Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (680)

Search Parameters:
Keywords = collagenous biomaterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3316 KiB  
Article
Evaluation of Collagenic Porcine Bone Blended with a Collagen Gel for Bone Regeneration: An In Vitro Study
by Tania Vanessa Pierfelice, Chiara Cinquini, Morena Petrini, Emira D’Amico, Camillo D’Arcangelo, Antonio Barone and Giovanna Iezzi
Int. J. Mol. Sci. 2025, 26(15), 7621; https://doi.org/10.3390/ijms26157621 - 6 Aug 2025
Abstract
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response [...] Read more.
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response of human oral osteoblasts to four bone substitutes: OsteoBiol® GTO® (larger granules with 20% TSV gel), Gen-OS® (smaller granules), Gen-OS® combined with 50% TSV gel (Gen-OS®+TSV), and TSV gel alone. Cell proliferation, adhesion, morphology, collagen and calcium deposition, alkaline phosphatase (ALP) activity, gene expression of osteogenic markers and integrins, and changes in pH and extracellular calcium and phosphate levels were investigated. All materials supported osteoblast activity, but Gen-OS+TSV and GTO showed the most pronounced effects. These two groups promoted better cell adhesion and proliferation, higher ALP activity, and greater matrix mineralization. GTO improved cell adhesion, while the addition of TSV gel to Gen-OS enhanced biological responses compared with Gen-OS alone. Integrins α2, α5, β1, and β3, important for cell attachment to collagen, were notably upregulated in Gen-OS+TSV and GTO. Both groups also showed increased expression of osteogenic markers such as BMP-2, ALP, and osteocalcin (OCN). Higher extracellular ion concentrations and a more alkaline pH were observed, particularly in conditions without cells, suggesting active ion uptake by osteoblasts. In conclusion, combining TSV gel with collagen-based granules improves the cellular environment for osteoblast activity and may support bone regeneration more effectively than using either component alone. Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue: 2nd Edition)
Show Figures

Figure 1

20 pages, 2267 KiB  
Article
Mechanical Properties of Collagen Implant Used in Neurosurgery Towards Industry 4.0/5.0 Reflected in ML Model
by Marek Andryszczyk, Izabela Rojek and Dariusz Mikołajewski
Appl. Sci. 2025, 15(15), 8630; https://doi.org/10.3390/app15158630 (registering DOI) - 4 Aug 2025
Abstract
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic [...] Read more.
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic reinforcements, and advanced manufacturing techniques such as 3D bioprinting to improve durability and predictability. Industry 4.0 is contributing to this by automating production, using data analytics and machine learning to optimize implant properties and ensure quality control. In Industry 5.0, the focus is shifting to personalization, enabling the creation of patient-specific implants through human–machine collaboration and advanced biofabrication. eHealth integrates digital monitoring systems, enabling real-time tracking of implant healing and performance to inform personalized care. Despite progress, challenges such as cost, material property variability, and scalability for mass production remain. The future lies in smart biomaterials, AI-driven design, and precision biofabrication, which could mean the possibility of creating more effective, accessible, and patient-specific collagen implants. The aim of this article is to examine the current state and determine the prospects for the development of mechanical properties of collagen implant used in neurosurgery towards Industry 4.0/5.0, including ML model. Full article
Show Figures

