Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (942)

Search Parameters:
Keywords = collision impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1017 KiB  
Communication
Observing the Ionization of Metastable States of Sn14+ in an Electron Beam Ion Trap
by Qi Guo, Zhaoying Chen, Fangshi Jia, Wenhao Xia, Xiaobin Ding, Jun Xiao, Yaming Zou and Ke Yao
Atoms 2025, 13(8), 71; https://doi.org/10.3390/atoms13080071 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the ionization balance of Sn ions in an electron beam ion trap (EBIT). Highly charged Sn ions are produced via collisions with a quasi-monochromatic electron beam, and the charge state distribution is analyzed using a Wien filter. Significant Sn15+ [...] Read more.
This study investigates the ionization balance of Sn ions in an electron beam ion trap (EBIT). Highly charged Sn ions are produced via collisions with a quasi-monochromatic electron beam, and the charge state distribution is analyzed using a Wien filter. Significant Sn15+ production occurs at electron energies below the ionization potential of Sn14+ (379 eV). Calculations attribute this to electron-impact ionization from metastable Sn14+ states. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

29 pages, 4456 KiB  
Article
Effect of Design on Human Injury and Fatality Due to Impacts by Small UAS
by Borrdephong Rattanagraikanakorn, Henk A. P. Blom, Derek I. Gransden, Michiel Schuurman, Christophe De Wagter, Alexei Sharpanskykh and Riender Happee
Designs 2025, 9(4), 88; https://doi.org/10.3390/designs9040088 - 28 Jul 2025
Viewed by 233
Abstract
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations [...] Read more.
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations to heavily restrict UAS operations in populated regions. These operational constraints hinder the ability to gather safety insights through the conventional method of learning from real-world incidents. To address this, a promising alternative is to use dynamic simulations that model UAS collisions with humans, providing critical data to inform safer UAS design. In the automotive industry, the modelling and simulation of car crashes has been well developed. For small UAS, this dynamical modelling and simulation approach has focused on the effect of the varying weight and kinetic energy of the UAS, as well as the geometry and location of the impact on a human body. The objective of this research is to quantify the effects of UAS material and shape on-ground TPR through dynamical modelling and simulation. To accomplish this objective, five camera–drone types are selected that have similar weights, although they differ in terms of airframe structure and materials. For each of these camera–drones, a dynamical model is developed to simulate impact, with a biomechanical human body model validated for impact. The injury levels and probability of fatality (PoF) results, obtained through conducting simulations with these integrated dynamical models, are significantly different for the camera–drone types. For the uncontrolled vertical impact of a 1.2 kg UAS at 18 m/s on a model of a human head, differences in UAS designs even yield an order in magnitude difference in PoF values. Moreover, the highest PoF value is a factor of 2 lower than the parametric PoF models used in standing regulation. In the same scenario for UAS types with a weight of 0.4 kg, differences in UAS designs even considered yield an order when regarding the magnitude difference in PoF values. These findings confirm that the material and shape design of a UAS plays an important role in reducing ground TPR, and that these effects can be addressed by using dynamical modelling and simulation during UAS design. Full article
(This article belongs to the Collection Editorial Board Members’ Collection Series: Drone Design)
Show Figures

Figure 1

25 pages, 3182 KiB  
Article
From Efficiency to Safety: A Simulation-Based Framework for Evaluating Empty-Container Terminal Layouts
by Cristóbal Vera-Carrasco, Cristian D. Palma and Sebastián Muñoz-Herrera
J. Mar. Sci. Eng. 2025, 13(8), 1424; https://doi.org/10.3390/jmse13081424 - 26 Jul 2025
Viewed by 216
Abstract
Empty container depot (ECD) design significantly impacts maritime terminal efficiency, yet traditional evaluation approaches assess limited operational factors, constraining comprehensive performance optimization. This study develops an integrated discrete event simulation (DES) framework that simultaneously evaluates lifting equipment utilization, truck turnaround times, and potential [...] Read more.
Empty container depot (ECD) design significantly impacts maritime terminal efficiency, yet traditional evaluation approaches assess limited operational factors, constraining comprehensive performance optimization. This study develops an integrated discrete event simulation (DES) framework that simultaneously evaluates lifting equipment utilization, truck turnaround times, and potential collisions to support terminal decision-making. This study combines operational efficiency metrics with safety analytics for non-automated ECDs using Top Lifters and Reach Stackers. Additionally, a regression analysis examines efficiency metrics’ effect on safety risk. A case study at a Chilean multipurpose terminal reveals performance trade-offs between indicators under different operational scenarios, identifying substantial efficiency disparities between dry and refrigerated container operations. An analysis of four distinct collision zones with varying historical risk profiles showed the gate area had the highest potential collisions and a strong regression correlation with efficiency metrics. Similar models showed a poor fit in other conflict zones, evidencing the necessity for dedicated safety indicators complementing traditional measures. This integrated approach quantifies interdependencies between safety and efficiency metrics, helping terminal managers optimize layouts, expose traditional metric limitations, and reduce safety risks in space-constrained maritime terminals. Full article
Show Figures

