
of the one-pot method for the synthesis of Ag (Au)/ZnO heterodimers. Very few reports,
in fact, are available regarding the single step synthesis. One-pot synthesis of the solid
composite Ag(Au)/ZnO was carried out at high temperature in the presence of hydrazine
hydrate [34], hexamethylenetramine [42], oleylamine [12,43]. High temperature one-pot
non-aqueous solvothermal synthesis of Au/ZnO hybrids was reported by Zhang [36].
Chemical vapor deposition of modified Ag/ZnO composite was prepared by hydrothermal
method, and then annealing was carried out at 600 ◦C [23]. Ag/ZnO composites were
synthesized also using the “one-pot” solid-state pyrolysis method by co-heat-treatment of
mixed Ag and Zn precursors at high temperature [44].

So, most of the processes of Ag(Au)/ZnO composites preparations including one-pot
methods use organic media, high temperature and high pressure, long synthesis time and
additional reaction agents. Most of these techniques do not lead to the production of water-
dispersed colloids because of the spontaneous aggregation of clusters. The mentioned facts
limit the use of such composites in various applications. To meet industrial, biomedical
and another needs, a simple, inexpensive, and fast method of synthesis of Ag(Au)/ZnO
colloidal nanocomposites is still required. The aim of this work is to develop a new very
simple approach to one-pot synthesis of colloidal Ag(Au)/ZnO hybrid nanostructures, in
the absence of additionally introduced reagents; in our case, both noble metal and zinc
oxide nanoparticles are formed in the presence of a polymer matrix in an aqueous medium.

2. Materials and Methods
2.1. Materials

Poly(ethylene-alt-maleic anhydride) with an average molecular weight M = 25,000 and
poly(styrene-alt-maleic anhydride) M = 50,000 were purchased from Monsanto (Saint Louis,
MO, USA) and Sterlitamak chemical plant (Sterlitamak, Russia), respectively. Poly(N-
vinyl-pyrrolidone-alt-maleic anhydride) M = 40,000 was prepared following a procedure
described previously [45]. The copolymers before use were hydrolyzed to the correspond-
ing copolymers of maleic acid (EM, SM, and VM) by dissolving in deionized water followed
by lyophilization. The reagents NaBH4, HAuCl4·3H2O, and ZnSO4·7H2O (Sigma Aldrich,
Munich, Germany) were used. AgNO3, NaOH (all of the analytical grade, Reahim, Moscow,
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Russia), were used without purification. VM stabilized nanosilver (VM/Ag0) and VM
stabilized nanogold (VM/Au0) were prepared according to our approach [46].

2.2. Instrumentation

The pH values were determined using Fisher Scientific 300 403.1 pH-meter (Waltham,
MA, USA). The UV-visible absorption spectra were obtained on UVIKON-922 spectropho-
tometer (Germany). A 0.2 cm cuvette was used for spectrophotometric measurements;
registration was carried out without dilution of the reaction solution. Transmission electron
microscopy (TEM) micrographs were obtained on a LEO 912 AB microscope (Omega, Karl
Zeiss; Jena, Germany) operated at an accelerating voltage of 100 kV. For TEM observations,
a drop of colloid solution was placed onto Formvar-coated copper grid, and then evapo-
rated. FTIR spectra (KBr) were recorded on Fourier-spectrometer Magna IR-720 (Nicolet,
Parsons W118, USA). The silver and gold content was determined by non-destructive
X-ray fluorescence analysis (VRA-30 X-ray fluorescence spectrometer (Karl Zeiss, Jena,
Germany). Powder XRD phase studies of samples were carried out with a D8 Advance
(Bruker AXS, San Jose, CA, USA) diffractometer in the Bragg-Brentano focusing geome-
try using CuKα radiation, angular step was 0.02o, and the scan rate was 0.5 deg·min−1.
The samples were placed on flat holders. Patterns were processed with DIFFRACplus
EVA (Bruker AXS GmbH DIFFRAC.EVA, Bruker AXS GmbH, Karlsruhe, Germany, 2011).
Bruker AXS software (Coelho, A. TOPAS 5.0, Bruker AXS GmbH, Karlsruhe, Germany,
2012) has Search/Match procedure implemented. The composition of samples was calcu-
lated with DIFFRAC TOPAS software (Coelho, A. TOPAS 5.0, Bruker AXS GmbH, Karlsruhe,
Germany, 2012). Bruker AXS Rietveld refinement of collected X-ray data. The values of
mean crystalline size were evaluated using Lvol-IB formalism [47]. X-ray photoelectron
spectra were acquired with an Axis Ultra DLD (Kratos, Manchester, UK) spectrometer
using monochromatized Al Kα (1486.6 eV) radiation at an operating power of 150 W of the
X-ray tube. Survey and high-resolution spectra of appropriate core levels were recorded at
pass energies of 160 and 40 eV and with step sizes of 1 and 0.1 eV, respectively. Sample area
of 300 µm × 700 µm contributed to the spectra. The samples were mounted on a sample
holder with a two-sided adhesive tape, and the spectra were collected at room temperature.
The base pressure in the analytical UHV chamber of the spectrometer during measurements
did not exceed 10−8 Torr. The energy scale of the spectrometer was calibrated to provide
the following values for reference samples (i.e., metal surfaces freshly cleaned by ion bom-
bardment): Au 4f7/2–83.96 eV, Cu 2p3/2–932.62 eV, Ag 3d5/2–368.21 eV. The electrostatic
charging effects were compensated by using an electron neutralizer. The surface charge
was taken into account according to the C–C/C–H state identified in the C 1s spectrum, to
which a binding energy of 285.0 eV was assigned. After charge referencing, a Shirley-type
background with inelastic losses was subtracted from the high-resolution spectra. The
surface chemical composition was calculated using atomic sensitivity factors included in
the software of the spectrometer corrected for the transfer function of the instrument.