Figure 1

14 pages, 1259 KiB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 - 30 Jul 2025
Viewed by 255
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 4972 KiB  
Article
In Vivo Biocompatibility Assessment of a Novel Cyanoacrylate–Polylactic Acid Hemostatic Patch
by Alexandru Ilie-Ene, Victor P. Tosa, Luciana M. Gherman, Lorena M. Hantig, Madalin M. Onofrei, Lavinia P. Mocan, Carmen M. Mihu, Catalin O. Popa and George C. Dindelegan
Materials 2025, 18(15), 3581; https://doi.org/10.3390/ma18153581 - 30 Jul 2025
Viewed by 274
Abstract
Background and Objectives: Although cyanoacrylate–polylactic acid (CA + PLA) patches shorten the time to hemostasis after partial hepatectomy, their long-term biocompatibility remains uncertain. We compared the 5-month histopathological footprint of a novel CA + PLA patch (Study group) with a licensed fibrinogen/thrombin matrix [...] Read more.
Background and Objectives: Although cyanoacrylate–polylactic acid (CA + PLA) patches shorten the time to hemostasis after partial hepatectomy, their long-term biocompatibility remains uncertain. We compared the 5-month histopathological footprint of a novel CA + PLA patch (Study group) with a licensed fibrinogen/thrombin matrix (TachoSil® group) and electrocautery (Control group). Methods: Thirty-three male Wistar rats underwent a 3 × 1.5 cm hepatic segment resection and were randomized to the Control (n = 5), Study (n = 14), or TachoSil® (n = 14) group. The animals were sacrificed on postoperative day (POD) 50, 100, or 150. Blinded semiquantitative scoring (0–3) was used to capture inflammation intensity, and the number of neutrophils (PMNs), lymphocytes (Ly’s), isolated histiocytes, and foreign-body giant cells (FBGCs). Results: The proportions of animals in each group across the different sacrifice time points were homogeneous (χ2 = 4.34, p = 0.36). The median inflammation remained mild (2 [IQR 1–2]) in the Control and Study groups but lower in the TachoSil® group (1 [1–2], p = 0.47). The FBGC scores differed markedly (score ≥ 2: 64% in Study, 0% in Control, 14% in TachoSil®; p < 0.001). Fibrosis occurred almost exclusively in the Study group (79% vs. 0%; χ2 = 22.4, p < 0.001). Mature vessels were most frequently observed in the TachoSil® group (50%, aOR = 5.1 vs. Study, p = 0.04). Abscesses only developed in the Study group (29%, p = 0.046). Within the TachoSil® group, inflammation (ρ = −0.62, p = 0.019) and Ly infiltration (ρ = −0.76, p = 0.002) declined with time; no significant temporal trends emerged in the Study group. Conclusions: At the five-month follow-up, there was an exuberant foreign-body reaction, dense collagen deposition, and a higher abscess rate around the CA + PLA patch compared with both TachoSil® and cautery. Conversely, TachoSil® evolved toward a mature, well-vascularized scar with waning inflammation. These findings underscore the importance of chronic-phase evaluation before clinical adoption of new hemostatic biomaterials. Full article
(This article belongs to the Special Issue Materials for Drug Delivery and Medical Engineering)
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 529
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