Figure 1

19 pages, 1040 KiB  
Systematic Review
A Systematic Review on Risk Management and Enhancing Reliability in Autonomous Vehicles
by Ali Mahmood and Róbert Szabolcsi
Machines 2025, 13(8), 646; https://doi.org/10.3390/machines13080646 - 24 Jul 2025
Viewed by 278
Abstract
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes [...] Read more.
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes advancements across five key domains: fault detection and diagnosis (FDD), collision avoidance and decision making, system reliability and resilience, validation and verification (V&V), and safety evaluation. It integrates both hardware- and software-level perspectives, with a focus on emerging techniques such as Bayesian behavior prediction, uncertainty-aware control, and set-based fault detection to enhance operational robustness. Despite these advances, this review identifies persistent challenges, including limited cross-layer fault modeling, lack of formal verification for learning-based components, and the scarcity of scenario-driven validation datasets. To address these gaps, this paper proposes future directions such as verifiable machine learning, unified fault propagation models, digital twin-based reliability frameworks, and cyber-physical threat modeling. This review offers a comprehensive reference for developing certifiable, context-aware, and fail-operational autonomous driving systems, contributing to the broader goal of ensuring safe and trustworthy AV deployment. Full article
Show Figures

Figure 1

18 pages, 4335 KiB  
Article
DEM Study on the Impact of Liner Lifter Bars on SAG Mill Collision Energy
by Yong Wang, Qingfei Xiao, Saizhen Jin, Mengtao Wang, Ruitao Liu and Guobin Wang
Lubricants 2025, 13(8), 321; https://doi.org/10.3390/lubricants13080321 - 23 Jul 2025
Viewed by 236
Abstract
The semi-autogenous grinding (SAG) mill, renowned for its high efficiency, high production capacity, and low cost, is widely used for crushing and grinding equipment. However, the current understanding of the overall particle behavior influencing its efficiency remains relatively limited, particularly the impact of [...] Read more.
The semi-autogenous grinding (SAG) mill, renowned for its high efficiency, high production capacity, and low cost, is widely used for crushing and grinding equipment. However, the current understanding of the overall particle behavior influencing its efficiency remains relatively limited, particularly the impact of the shape of SAG mill liners on material behavior. This study employs discrete element method (DEM) simulation technology to investigate the effects of different liner structures on particle trajectories and collision energy, systematically investigating the impact of lifter bars angle, height, and the number of lifter bars on grinding efficiency. The results of single-factor simulations indicate that when the lifter bars height (230 mm) and the number of lifter bars (36) are fixed, the total collision energy dissipation between steel balls and ore, as well as among ore particles, reaches a maximum of 526,069.53 J when the lifter bars angle is 25°. When the lifter bar angle is fixed at 25° and the number of lifter bars is set to 36, the maximum collision energy dissipation of 627,606.06 J occurs at a lifter bars height of 210 mm. When the angle (25°) and height (210 mm) are fixed, the highest energy dissipation of 443,915.37 J is observed with 12 lifter bars. Results from the three-factor, three-level orthogonal experiment reveal that the number of lifter bars exerts the most significant influence on grinding efficiency, followed by the angle and height. The optimal combination is determined to be a 20° angle, 12 lifter bars, and a 210 mm height, resulting in the highest total collision energy dissipation of 700,334 J. This represents an increase of 379,466 J compared to the original SAG mill liner configuration (320,868 J). This research aims to accurately simulate the motion of discrete particles within the mill through DEM simulations, providing a basis for optimizing the operational parameters and structural design of SAG mills. Full article
(This article belongs to the Special Issue Tribology in Ball Milling: Theory and Applications)
Show Figures

Figure 1

16 pages, 1681 KiB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 278
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 256
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