2.3. Methods
Synthesis of ZnO/Au and ZnO/Ag Heterodimers

Synthesis of VM/Au/ZnO. Initially, a fixed quantity of solutions in deionized water:
VM (20 mL, 0.007M, pH 8), ZnSO4·7H2O (0.322 mL, 0.1 M), HAuCl4·3H2O (2.1 mL, 0.01 M),
and NaOH (0.4 mL, 1 M) were placed in test tubes with a screw caps tightly closed glass
bottle. pH of obtained solution was 12. After shaking, the reaction mixture was placed in a
bath with boiling water and kept for 3 h. The reaction solution was then stored at room
temperature. The dried sample was obtained after dialysis (or ultrafiltration—YM5 mem-
brane, “DIAFLO”, AMICON CORPORATION) of the reaction mixture with subsequent
lyophilic drying (−55 ◦C, 0.05 mbar).

EM/Au/ZnO and SM/Au/ZnO samples were prepared under similar reagents con-
centrations, similar reaction conditions, and at the same molar ratio of monomeric units
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of maleic acid residues of copolymer/gold cations/zinc cations 1/0.15/0.23. The reaction
time for these samples was 4 h.

Synthesis of VM/Ag/ZnO. The solutions in deionized water: VM (25 mL, 0.007 M,
pH 8), ZnSO4·7H2O (0.262 mL, 0.1 M), AgNO3 (0.52 mL, 0.1 M), and NaOH (0.325 mL, 1 M)
were placed in test tubes with screw caps. pH of obtained solution was 12. After shaking,
the reaction mixture was placed in a bath with boiling water and kept for 6 h.

EM/Ag/ZnO and SM/Ag/ZnO samples were obtained under similar reagents con-
centrations, similar reaction conditions, and at the same molar ratio of monomeric units
of maleic acid residues of copolymer/silver cations/zinc cations 1/0.3/0.15. The reaction
time for these samples was 7 h.

3. Results and Discussion

To obtain stable colloidal nanostructured metal/metal oxide samples, the choice of
the initial polymer matrix is important. The polymer matrix should serve as a suitable
nanoparticles (NPs) coating, preventing their aggregation by reducing their surface energy.
The stabilizing effect of macromolecules depends on the polymer structure, which makes
it possible to carry out steric and (or) Coulomb stabilization of nanoparticles. It is also
desirable to have functional groups in macromolecules for interaction with precursor-metal
cations by forming a complex or an ion pair. The copolymers of maleic acid namely,
poly (N-vinyl-2-pyrrolidone-alt-maleic acid) (VM), poly(ethylene-alt-maleic acid) (EM),
or poly(styrene-alt-maleic acid) (SM) were used as templates for the sorption of cations
of metals and stabilization of nanoheterostructures. These copolymers have a number of
advantages: in addition to commercial availability or simple synthesis by radical copoly-
merization (in the form of copolymers of maleic anhydride), they have regular structure of
macromolecular chains. The copolymers are amphiphilic and water-soluble. The process of
forming colloidal heterostructures containing zinc oxide and gold (silver) nanoparticles
stabilized by maleic acid copolymers can be divided into two successive stages: (1) for-
mation of salts (complexes) of zinc and silver (gold) cations with copolymers of maleic
acid; (2) hydrothermal matrix-dependent transformation of metal cations into zinc oxide
nanoparticles and silver (gold) nanoparticles and their stabilization. In obtaining the target
colloidal structures, the nature of the polymer played a key role at all stages of this process.