11 pages, 1768 KiB  
Case Report
Direct-to-Implant Prepectoral Breast Reconstruction with a Novel Collagen Matrix Following Nipple-Sparing Mastectomy: A Case Report
by Josip Banović, Zrinka Pribudić, Mia Buljubašić Madir, Vedran Beara, Luka Perić, Marija Čandrlić and Željka Perić Kačarević
Reports 2025, 8(3), 120; https://doi.org/10.3390/reports8030120 - 24 Jul 2025
Viewed by 256
Abstract
Background and Clinical Significance: Breast reconstruction following mastectomy is a critical aspect of treatment for many patients, offering both physical and psychological benefits. Traditional methods include autologous tissue flaps and implants, with implant-based techniques being the most prevalent in the Western world. [...] Read more.
Background and Clinical Significance: Breast reconstruction following mastectomy is a critical aspect of treatment for many patients, offering both physical and psychological benefits. Traditional methods include autologous tissue flaps and implants, with implant-based techniques being the most prevalent in the Western world. However, complications such as capsular contracture remain a concern. Acellular dermal matrices (ADM) have emerged as a valuable alternative, improving outcomes by reducing capsular contracture rates and enhancing tissue integration. Case Presentation: This case report presents the first use of a novel ADM, biocade® (biotrics bioimplants AG, Berlin, Germany) in breast reconstruction following a mastectomy. A 55-year-old female patient underwent a left-sided nipple-sparing mastectomy, followed by prepectoral direct-to-implant reconstruction using an ADM-wrapped implant. The patient tolerated the procedure well, with no immediate complications observed. Postoperative monitoring focused on wound healing and assessing for signs of complications related to the implant. The use of the ADM resulted into satisfactory aesthetic and functional outcomes. Conclusions: The successful outcome of this case highlights the potential benefits of using collagen matrices in breast reconstruction, particularly in preserving mastectomy scenarios. The immediate results and improved aesthetics offered by prepectoral direct-to-implant reconstruction with ADM align well with patient expectations for a more natural appearance and faster recovery. However, this case report also highlights the need for ongoing research to fully explore the potential of these biomaterials and address associated challenges. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 536
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 2162 KiB  
Review
Teriparatide for Guided Bone Regeneration in Craniomaxillofacial Defects: A Systematic Review of Preclinical Studies
by Jessika Dethlefs Canto, Carlos Fernando Mourão, Vittorio Moraschini, Rafael da Silva Bonato, Suelen Cristina Sartoretto, Monica Diuana Calasans-Maia, José Mauro Granjeiro and Rafael Seabra Louro
Curr. Issues Mol. Biol. 2025, 47(8), 582; https://doi.org/10.3390/cimb47080582 - 23 Jul 2025
Viewed by 272
Abstract
This systematic review aimed to evaluate the effectiveness of teriparatide (TP) in guided bone regeneration (GBR). An electronic search without language or date restrictions was performed in PubMed, Web of Science, Scopus, Scielo, and gray literature for articles published until June 2025. Inclusion [...] Read more.
This systematic review aimed to evaluate the effectiveness of teriparatide (TP) in guided bone regeneration (GBR). An electronic search without language or date restrictions was performed in PubMed, Web of Science, Scopus, Scielo, and gray literature for articles published until June 2025. Inclusion criteria considered studies evaluating the effect of TP on bone regeneration, analyzed using SYRCLE’s Risk of Bias tool. Twenty-four preclinical studies were included, covering diverse craniofacial models (mandibular, calvarial, extraction sockets, sinus augmentation, distraction osteogenesis, segmental defects) and employing systemic or local TP administration. Teriparatide consistently enhanced osteogenesis, graft integration, angiogenesis, and mineralization, with potentiated effects when combined with various biomaterials, including polyethylene glycol (PEG), hydroxyapatite/tricalcium phosphate (HA/TCP), biphasic calcium phosphate (BCP), octacalcium phosphate collagen (OCP/Col), enamel matrix derivatives (EMDs), autografts, allografts, xenografts (Bio-Oss), strontium ranelate, and bioactive glass. Critically, most studies presented a moderate-to-high risk of bias, with insufficient randomization, allocation concealment, and blinding, which limited the internal validity of the findings. TP shows promising osteoanabolic potential in guided bone regeneration, enhancing bone formation, angiogenesis, and scaffold integration across preclinical models. Nonetheless, its translation to clinical practice requires well-designed human randomized controlled trials to define optimal dosing strategies, long-term safety, and its role in oral and craniomaxillofacial surgical applications. Full article
Show Figures

Graphical abstract

30 pages, 2013 KiB  
Review
Biopolymers in Biotechnology and Tissue Engineering: A Comprehensive Review
by Maciej Grabowski, Dominika Gmyrek, Maria Żurawska and Anna Trusek
Macromol 2025, 5(3), 34; https://doi.org/10.3390/macromol5030034 - 21 Jul 2025
Viewed by 787
Abstract
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes [...] Read more.
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes the structural diversity, functional characteristics, and processing strategies of major classes of biopolymers, including polysaccharides (e.g., hyaluronic acid, alginate, chitosan, bacterial cellulose) and proteins (e.g., collagen, silk fibroin, albumin), as well as synthetic biodegradable polymers such as polycaprolactone, polylactic acid, and polyhydroxybutyrate. The central aim of this manuscript is to elucidate how intrinsic properties—such as molecular weight, crystallinity, water retention, and bioactivity—affect the performance of biopolymers in biomedical contexts, particularly in drug delivery, wound healing, and scaffold-based tissue regeneration. This review also highlights recent advancements in polymer functionalization, composite formation, and fabrication techniques (e.g., electrospinning, bioprinting), which have expanded the application potential of these materials. By offering a comparative analysis of structure–property–function relationships across a diverse range of biopolymers, this review provides a comprehensive reference for selecting and engineering materials tailored to specific biomedical challenges. It also identifies key limitations, such as production scalability and mechanical performance, and suggests future directions for developing clinically viable and environmentally sustainable biomaterial platforms. Full article
Show Figures

Figure 1

31 pages, 865 KiB  
Review
Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health
by Silvia Romano, Sorur Yazdanpanah, Orsolina Petillo, Raffaele Conte, Fabrizia Sepe, Gianfranco Peluso and Anna Calarco
Gels 2025, 11(7), 559; https://doi.org/10.3390/gels11070559 - 21 Jul 2025
Viewed by 504
Abstract
The One Health paradigm—recognizing the interconnected health of humans, animals, and the environment—promotes the development of sustainable technologies that enhance human health while minimizing ecological impact. In this context, bio-based hydrogels have emerged as a promising class of biomaterials for advanced medical applications. [...] Read more.
The One Health paradigm—recognizing the interconnected health of humans, animals, and the environment—promotes the development of sustainable technologies that enhance human health while minimizing ecological impact. In this context, bio-based hydrogels have emerged as a promising class of biomaterials for advanced medical applications. Produced through biotechnological methods such as genetic engineering and microbial fermentation, these hydrogels are composed of renewable and biocompatible materials, including recombinant collagen, elastin, silk fibroin, bacterial cellulose, xanthan gum, and hyaluronic acid. Their high water content, structural tunability, and biodegradability make them ideal candidates for various biomedical applications such as wound healing, tissue regeneration, and the design of extracellular matrix (ECM)-mimicking scaffolds. By offering controlled mechanical properties, biocompatibility, and the potential for minimally invasive administration, sustainable hydrogels represent a strategic innovation for regenerative medicine and therapeutic interventions. This review discusses the characteristics and medical applications of these hydrogels, highlighting their role in advancing sustainable healthcare solutions within the One Health framework. Full article
(This article belongs to the Special Issue Application of Hydrogels in Medicine)
Show Figures

Figure 1

16 pages, 1265 KiB  
Review
Novel Treatments for Diabetic Foot Osteomyelitis: A Narrative Review
by Crystal Jing, Julia E. Ralph, Jamie Lim, Jackson M. Cathey, Conor N. O'Neill and Albert T. Anastasio
Microorganisms 2025, 13(7), 1639; https://doi.org/10.3390/microorganisms13071639 - 11 Jul 2025
Viewed by 546
Abstract
Diabetic foot osteomyelitis (DFO) is a severe complication of diabetes mellitus and a leading cause of non-traumatic lower extremity amputation. Treatment remains clinically challenging with high recurrence rates despite standard antibiotic therapy and surgical debridement. This narrative review synthesizes current evidence on novel [...] Read more.
Diabetic foot osteomyelitis (DFO) is a severe complication of diabetes mellitus and a leading cause of non-traumatic lower extremity amputation. Treatment remains clinically challenging with high recurrence rates despite standard antibiotic therapy and surgical debridement. This narrative review synthesizes current evidence on novel operative and nonoperative therapies for DFO, focusing on emerging biomaterials, local antibiotic delivery systems, innovative surgical techniques, and adjunctive topical agents. Studies examining bioabsorbable and nonabsorbable antibiotic carriers, such as calcium sulfate beads, collagen sponges, and bioactive glass, demonstrate promising infection resolution rates and a potential to reduce the surgical burden, though most are limited by small cohorts and observational designs. Similarly, alternative surgical approaches (i.e., cancelloplasty, conservative bone excision, and tibial cortex distraction) have shown early success in limb preservation. Nonoperative strategies, including adjunct antimicrobials, antimicrobial peptides, and topical oxygen, offer additional options, particularly for patients unfit for surgery. While initial outcomes are encouraging, the supporting evidence is heterogeneous and primarily limited to case series and small, noncomparative trials. Overall, these novel therapies show potential as adjuncts to established DFO management, but further prospective research is indicated to define their long-term efficacy, safety, and role in clinical practice. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 14728 KiB  
Article
Comparative Study of the Gel-Forming Ability of Type I Collagens Extracted from Different Organs and Fish Species
by Abdul Ghani, Mantaro Okada, Beini Sun, Xi Zhang, Ichiro Higuchi and Yasuaki Takagi
Gels 2025, 11(7), 533; https://doi.org/10.3390/gels11070533 - 9 Jul 2025
Viewed by 308
Abstract
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and [...] Read more.
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and sturgeon skin (SSK) and swim bladders (SSB). The carp collagens exhibited higher thermal stability (34.75–34.78 °C) and formed more transparent, stronger gels than the sturgeon collagens. Additionally, as demonstrated by scanning electron microscopy, the sturgeon collagens exhibited faster fibril formation, with visible fibrils after 3 h which grew thicker but did not form bundles. The carp collagens, in contrast, initially displayed fewer, thinner, and longer fibrils, with their formation accelerating over time and fibril bundles emerging after 24 h. All collagen solutions of 4% (w/v) exhibited shear-thinning flow behavior, with the carp-derived solutions showing higher viscosities (103–104 Pa·s) than those demonstrated by the sturgeon-derived solutions (102–103 Pa·s). The CSBs and SSBs demonstrated the highest storage (G′) and loss (G″) moduli, with the former exhibiting the lowest loss tangent (tan δ), indicative of a stronger gel structure. The gels at 24 h showed slightly poorer mechanical properties than those at 3 h. The CSC and SSB gels had the highest thermal stability. These findings highlight the distinctiveness of the characteristics of collagens and their gels, emphasizing their potential in biomaterial applications. The present study also provides a foundational framework for assessing cellular responses in a comparative context that may help in identifying the most suitable collagen types for biomedical applications. Full article
Show Figures

Graphical abstract

18 pages, 7280 KiB  
Article
Bionic Bovine Achilles Tendon Collagen Composite Membrane Loaded with Anti-Inflammatory Kukoamine B Promotes Skin Wound Healing
by Ruting Luo, Yujie Mu, Le Zhao, Jinglin Hua, Lixin Cao, Danting Chen, Kun Li, Zhenkai Jin, Yanchuan Guo, Bing Zhang and Min Wang
Polymers 2025, 17(13), 1874; https://doi.org/10.3390/polym17131874 - 4 Jul 2025
Viewed by 482
Abstract
Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component [...] Read more.
Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component of the dermis. As a wound dressing, collagen not only provides nutrients to wounds but also enhances the immune response in the pre-healing phase, making it an excellent biomaterial for healing. In this study, we used electrospinning and freeze-drying technology to prepare a Bovine Achilles Tendon Collagen (BATC) electrospun composite membrane and a BATC freeze-dried composite membrane using BATC as a substrate supplemented with 16.7% Polyethylene oxide (PEO) and 0.2% Kukoamine B (KuB). The physicochemical properties and biocompatibility of the BATC composite membrane were verified via scanning electron microscopy, Fourier-transform infrared spectroscopy, and DSC analysis and by measuring the DPPH radical-scavenging capacity, water absorption, water retention, in vitro drug release, and extract cytotoxicity. The BATC composite membrane was found to have a significant effect on skin wound healing, especially in the middle stage of healing, in a mouse full-thickness skin injury model. The BATC/PEO/KuB electrospun composite membrane (EBPK) had the best capacity for promoting wound healing and can be used as a wound dressing for in-depth research and development, and KuB, a monomer component with a clear structure and mechanism of action, can be used as a candidate component of composite dressings. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 2822 KiB  
Article
Rat Islet pECM Hydrogel-Based Microencapsulation: A Protective Niche for Xenotransplantation
by Michal Skitel Moshe, Stasia Krishtul, Anastasia Brandis, Rotem Hayam, Shani Hamias, Mazal Faraj, Tzila Davidov, Inna Kovrigina, Limor Baruch and Marcelle Machluf
Gels 2025, 11(7), 517; https://doi.org/10.3390/gels11070517 - 2 Jul 2025
Viewed by 588
Abstract
Type 1 diabetes (T1D) is caused by autoimmune-mediated destruction of pancreatic β-cells, resulting in insulin deficiency. While islet transplantation presents a potential therapeutic approach, its clinical application is impeded by limited donor availability and the risk of immune rejection. This study proposes an [...] Read more.
Type 1 diabetes (T1D) is caused by autoimmune-mediated destruction of pancreatic β-cells, resulting in insulin deficiency. While islet transplantation presents a potential therapeutic approach, its clinical application is impeded by limited donor availability and the risk of immune rejection. This study proposes an innovative islet encapsulation strategy that utilizes decellularized porcine pancreatic extracellular matrix (pECM) as the sole biomaterial to engineer bioactive, immunoprotective microcapsules. Rat islets were encapsulated within pECM-based microcapsules using the electrospray technology and were compared to conventional alginate-based microcapsules in terms of viability, function, and response to hypoxic stress. The pECM microcapsules maintained a spherical morphology, demonstrating mechanical robustness, and preserving essential ECM components (collagen I/IV, laminin, fibronectin). Encapsulated islets exhibited sustained viability and superior insulin secretion over a two-week period compared to alginate controls. The expression of key β-cell transcription factors (PDX1, MAFA) and structural integrity were preserved. Under hypoxic conditions, pECM microcapsules significantly reduced islet apoptosis, improved structural retention, and promoted functional recovery, likely due to antioxidant and ECM-derived cues inherent to the pECM. In vivo transplantation in immunocompetent mice confirmed the biocompatibility of pECM microcapsules, with minimal immune responses, stable insulin/glucagon expression, and no adverse systemic effects. These findings position pECM-based microencapsulation as a promising strategy for creating immunoprotective, bioactive niches for xenogeneic islet transplantation, with the potential to overcome current limitations in cell-based diabetes therapy. Full article
(This article belongs to the Special Issue Gels for Biomedical Applications)
Show Figures

Graphical abstract

21 pages, 5181 KiB  
Systematic Review
Beneficial Effect of Platelet-Rich Fibrin as an Adjunct to Nonsurgical Therapy After Subgingival Professional Mechanical Plaque Removal for Periodontitis: A Systematic Review and Meta-Analysis
by Monica Tanady, Fatimah Maria Tadjoedin, Sri Lelyati C. Masulili, Nadhia Anindhita Harsas and Adityo Widaryono
Clin. Pract. 2025, 15(7), 127; https://doi.org/10.3390/clinpract15070127 - 2 Jul 2025
Viewed by 456
Abstract
Background and Objectives: Periodontitis is an inflammatory disease that compromises the supporting structures of the teeth, leading to irreversible tissue damage and tooth loss. While subgingival professional mechanical plaque removal (PMPR) remains the gold standard treatment, there is increasing interest in adjunctive therapies. [...] Read more.
Background and Objectives: Periodontitis is an inflammatory disease that compromises the supporting structures of the teeth, leading to irreversible tissue damage and tooth loss. While subgingival professional mechanical plaque removal (PMPR) remains the gold standard treatment, there is increasing interest in adjunctive therapies. Platelet-rich fibrin (PRF) has gained attention as a promising biomaterial to enhance periodontal healing and regeneration. This study aimed to evaluate the clinical and immunological effectiveness of PRF as an adjunct to PMPR. Materials and Methods: Clinical studies published between January 2019 and August 2024 were included from the ProQuest, PubMed, PMC, ScienceDirect, Scopus, and EBSCO databases. Seven studies met the inclusion criteria, focusing on adults with periodontitis treated with PRF + PMPR compared to PMPR alone. Primary outcomes included changes in clinical and immunological parameters. Risk of bias was assessed using the Cochrane ROB2 tool. Meta-analysis was conducted using both fixed-effect and random-effects models, depending on heterogeneity. Results: The meta-analysis demonstrated significant improvements in clinical outcomes in the PRF + PMPR group, with reductions in probing pocket depth (SMD: −1.43 mm; 95% CI: −2.05 to −0.81; p < 0.00001), clinical attachment level (SMD: −1.34 mm; 95% CI: −1.95 to −0.73; p < 0.0001), bleeding on probing (SMD: −0.75 mm; 95% CI: −1.11 to −0.39; p < 0.00001), gingival recession (SMD: −0.79 mm; 95% CI: −1.33 to −0.25; p = 0.004), and gingival index (SMD: −0.82 mm; 95% CI: −1.37 to −0.28; p = 0.003). Favorable trends were also observed in IL-10, TGF-β, VEGF, PDGF-BB, periostin, and type I collagen levels. Conclusions: PRF enhances clinical and immunological outcomes and supports periodontal tissue stability when used as an adjunct to non-surgical therapy. Full article
Show Figures

Figure 1

Back to TopTop