13 pages, 1064 KiB  
Article
The Detection of Pedestrians Crossing from the Oncoming Traffic Lane Side to Reduce Fatal Collisions Between Vehicles and Older Pedestrians
by Masato Yamada, Arisa Takeda, Shingo Moriguchi, Mami Nakamura and Masahito Hitosugi
Vehicles 2025, 7(3), 76; https://doi.org/10.3390/vehicles7030076 - 20 Jul 2025
Viewed by 279
Abstract
To inform the development of effective prevention strategies for reducing pedestrian fatalities in an ageing society, a retrospective analysis was conducted on fatal pedestrian–vehicle collisions in Japan. All pedestrian fatalities caused by motor vehicle collisions between 2013 and 2022 in Shiga Prefecture were [...] Read more.
To inform the development of effective prevention strategies for reducing pedestrian fatalities in an ageing society, a retrospective analysis was conducted on fatal pedestrian–vehicle collisions in Japan. All pedestrian fatalities caused by motor vehicle collisions between 2013 and 2022 in Shiga Prefecture were reviewed. Among the 164 pedestrian fatalities (involving 92 males and 72 females), the most common scenario involved a pedestrian crossing the road (57.3%). In 61 cases (64.9%), pedestrians crossed from the oncoming traffic lane side to the vehicle’s lane side (i.e., crossing from right to left from the driver’s perspective, as vehicles drive on the left in Japan). In 33 cases (35.1%), pedestrians crossed from the vehicle’s lane side to the oncoming traffic lane side. Among cases of pedestrians crossing from the vehicle’s lane side, 54.5% were struck by the near side of the vehicle’s front, whereas 39.7% of those crossing from the oncoming traffic lane side were hit by the far side of the vehicle’s front (p = 0.02). Therefore, for both crossing directions, collisions frequently involved the front left of the vehicle. When pedestrians were struck by the front centre or front right of the vehicle, the collision speeds were higher when pedestrians crossed from the oncoming traffic lane side to the vehicle’s lane side rather than crossing from the vehicle’s lane side to the oncoming traffic lane side. A significant difference in collision speed was observed for impacts with the vehicle’s front centre (p = 0.048). The findings suggest that increasing awareness that older pedestrians may cross roads from the oncoming traffic lane side may help drivers anticipate and avoid potential collisions. Full article
(This article belongs to the Special Issue Novel Solutions for Transportation Safety)
Show Figures

Figure 1

16 pages, 6248 KiB  
Article
Global Hotspots of Whale–Ship Collision Risk: A Multi-Species Framework Integrating Critical Habitat Zonation and Shipping Pressure for Conservation Prioritization
by Bei Wang, Linlin Zhao, Tong Lu, Linjie Li, Tingting Li, Bailin Cong and Shenghao Liu
Animals 2025, 15(14), 2144; https://doi.org/10.3390/ani15142144 - 20 Jul 2025
Viewed by 617
Abstract
The expansion of global maritime activities threatens marine ecosystems and biodiversity. Collisions between ships and marine megafauna profoundly impact vulnerable species such as whales, who serve as keystone predators. However, the specific regions most heavily affected by shipping traffic and the multi-species facing [...] Read more.
The expansion of global maritime activities threatens marine ecosystems and biodiversity. Collisions between ships and marine megafauna profoundly impact vulnerable species such as whales, who serve as keystone predators. However, the specific regions most heavily affected by shipping traffic and the multi-species facing collision risk remain poorly understood. Here, we analyzed global shipping data to assess the distribution of areas with high shipping pressure and identify global hotspots for whale–ship collisions. The results reveal that high-pressure habitats are primarily distributed within exclusive economic zones (EEZs), which are generally consistent with the distribution of collision hotspots. High-pressure habitats exhibit significant spatial mismatch: 32.9% of Marine Protected Areas endure high shipping stress and yet occupy merely 1.25% of protected ocean area. Additionally, 25.1% of collision hotspots (top 1% risk) affect four or more whale species, forming critical aggregation in regions like the Gulf of St. Lawrence and Northeast Asian marginal seas. Most of these high-risk areas lack protective measures. These findings offer actionable spatial priorities for implementing targeted conservation strategies, such as the introduction of mandatory speed restrictions and dynamic vessel routing in high-risk, multi-species hotspots. By focusing on critical aggregation areas, these strategies will help mitigate whale mortality and enhance marine biodiversity protection, supporting the sustainable coexistence of maritime activities with vulnerable marine megafauna. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