At the first stage, dicarboxylic acid residues having two closely spaced donor carboxyl
groups formed an ionic or coordination-ionic bond with metal cations with valence or
coordination number ≥ 1. At this stage, an alkaline medium (pH 8) was used in which
polyacids are less associated and have a more expanded conformation of macromolecular
chains, which should contribute to a statistically uniform distribution of metal cations in
the polymer matrix [48]. At elevated pH, sensitivity to divalent cations, including zinc,
attributed to the stabilization of the deprotonated maleic acid functionality [49–51]. It was
shown that SM with different amounts of ZnCl2 resulted in SM-Zn ionomers formation
with different degrees of chelation, and at the same time a rigid “pseudo-ring” structure is
obtained [52]. We have previously shown [48,53,54] that one structural unit of the maleic
acid residue of copolymers binds silver ion with the formation of a silver/dicarbonic acid
complex of two coordination type; in this case, the process of binding silver cations in the
alkaline environment occurs statistically (not cooperatively). So, Ag+ ion is coordinated
with both carboxyl groups of the monomeric unit of maleic acid residues by a coordination-
ionic bond in accordance with the coordination number of silver equal to 2 [48,53,54].
The binding of gold cations by dicarboxylic acid copolymers was studied by dialysis
method [55]. The degree of binding of gold (Au3+) cations to the copolymers used was
determined. At pH 10, the copolymers sorbed EM—36, SM—39, VM—46% (mol) of
the metal cation. In our work, the load metal cations on copolymers did not exceed
30%. The presence of polar residues of N-vinylpyrrolidone in the structure of the VM
copolymer can affect the binding of metal cations. It is known that polyvinylpyrrolidone
(PVP) can coordinate metal cations due to the high affinity of pyrrolidone residues [56–58].
Nevertheless, it was shown that the interaction (coordination) of PVP with main metal
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cations is weak [59,60]. The degree of binding of PVP gold cations at pH 10 determined
by our approach [55] did not exceed 13%. In this paper, we used equimolar ratios of
zinc and noble metal cations. The load of cations on one maleic acid residues of the
copolymers was Zn2+/Ag+ = 0.15/0.3 (mol/mol) for preparation of composites ZnO/Ag0

and Zn2+/Au3+ = 0.23/0.15 for ZnO/Au0. Heavy loads of metal cations on copolymers
led to obtain less stable colloidal systems. In an aqueous alkaline medium, the hydrolysis
of zinc, silver or gold salts occurred with the formation of corresponding metal cation
hydroxides, which, in turn, can form chelate complexes with dicarboxylic acid residues
and polar copolymer groups. The stage of transformation of metal cations into zinc oxide
nanoparticles and gold (silver) nanoparticles took place in an alkaline medium and using
a boiling water bath for reaction vessel. It is known that gold and silver cations are
strong oxidizers (electrode potentials in the conditions of nanoparticle synthesis (T = 373 K,
pH = 12) are calculated in Supplementary Materials (Calculated data) and make up for
Au(OH)3, H+/Au and Ag2O, H+/Ag +0.56 V and +0.285 V, respectively). With a value of
−237 kJ mol−1 for the Gibbs free energy of water, the standard reduction potential for the
reaction 2H2O = O2 + 4H+ + 4e is 1.23 V. Under the conditions of nanoparticle synthesis,
the electrode potential of the last half-reaction is significantly less than under standard
conditions and is +0.34 V. Because this value is lower than that of 1.50 V for the Au3+—Au0

reaction, Au3+ is unstable in water, and will undergo spontaneous reduction. In an alkaline
medium, the gold salt is hydrolyzed to the corresponding hydroxide, and then the target
product appears: Au(OH)3 + 3H+ + 3e = Au0 + 3H2O [61]. Similarly, in an alkaline medium,
Ag+ passes into silver hydroxide and then silver (I) oxide. However, for the reduction of
silver (I) oxide (T = 373 K, pH = 12), water is ineffective, since the electrode half-reaction
potential of Ag2O, H+/Ag0 is +0.285 V. At the same time, Ag2O has a small absolute value
of the standard Gibbs energy of formation −11.3 kJ/mol. As shown in Supplementary
Materials (Calculated data), taking into account the influence of dispersion leads to a
positive Gibbs energy of the formation of silver oxide (I) nanoparticles with a diameter of
the order of several nanometers. Thus, we can expect spontaneous decomposition of silver
oxide in the composition of nanoparticles by the reaction Ag2O = 2Ag0 + 0.5O2. At the end
of the reaction, the acidification of the reaction medium was observed—from pH 12 to 9–10.
The nature of the zinc bond in the compounds also changes from ionic in the initial salt to
covalent in the oxide during the reaction: ZnSO4 → Zn(OH)2 → ZnO. The chemical bond
between zinc and oxygen in ZnO molecule is predominantly covalent but with a significant
contribution from ionic bonding [62]. It was previously shown that under heating at 150 ◦C
for 3 days of SM-Zn polychelate, a small amount of ZnO nanospheres was detected [52].
In our case this process, apparently, was stimulated in an alkaline environment and in the
presence of gold (silver) cations.

The reaction products formation in the system can be tracked by changes in the
UV-Vis spectra due to specific absorption bands of reaction products [25,63,64]. Figure 1
shows the UV-Vis spectra illustrating the kinetics of the formation of ZnO and Au0 or Ag0

nanoparticles, which are components of heterodimers.
The ZnO/Au0 and ZnO/Ag0 nanocomposites exhibit strong absorption in the visible

region as shown in Figure 1. The absorption wavelength or broad band around 365–375 nm
was the specific peak of ZnO, absorption peaks at 520 nm and band at 406 nm were at-
tributed to the Au0 and Ag0 nanoparticles, respectively [64–66]. At the initial moment of
the reaction, turbidity was observed in the system, apparently due to the formation of zinc
hydroxide (zinc hydroxide polymer derivatives). Then, during the reaction, the system
becomes more transparent and acquires a color characteristic of gold or silver nanoparticles
caused by their surface plasmon resonance. At the same time, the absorption band character-
istic of zinc oxide also increased, and changed almost synchronously with the change in the
absorption band of the nanometal, except for the initial period of time (Figure 1a–f). The ob-
tained dilute solutions of heterodimers are shown in Figure S1 (Supplementary Materials).
In the presence of gold and zinc cations and a VM stabilizer copolymer under the selected
conditions, the reaction was almost completed in 2 h, for SM and EM it took about 3–4 h
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(Figure 1a–c), while the characteristic absorption bands of the final products were finally
formed and their intensity practically did not change. In the presence of gold and zinc
cations and the copolymer-stabilizer VM under the selected conditions, the reaction was
practically completed after 2 h, for SM and EM it took about 3–4 h (Figure 1a–c), while
the characteristic absorption bands of the final products were finally formed and their
intensity practically did not change. The test for the presence of residual noble metal ions
at the end of the reaction was carried out for gold ions. For this purpose, we investigated
the changes in the absorbance of silver nanoparticles during the galvanic oxidation of
these nanoparticles with perhaps present gold cations from our samples [55,67]. In this
case, the working solution was a copolymer of ethylene with maleic acid containing silver
nanoparticles (EM/Ag0), obtained and characterized by our research group earlier [54].
The optical density of the initial nanosilver solutions changes slightly with the introduction
of Au-containing heterodimers (Figure S2). So, quality test showed the negligible amount
of gold cations in the system after the specified reaction time. For a heterodimer containing
zinc oxide, a specific luminescence was recorded (Figure S3). In the case of using of the
silver cations instead of gold cations in the reaction of heterostructure preparation, the
trend persisted, but the process lasted longer. For the copolymer VM, the reaction was
almost over after 6 h, for SM and EM—in about 7 h (Figure 1d–f). The high reaction rate
of the formation of heterodimers when using gold cations is associated with their more
pronounced oxidizing properties. The maleic acid copolymers used have a similar molecu-
lar weight; however, the reaction rates in the presence of copolymers of maleic acid with
different comonomers differ. A noticeable increase in the rate of heterodimer formation
in the presence of the VM copolymer is apparently due to the presence of pyrrolidone
residues in its structure, which can affect the binding of cations and the process of their
nucleation [59,60]. Under our reaction conditions of obtaining heterodimers the use of PVP
instead of maleic acid copolymers resulted in a black precipitate after 15 min, although PVP
is known to be a stabilizing agent and a weak reducing agent for Au3+ and Ag+ [68,69].
The control experiment with involving in reaction system cations of noble metal and zinc
in the absence of a polymer matrix resulted in unstable systems with product precipitation.
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Figure 1. UV-Vis spectra and the kinetics of formation of heterodimers (95 ◦C, pH 12):
VM/Au0/ZnO (a), EM/Au0/ZnO (b), SM/Au0/ZnO (c), VM/Ag0/ZnO (d), EM/Ag0/ZnO (e), and
SM/Ag0/ZnO (f). Curves 1—the change in optical density at 406 or 520 nm for plasmon resonance
nanoparticles Ag0 or Au0, respectively; curves 2—the change in optical density at 370 nm for zinc
oxide during the reaction. Inset: the UV-Vis spectra of the final products of the reactions.
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Figure 2 shows the evolution of the optical spectra in the preparation of the het-
erodimers VM/Au3+/Zn2+ (Figure 2a (1–3)) and SM/Au3+/Zn2+ (Figure 2b (1–3)), and
the spectra of reaction products in the polymer-zinc cations systems in the absence of gold
(Figure 2a,b, (4–6)). During the synthesis of heterodimers, an increase in optical density is
observed in the regions of 520 and 370 nm, which are characteristic of gold and zinc oxide,
respectively (Figure 2a,b, (1–3)).
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Figure 2. UV-Vis spectra of systems VM/Au3+/Zn2+ (a) and SM/Au3+/Zn2+ (b) under molar ratio
of copolymer maleic acid residues/gold cations/zinc cations 1/0.15/0.23 (1–2 min, 2–1 h, 3–4 h) and
VM/Zn2+ (a) and SM/Zn2+ (b) under molar ratio of copolymer maleic acid residues/zinc cations
1/0.23 (4–2 min, 5–1 h, 6–4 h); 95 ◦C, initial pH 12.

Interestingly, under conditions similar to those used in the production of heterodimers
(pH, temperature, copolymer-Zn cations ratio), but in the absence of gold cations, sus-
pended particles were present in the system during the entire observation time. In this
case nonspecific absorption was recorded, and the absorption was changing in time
(Figure 2a,b (4–6)). A similar trend was observed in the case of the formation of het-
erodimeric structures VM/Ag0/ZnO, SM/Ag0/ZnO, EM/Au0/ZnO, EM/Ag0/ZnO, and
copolymer/zinc oxide under the same conditions (Figure S4). Apparently, in the process of
synthesis, macromolecules of copolymers acquire a conformation optimal for stabilizing
the resulting nanoparticles. In the absence of forming silver (gold) nanoparticles, the
conformation of macromolecules is not optimal for fixing zinc oxide nanoparticles. So,
earlier [48] using the DLS method we showed that EM was characterized by an intermolec-
ular association with a wide bimodal particle size distribution (Rh = 50–300 nm). For the
corresponding nanosilver-containing complex, EM/Ag0 well-formed micelles, narrowly
dispersed in size, were revealed (Rh = 105 nm). Silver (gold) nanoparticles come into
contact with hydrophobic domains of the macromolecular chain, and polar zinc oxide
particles tend to hydrophilic parts of macromolecules facing the external, aqueous medium.
That is, under the conditions used, the copolymers, apparently, contribute to the synthesis
of heterodimer nanocomposites due to conformational features of the structure of polymer–
cation complexes at the initial stage, as well as steric and Coulomb stabilization of the
resulting nanoproducts of the reaction due to the presence of contributing structural units
and groups of amphiphilic copolymers.