25 pages, 16639 KiB  
Article
Hydraulic Modeling of Newtonian and Non-Newtonian Debris Flows in Alluvial Fans: A Case Study in the Peruvian Andes
by David Chacon Lima, Alan Huarca Pulcha, Milagros Torrejon Llamoca, Guillermo Yorel Noriega Aquise and Alain Jorge Espinoza Vigil
Water 2025, 17(14), 2150; https://doi.org/10.3390/w17142150 - 19 Jul 2025
Viewed by 468
Abstract
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic [...] Read more.
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic behavior of Newtonian and non-Newtonian flows in an alluvial fan, using the Amoray Gully in Apurímac, Peru, as a case study. This gully intersects the Interoceánica Sur national highway via a low-water crossing (baden), making it a relevant site for evaluating debris flow impacts on critical road infrastructure. The methodology integrates hydrological analysis, rheological characterization, and hydraulic modeling. QGIS 3.16 was used for watershed delineation and extraction of physiographic parameters, while a high-resolution topographic survey was conducted using an RTK drone. Rainfall-runoff modeling was performed in HEC-HMS 4.7 using 25 years of precipitation data, and hydraulic simulations were executed in HEC-RAS 6.6, incorporating rheological parameters and calibrated with the footprint of a historical event (5-year return period). Results show that traditional Newtonian models underestimate flow depth by 17% and overestimate velocity by 54%, primarily due to unaccounted particle-collision effects. Based on these findings, a multi-barrel circular culvert was designed to improve debris flow management. This study provides a replicable modeling framework for debris-prone watersheds and contributes to improving design standards in complex terrain. The proposed methodology and findings offer practical guidance for hydraulic design in mountainous terrain affected by debris flows, especially where infrastructure intersects active alluvial fans. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 304
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

21 pages, 7716 KiB  
Article
Resplace of the Car–Driver–Passenger System in a Frontal Crash Using a Water Impact Attenuator
by Claudiu Nedelescu, Calin Itu, Anghel Chiru, Sorin Vlase and Bogdan Cornel Benea
Vehicles 2025, 7(3), 74; https://doi.org/10.3390/vehicles7030074 - 16 Jul 2025
Viewed by 300
Abstract
Passenger safety remains a primary goal in vehicle engineering, requiring the development of advanced passive safety systems to reduce injuries during collisions. Impact attenuators (particularly for race cars) are a crucial component for the safety of the driver. The impact of the impact [...] Read more.
Passenger safety remains a primary goal in vehicle engineering, requiring the development of advanced passive safety systems to reduce injuries during collisions. Impact attenuators (particularly for race cars) are a crucial component for the safety of the driver. The impact of the impact attenuator (IA) is demonstrated by the behavior of a seat-belted dummy in a frontal collision with a rigid wall. The aim of this paper is to confirm the qualities of water as a damping agent in the manufacturing of the IA. To reach a conclusion, a theoretical model is used and experimental tests are performed. Once the loads operating on the dummy have been identified, it is confirmed that they fall within the range that the existing requirements recommend. The car is viewed as a structure with a seat-belt-fastened dummy and an impact attenuator. Research is being conducted on a new water-based impact attenuator technology. A frontal collision of the car–dummy assembly was taken into consideration when analyzing the dummy’s behavior in accordance with the criteria. A simulation program was used to calculate the accelerations at various points on the mannequin’s body as well as the force that manifested on the seat belts. So, the good qualities of IAs using water are revealed and support designers in their efforts to obtain better shock behavior. In the simulation, the variation of internal energy accumulated by the vehicle, displacements and velocities of various points on the chassis, as well as the accelerations of the vehicle and the occupant were determined. In the experiment, the vehicle velocities for both test cases were established and used in the simulation, and the accelerations of the vehicle and dummy were measured. The assessment was carried out by comparing experimental and simulation data, focusing on acceleration values recorded on both the dummy and the vehicle. Evaluation criteria such as HIC and ThAC were applied to determine the severity of the impact and the effectiveness of the proposed water-based attenuator. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