Figure 3a,b shows as an example the Fourier transform infrared (FTIR) spectra of the
original VM copolymer, a copolymer containing nanosilver VM/Ag0 and VM/Ag0/ZnO
heterostructure. In all spectra (Figure 3a), C=O stretching mode at 1654–1656cm−1 is
consistent with a pyrrolidone copolymer ring [70,71].
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Figure 3. (a,b). FTIR spectra of VM (1), VM/Ag0 (2) and VM/Ag0/ZnO (3) (two wavelength ranges).

A noticeable change in the spectrum of VM/Ag0 and VM/Ag0/ZnO, in contrast to
that of VM, is associated with the position of the C=O bond of the carboxyl group. In
the compound VM, C=O stretching vibration at 1725 cm−1 corresponds to non-ionized
carboxyl groups of maleic acid residues. In VM/Ag0 and VM/Ag0/ZnO compounds, C=O
stretching vibration at 1575–1576 cm−1 corresponds to the ionized form of carboxyl of the
maleic acid residues of the copolymers since the copolymers are present in the form of a
sodium salt [72]. For other polymers-stabilizers, this band is in the range 1560–1565 cm−1

(Figure S5a). Since the zinc oxide content in all the studied heterostructures is small
(approximately 4–5%, weight), for greater clarity, the area of 400–800 cm−1 is presented
in more detail in Figure 3b. The region 700–800 cm−1 shows the deformation non-planar
oscillation of C-H bonds [72]. Occurrence of the at 472 cm−1 is characteristic of the formation
of Zn-O bond (Figure 3b) [33,73]. Earlier for ZnO crystals, Zn-O stretching mode has also
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been observed in the range from 400 to 700 cm−1 [74–76]. Significant band at 625 cm−1 can
be assigned to the Ag/ZnO nanocomposite formation (Figure 3b) [33,77].

Figure 4 depicts typical transmission electron microscopy (TEM) micrographs of the
obtained composites nanoparticles.
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Transmission electron microscope (TEM) investigation of colloidal solutions of syn-
thesized polymer- stabilized Au/ZnO and Ag/ZnO showed relatively monodispersed
nanoparticles. Similar crystalline nanostructures were found in all solutions of heterodimers
prepared. Crystalline sizes for each phase are given also below (see XRD data). Some trans-
parent and dark areas in the crystal particles were detected in the TEM image. Previously,
using EDS analysis it was found that C, Zn, and O signals, but not Ag, were observed in
more transparent particles, indicating that these particles are associated with ZnO. Peaks
C, Zn, O, and Ag were detected at the interface between the dark and transparent re-
gions [78]. Moreover, polar zinc oxide particles seem to gravitate toward polar fragments
of chains of amphiphilic copolymers, and hydrophobic noble metal particles—toward their
hydrophobic structural elements. Similar complexes (Au−PVP−ZnO) were demonstrated
for polyvinylpyrrolidone [71]. Also earlier, the composite structure with ZnO surface
modified with maleic acid, where the carbonyl groups of carboxylic acid were coordinated
with the oxide metal [79].

The crystal structure of metal-containing constituents in the heterostructures studied
by PXRD method (Table 1, Figure 5).

Figure 5 shows the XRD spectra of synthesized samples.
XRD studies of the analyzed samples have shown the presence of several different

phases related to hexagonal phase of zincite (ZnO) and cubic phases of silver or gold as
well. The peaks that correspond to Au phase are approximately: 38.2, 54.5, 64.7, and 78.7;
Ag phase are approximately: 38.1, 44.2, 64.4, 78.3; ZnO (zincite phase) are approximately:
31.8, 34.4, 36.1, 47.5, 56.7, 63.0, 66.5, 68.0, 69.1, 72.6, 79.0◦. The pattern of organic polymers is
masked by the signal of inorganic and metal phases, and most likely it is merely scattering
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of amorphous phase. All phases found in samples can be described as nano-dimensional
(Table 1). Indeed, the mean crystalline sizes of silver in corresponding samples was in the
range of 6–9 nm, the size of the zincite crystals was 16–20 nm, and the content of nanosilver
in the crystal phase was 79–92% and zinc oxide 8–20%. All gold-containing samples are
characterized by almost the same size of gold nanoparticles varying in a narrow range
5–8 nm, the size ZnO crystals was 15–21 nm; preparations contained 62–78% nanometal
and 22–38% zincite.
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Table 1. The results of XRD studies of heterodimers.

Sample Composition of
Crystal Phase

Phase Amount, %
(Deviation)

Crystalline Size for Each
Phase, nm (Deviation)

VM/Ag/ZnO Zincite, Silver 20.5 (6), 79.5 (6) 16.2 (8), 8.64 (8)
EM/Ag/ZnO Zincite, Silver 19.2 (7), 80.8 (7) 12.9 (7), 7.76 (8)
SM/Ag/ZnO Zincite, Silver 8.2 (10), 91.8 (10) 18 (4), 6.04 (10)
VM/Au/ZnO Zincite, Gold 22.5 (17), 77.5 (17) 20.7 (16), 6.57 (6)
M/Au/ZnO Zincite, Gold 37.6 (7), 62.4 (7) 17.9 (3), 7.91 (10)
SM/Au/ZnO Zincite, Gold 35 (2), 65 (2) 15.0 (8), 5.05 (7)

Comparison of XRD data with TEM and XPS (see below) results suggests the formation
of polycrystalline heterostructures in the samples.

The chemical states of elements in the samples in the form of sodium salts were
studied by XPS. The survey XPS spectra of the samples are displayed in Figures S6–S9. The
high-resolution C 1s and N 1s spectra of the samples are shown in Figures S10 and S11,
respectively. The quantification data derived from the survey and high-resolution spectra
are presented in Table S1. As an example, a detailed analysis of the spectra of a number
of heterodimers is given below. Figure 6 displays the Au 4f and Zn 3p spectra fitted with
several Gaussian profiles. Table 2 shows their assignments and characteristics.
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Table 2. Characteristics of the Au 4f, Zn 2p, and Zn 3p photoelectron spectra: binding energies (Eb),
Gaussian widths (W), and relative intensities (Irel) of photoelectron peaks belonging to different
chemical groups in the C 1s and N 1s spectra.

Sample Au
4f7/2

Au
4f5/2

Au
4f7/2

Au
4f5/2

Zn 2p3/2
Zn

2p3/2

Zn
2p3/2

Zn
3p1/2

Zn
3p3/2

Zn
3p1/2

sat Zn 2p3/2
–Zn 3p3/2

Zn 2p3/2
–Au 4f 7/2

Zn 3p3/2
–Au 4f 7/2

VM/Au0/ZnO

Eb, eV 83.9 87.6 84.8 88.5 1022.2 1024.2 89.7 92.7 90.6 93.4 86.5 932.5 938.2 5.8

W, eV 1.0 0.96 1.05 1.03 1.44 1.44 2.05 1.94 2.1 2.2 5.0

Irel 0.46 0.33 0.12 0.09 0.94 0.06 0.52 0.26 0.15 0.08

EM/Au0/ZnO

Eb, eV 83.9 87.5 84.8 88.3 1022.1 89.4 92.3 91.4 94.1 86.4 932.7 938.3 5.5

W, eV 0.95 1.0 1.05 1.0 1.41 2.03 2.3 2.01 2.39 3.75

Irel 0.49 0.37 0.08 0.06 0.55 0.28 0.11 0.06

VM/Ag0/ZnO

Eb, eV 1022.2 1023.8 89.4 92.2 86.4 932.8

W, eV 1.44 1.44 2.01 2.39 3.75

Irel 0.94 0.06 0.67 0.33

Figure 7 shows the Zn 2p3/2 spectra of the investigated samples.
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The Zn 2p3/2 spectra of samples (Figure 7) are rather similar with a slight asymmetry
in the high energy region and were fitted with two Gaussian peaks at 1022.2 and 1024.2 eV
and 1022.2 and 1023.8 eV, respectively, with equal Gaussian widths of 1.44 eV. The spectrum
of sample EM/Au0/ZnO sample is approximated with one Gaussian profile at 1022.1 eV
and GW = 1.4 eV.

The Au 4f spectra were fitted with two spin-orbit doublets with 4f7/2-4f5/2 spin-orbit
splitting of 3.65 eV and 3d5/2/3d3/2 branching ratio of 4/3. The Au 4f7/2 peaks located at
~83.9 and 84.1 eV are attributed to Au0 and Au3+ states that is in accordance with previous
studies [80–82]. A small negative shift of 0.1 eV of the Au 4f7/2 peak compared to that of
bulk Au (84.0 eV) may be ascribed to Au-Zn-O species, while a positive shift—to Au-O-Zn
ones. The Zn 3p spectrum of VM/Ag0/ZnO sample was fitted with one spin-orbit doublet
with 3p3/2-3p1/2 spin-orbit splitting of ~2.7 eV and 3p3/2/3p1/2 branching ratio of 2 and
a peak at 86.4 eV which approximated to a low-energy tail of the spectrum and may be
related to any specific loss. Such a tail was recorded in some other references as well [83–85].
The Zn 3p spectra of the VM/Au0/ZnO and EM/Au0/ZnO samples were fitted with two
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spin-orbit doublets with the same constraints. The fitting parameters of the Au 4f and Zn
3p spectra are presented in Table 2. The binding energies of Au 4f, Zn 2p3/2, and Zn 3p
peaks of the AuZn-1 and AuZn-2 samples show some different AuZn species. The Ag
3d spectrum presented in Figure 8 is characterized with two peaks at 368.1 and 374.1 eV
related to Ag 3d5/2 and Ag 3d3/2, which may be attributed to Ag0 state. As in case of Au
4f7/2, the slight negative shift by 0.2 eV relative to that of bulk sample (368.27 eV) [80] may
be induced by Ag-Zn interaction. For Ag-doped ZnO [83], Ag 3d5/2 peak at 367.6 eV and
Ag 3d3/2 peak at 373.6 eV were observed and assigned to Ag-O bonds. It should be noted
that the Zn 2p3/2—Au 4f7/2 energy intervals for Ag-doped ZnO and VM/Ag0/ZnO are
close, 654.1 and 654.2 eV, respectively. However, in the case of VM/Ag0/ZnO, there are
signals after the Ag 3d5/2 and Ag 3d3/2 peaks, in which satellite peaks characterizing Ag0

can be inscribed, while they are not observed for Ag-doped ZnO.
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Based on the data obtained, it can be assumed that the heterostructures obtained are
core-shell structures, where metal nanoparticles can be located in the core, and zinc oxide
is located in the outer layer [3].

4. Conclusions

We have demonstrated the one-pot hydrothermal synthesis of polymer-stabilized
Au/ZnO and Ag/ZnO dimer nanostructures. The formation of stable colloids containing
nanoforms of zinc oxide and gold (silver) was facilitated by the presence in the initial
system simultaneously of two types of precursors—zinc cations and gold (silver) cations,
as well as polymer matrices used. At the same time, the presence of a stabilizing polymer
template is the determining factor in one-pot synthesis of colloidal polymer-stabilized
Ag(Au)/ZnO hybrid nanostructures. The reaction rate of the formation of heterodimers
depends on the nature of the stabilizing copolymer of maleic acid and noble metal cations
introduced into the system. A high reaction rate was observed in the case of using the
most hydrophilic copolymer of maleic acid with N-vinylpyrrolidone and gold cations,
having a large electrode potential. The obtained heterodimer colloids are stable for at
least six months, while the preparations can be dried for long-term storage with the
possibility of subsequent dissolution and use. This cost-effective simple synthesis strategy
can be useful as a platform to preparation of various metal—metal oxide nanostructured
materials for in particular targeted biomedical applications for example, as contrast agents
when introducing magnetite into their composition [4]. Bactericide-containing colloidal
heterodimer nanomaterials may be use as antibacterial agents to address the ever-increasing
problem of antibiotic-resistant bacteria [86]. At the same time, the presence of a stabilizing
polymer in the obtained composites, which has easily modifiable carboxyl (anhydride)
groups, makes it possible to introduce additional amine-containing antibiotic substances
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into the composition of the drug. The composites obtained can be converted into an
insoluble form by crosslinking or by interpolyelectrolyte complexes formation [87], which
will expand the range of their application.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15071670/s1. Figure S1. The view of diluted solutions of samples.
Figure S2. Test for the presence of gold cations in the products. Figure S3. Photoluminescence spectra
of colloidal suspensions. Figure S4. UV-Vis spectra of reaction systems. Figure S5. FTIR spectra of
samples. Figures S6–S9. The survey XPS spectra of heterodimers samples. Table S1. The quantification
data derived from the survey and high-resolution spectra. Figure S10. The C 1s high-resolution
spectra of the samples. Figure S11. The N 1s high-resolution. Figure S12. Calculated data.
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