17 pages, 1323 KiB  
Article
Moonlit Roads—Spatial and Temporal Patterns of Wildlife–Vehicle Collisions in Serbia
by Sreten Jevremović, Vladan Tubić, Filip Arnaut, Aleksandra Kolarski and Vladimir A. Srećković
Sustainability 2025, 17(14), 6443; https://doi.org/10.3390/su17146443 - 14 Jul 2025
Viewed by 257
Abstract
Wildlife–vehicle collisions (WVCs) pose a growing threat to road safety and wildlife conservation. This research explores the relationship between the moon phases and the occurrence of nighttime WVCs in Serbia from 2015 to 2023. A total of 2767 nighttime incidents were analyzed to [...] Read more.
Wildlife–vehicle collisions (WVCs) pose a growing threat to road safety and wildlife conservation. This research explores the relationship between the moon phases and the occurrence of nighttime WVCs in Serbia from 2015 to 2023. A total of 2767 nighttime incidents were analyzed to assess whether the full moon is associated with an increased collision frequency. The results revealed a statistically significant rise in the average annual number of WVCs during full moon nights compared to other nights, indicating that increased lunar illumination may affect animal movement and impact collision rates. However, no statistically significant differences were observed when comparing the frequency of WVCs across all four lunar phases. Spatial analysis identified the South Bačka and Podunavlje districts as the most at-risk regions for WVCs during full moon periods. As the first study of its kind in Serbia, this research provides new insights into the spatial and temporal patterns of WVCs. The findings can assist in developing focused mitigation strategies, such as improved signage, speed control strategies, and awareness campaigns, especially in regions with increased risk during full moon nights. Full article
(This article belongs to the Special Issue Traffic Safety, Traffic Management, and Sustainable Mobility)
Show Figures

Figure 1

20 pages, 5875 KiB  
Article
Crashworthiness of Additively Manufactured Crash Boxes: A Comparative Analysis of Fused Deposition Modeling (FDM) Materials and Structural Configurations
by Ahmed Saber, A. M. Amer, A. I. Shehata, H. A. El-Gamal and A. Abd_Elsalam
Appl. Mech. 2025, 6(3), 52; https://doi.org/10.3390/applmech6030052 - 11 Jul 2025
Viewed by 455
Abstract
Crash boxes play a crucial role in automotive safety by absorbing impact energy during collisions. The advancement of additive manufacturing (AM), particularly Fused Deposition Modeling (FDM), has enabled the fabrication of geometrically complex and lightweight crash boxes. This study presents a comparative evaluation [...] Read more.
Crash boxes play a crucial role in automotive safety by absorbing impact energy during collisions. The advancement of additive manufacturing (AM), particularly Fused Deposition Modeling (FDM), has enabled the fabrication of geometrically complex and lightweight crash boxes. This study presents a comparative evaluation of the crashworthiness performance of five FDM materials, namely, PLA+, PLA-ST, PLA-LW, PLA-CF, and PETG, across four structural configurations: Single-Cell Circle (SCC), Multi-Cell Circle (MCC), Single-Cell Square (SCS), and Multi-Cell Square (MCS). Quasi-static axial compression tests are conducted to assess the specific energy absorption (SEA) and crush force efficiency (CFE) of each material–geometry combination. Among the materials, PLA-CF demonstrates superior performance, with the MCC configuration achieving an SEA of 22.378 ± 0.570 J/g and a CFE of 0.732 ± 0.016. Multi-cell configurations consistently outperformed single-cell designs across all materials. To statistically quantify the influence of material and geometry on crash performance, a two-factor ANOVA was performed, highlighting geometry as the most significant factor across all evaluated metrics. Additionally, a comparative test with aluminum 6063-T5 demonstrates that PLA-CF offers comparable crashworthiness, with advantages in mass reduction, reduced PCF, and enhanced design flexibility inherent in AM. These findings provide valuable guidance for material selection and structural optimization in FDM-based crash boxes. Full article
Show Figures

Figure 1

24 pages, 2671 KiB  
Review
Navigational Safety Hazards Posed by Offshore Wind Farms: A Comprehensive Literature Review and Bibliometric Analysis
by Vice Milin, Ivica Skoko, Željana Lekšić and Zlatko Boko
J. Mar. Sci. Eng. 2025, 13(7), 1330; https://doi.org/10.3390/jmse13071330 - 11 Jul 2025
Viewed by 191
Abstract
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to [...] Read more.
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to the safety of navigation of the ships that navigate in their vicinity ought to be examined further. An ever-growing number of OWFs has led to safety concerns that have never been taken into consideration before. This article gives a structured quantitative analysis and an in-depth review of the literature connected to the safety of navigation, collision probability, and risk assessment that OWFs pose to all maritime industry agents. In this article, the main concerns of the impact of OWFs to the safety of navigation are analyzed using a combination of both the PRISMA and PICOC methodologies. Various types of scientific papers such as journal articles, conference proceedings, MSc theses, PhD theses, and online works of research are collated into a detailed bibliometric analysis and categorized by the most relevant parameters providing valuable perspectives on the current state of art in the field. The findings of this research emphasize the need for a further and more thorough analysis on the theoretical installment of OWFs and their inevitable impact on increasing maritime traffic complexity. The results of this article can form a strong basis for further scientific development in the field and can give useful insights to all maritime industry stakeholders dealing with OWFs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop