Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = cold work die steels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9556 KiB  
Article
DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation
by Rafael Guetter Bohatch, Alex Raimundo de Oliveira, Chetan P. Nikhare, Ravilson Antonio Chemin Filho and Paulo Victor Prestes Marcondes
J. Manuf. Mater. Process. 2025, 9(7), 234; https://doi.org/10.3390/jmmp9070234 - 8 Jul 2025
Viewed by 418
Abstract
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry [...] Read more.
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

14 pages, 2419 KiB  
Article
Computational Methodology for the Development of Wrinkled Tubes by Plastic Deformation
by Samara C. R. Soares, Gilmar C. Silva and Elza M. M. Fonseca
Appl. Sci. 2024, 14(23), 11126; https://doi.org/10.3390/app142311126 - 29 Nov 2024
Viewed by 935
Abstract
Traditional methods for wrinkled tubes involve welding processes and additional elements, such as plates, screws, rivets, and guides. Considering all the limitations of these processes, this work aims to propose a methodology that allows for maximising the manufacturing process of carbon steel tube [...] Read more.
Traditional methods for wrinkled tubes involve welding processes and additional elements, such as plates, screws, rivets, and guides. Considering all the limitations of these processes, this work aims to propose a methodology that allows for maximising the manufacturing process of carbon steel tube joints with seaming using cold forming and minimising the cost of the final product. Therefore, the present work aims to develop a computational model, based on the finite element method, to optimise the deformation process of T6 Aluminium tubes (ø 45 × ø 38.6 mm) with a length of 120 mm. The method uses a steel die with cavities to achieve wrinkled tubes by a forming process. This numerical study was carried out using the Ansys® 2022 R2 software. A nonlinear material and an incremental structural analysis were used. The applied methodology allowed the optimisation of process parameters, the application of forces during tube deformation, the geometry of the die cavity, boundary conditions, and mesh discretisation. Numerical modelling was carried out using the axial symmetry of the assembly (tube–die), enabling a simplified and efficient execution of the final tube geometry. The results were analysed based on the maximum pressure applied to the tube, and the vertical and horizontal displacements of the deformed component, thus obtaining the tube flow with complete filling inside the die cavity at the end of deformation. The die geometry that produced the best results presented a cavity with a radius of curvature of 3 mm, 6 mm in height, and with a depth of 4 mm. The optimised result of the die geometry generated satisfactory results, with the displacement on the x-axis of the tube of approximately 2.85 mm, ensuring the filling of the cavity at the end of the process. For this, the maximum pressure exerted on the tube was approximately 374 MPa. Full article
Show Figures

Figure 1

14 pages, 5811 KiB  
Article
Influence of Cold-Rolling Processes on the Dimensional Accuracy and Roughness of Small-Diameter Thick-Walled Seamless Tubes
by Xiuping Ding, Ran Li, Pengfei Jin, Weijie Wang, Cheng Zhang, Minyu Ma and Jinfeng Huang
Metals 2024, 14(11), 1297; https://doi.org/10.3390/met14111297 - 16 Nov 2024
Viewed by 978
Abstract
Cold pilgering is widely utilized in high-end applications for the precise shaping of seamless tubes due to its capacity for large deformation, which reduces the number of deformation processes and shortens production cycles. However, there is a gap in the research on the [...] Read more.
Cold pilgering is widely utilized in high-end applications for the precise shaping of seamless tubes due to its capacity for large deformation, which reduces the number of deformation processes and shortens production cycles. However, there is a gap in the research on the cold pilgering of small-diameter, thick-walled seamless tubes, specifically those with an outer diameter–wall thickness ratio of ≤3. In this study, cold pilgering tests were performed on Cr-Mo-V hot-working die steel small-diameter thick-walled tubes. It was discovered that increasing the feed rate results in greater deviations in both inner diameter and wall thickness, although it has little effect on inner wall roughness. In contrast, increasing wall thickness reduction leads to higher wall thickness deviation but reduces inner surface roughness without significantly affecting inner diameter deviation. The study also found that a decrease in the initial inner wall roughness before pilgering results in improved final roughness. Under optimal conditions, the average inner surface roughness Sa can reach 0.177 μm, and small-diameter thick-walled seamless tubes with deviations in the inner diameter and wall thickness of 0.05 mm and 0.03 mm, respectively, are obtained. After tempering at 600 °C, the tensile strength (Rm) and yield strength (Rp0.2) of the cold-pilgered tube reach 1092 MPa and 947 MPa, respectively, and the elongation (δ5%) and impact energy (AkU) increase to 20.4% and 61.5 J, respectively. Full article
Show Figures

Figure 1

17 pages, 13803 KiB  
Article
Friction Behavior and Self-Lubricating Mechanism of SLD-MAGIC Cold Worked Die Steel during Different Wear Conditions
by Hongqing Wu, Hong Mao, Hui Ning, Zhipeng Deng and Xiaochun Wu
Metals 2023, 13(4), 809; https://doi.org/10.3390/met13040809 - 20 Apr 2023
Cited by 2 | Viewed by 2742
Abstract
Wear tends to shorten tool life, reduce component quality. To prevent or postpone the wear of tool steel forming tools, methods to increase wear resistance, such as increasing the material hardness, optimizing the carbide distribution and application of surface coatings, are often used. [...] Read more.
Wear tends to shorten tool life, reduce component quality. To prevent or postpone the wear of tool steel forming tools, methods to increase wear resistance, such as increasing the material hardness, optimizing the carbide distribution and application of surface coatings, are often used. However, the formation of lubricating phases in steels leading to anti-attrition is less investigated. The friction behavior of three steels were investigated thoroughly by a tribo test with different normal loads. A Field-emission scanning electron microscope (FE-SEM) along with energy dispersive X-ray spectroscopy (EDS) were used to characterize the microstructure as well as the influence of the precipitated phases on the wear mechanisms. Results showed the friction coefficient decreased with increasing normal load, whereas the wear rate increased with increasing normal load. Compared with SKD11 and DC53 steels, the friction coefficient and wear volume of SLD-MAGIC steel were reduced by 0.1 to 0.3 and 10% to 30%, respectively. With the increase of normal load, the wear mechanism changed in order from abrasive wear, adhesive wear to oxidation wear. The more carbide contents, the rounder the carbide, the better the wear resistance of the tool steel. It can be shown that, under different normal loads, SLD-MAGIC exhibits better wear performance than SKD11 and DC53 tool steels, which is mainly due to the self-lubricating phenomenon of SLD-MAGIC steel. The self-lubricating mechanism was due to the fact that the exfoliated sulfide during wear formed a lubricating film to reduce wear. Full article
(This article belongs to the Special Issue Phase Transformation and Microstructure Characterization in Steels)
Show Figures

Figure 1

12 pages, 2764 KiB  
Article
Structure and Properties of CrN/TiN Multi-Layer Coatings Obtained by Vacuum-Arc Plasma-Assisted Deposition Method
by Andrey A. Leonov, Yuliya A. Denisova, Vladimir V. Denisov, Maxim S. Syrtanov, Alexander N. Shmakov, Viktor M. Savostikov and Anton D. Teresov
Coatings 2023, 13(2), 351; https://doi.org/10.3390/coatings13020351 - 3 Feb 2023
Cited by 20 | Viewed by 3611
Abstract
The paper presents the study results of CrN/TiN multi-layer coatings, as well as single-layer TiN and CrN coatings on Cr12MoV cold work die steel deposited by the vacuum-arc plasma-assisted method. Three CrN/TiN coatings of 8-, 16-, and 32-layers were deposited, in which the [...] Read more.
The paper presents the study results of CrN/TiN multi-layer coatings, as well as single-layer TiN and CrN coatings on Cr12MoV cold work die steel deposited by the vacuum-arc plasma-assisted method. Three CrN/TiN coatings of 8-, 16-, and 32-layers were deposited, in which the thickness of each layer was 500 nm, 250 nm and 125 nm, respectively. All of the coatings reveal a face-centered cubic structure with highly oriented (111) growth. The hardness of the CrN/TiN multi-layer coatings was about 27 GPa. Changing the architecture of CrN/TiN multi-layer coatings by reducing the thickness of the CrN and TiN layers from 500 nm to 125 nm promotes a smooth decrease in both the wear parameter and the coefficient of friction. By using an X-ray phase analysis with synchrotron radiation, it was found that 32-layer CrN/TiN coating retained thermal stability during heating in air to a temperature of 1120–1125 °C, and in a vacuum at least to a temperature of 1200 °C. Full article
(This article belongs to the Special Issue Electron-Ion-Plasma Technology Applied to Surface Engineering)
Show Figures

Figure 1

14 pages, 5753 KiB  
Article
Preparation of High-Precision Dimension Seamless Thick-Walled Pipe by New Cold Rolling Process
by Ran Li, Xuewei Zhang, Cheng Zhang, Jiaming Wang and Jinfeng Huang
Metals 2022, 12(10), 1761; https://doi.org/10.3390/met12101761 - 19 Oct 2022
Cited by 2 | Viewed by 2173
Abstract
In this study, the cold rolling test on the quenched-tempered hot working die steel pipe with an outer diameter/thickness ratio of no greater than 3 was performed. The evolutionary trend of microstructure was examined by a combination of the microscope, SEM, and EBSD [...] Read more.
In this study, the cold rolling test on the quenched-tempered hot working die steel pipe with an outer diameter/thickness ratio of no greater than 3 was performed. The evolutionary trend of microstructure was examined by a combination of the microscope, SEM, and EBSD tests. The effect of feed rate on the inner wall roughness of rolled pipe was analyzed by means of white light interference. According to the experimental results, the maximum normal pressure per unit area increases from 1046.7 MPa to 1113.2 MPa with the rise in feed rate from 1 mm/stroke to 6 mm/stroke. Meanwhile, the inner wall roughness of the pipe declines from 0.285 μm to 0.146 μm after rolling. When the feed rate reaches 2 mm/stroke, the maximum normal pressure per unit area is 1058.4 MPa, which causes a significant plastic deformation to the inner wall of the pipe, and the average roughness below 0.2 μm. The microstructure of the pipe is dominated by tempered sorbite whether before or after rolling, and the grain size before rolling is 16.22 μm on average. After cold rolling, the longitudinal structure is deformed along the direction of rolling, in which the average grain size is 24.31 μm. With the increase in deformation work-hardening behavior in the rolling process, the tensile strength improves from 1134 MPa to 1178 MPa, the yield strength increases from 985 MPa to 1125 MPa, and the room temperature impact energy diminishes from 58 J to 52.5 J. After vacuum tempering at 600 °C, it is difficult to eliminate the deformed band microstructure along the rolling direction completely. However, the grain size is reduced after cold rolling, no coarsening occurs, and the impact toughness increases from 52.5 J to 60.5 J. With the recovery of the original microstructure, the mechanical properties are restored to the before rolling level. Full article
Show Figures

Figure 1

15 pages, 6699 KiB  
Article
A Facile Nitriding Approach for Improved Impact Wear of Martensitic Cold-Work Steel Using H2/N2 Mixture Gas in an AC Pulsed Atmospheric Plasma Jet
by Jhao-Yu Guo, Yu-Lin Kuo and Hsien-Po Wang
Coatings 2021, 11(9), 1119; https://doi.org/10.3390/coatings11091119 - 15 Sep 2021
Cited by 12 | Viewed by 4156
Abstract
In this study, we propose a rapid plasma-assisted nitriding process using H2/N2 mixture gas in an atmospheric pressure plasma jet (APPJ) system to treat the surface of SKD11 cold-working steel in order to increase its surface hardness. The generated NH [...] Read more.
In this study, we propose a rapid plasma-assisted nitriding process using H2/N2 mixture gas in an atmospheric pressure plasma jet (APPJ) system to treat the surface of SKD11 cold-working steel in order to increase its surface hardness. The generated NH radicals in the plasma region are used to implement an ion-bombardment for nitriding the tempered martensite structure of SKD11 within 18 min to form the functional nitride layer with an increased microhardness around 1095 HV0.3. Higher ratios of H/E and H3/E2 were obtained for the values of 4.514 × 10−2 and 2.244 × 10−2, referring to a higher deformation resistance as compared with the pristine sample. After multi-cycling impact tests, smaller and shallower impact craters with less surface oxidation on plasma-treated SKD11 were distinctly proven to have the higher impact wear resistance. Therefore, the atmospheric pressure plasma nitriding process can enable a rapid thermochemical nitriding process to form a protective layer with unique advantages that increase the deformation-resistance and impact-resistance, improving the lifetime of SKD11 tool steel as die materials. Full article
Show Figures

Figure 1

18 pages, 7024 KiB  
Article
Die Material Selection Criteria for Aluminum Hot Stamping
by Maider Muro, Ines Aseguinolaza and Garikoitz Artola
J. Manuf. Mater. Process. 2021, 5(1), 15; https://doi.org/10.3390/jmmp5010015 - 2 Feb 2021
Cited by 7 | Viewed by 4877
Abstract
The aim of this work is to develop a die material selection criterion for aluminum hot stamping applications. The criterion has been based on the back-to-back comparison of a set of reciprocating friction and wear tests. Three representatives belonging to different stamping die [...] Read more.
The aim of this work is to develop a die material selection criterion for aluminum hot stamping applications. The criterion has been based on the back-to-back comparison of a set of reciprocating friction and wear tests. Three representatives belonging to different stamping die material families have been selected for the study: a cold work steel, a hot work steel, and a cast iron. These tool materials have been combined with an exemplary member from two heat treatable aluminum families: 2XXX and 6XXX. Each die-material/aluminum–alloy combination has been tested at three temperatures: 40, 200, and 450 °C. The temperatures have been selected according to different stamping scenarios: long takt time press quenching, short takt time press quenching, and very short takt time hot forming without quenching, respectively. The results show that, among the three die material options available, the cold work steel turned out to be the most favorable option for high volume production and long takt time, the hot work steel fitted best for high volume production coupled with short takt time, and cast iron turned to outstand for short runs with prototype dies and for hot stamping without die quenching. Full article
Show Figures

Figure 1

19 pages, 10064 KiB  
Article
Experimental Research and Numerical Simulation of Weld Repair with High Energy Spark Deposition Method
by Yingjie Zhang, Kai Yang and Jianping Zhao
Metals 2020, 10(7), 980; https://doi.org/10.3390/met10070980 - 21 Jul 2020
Cited by 3 | Viewed by 2994
Abstract
For long-serviced pressure equipment that is under severe working conditions such as a high temperature, high pressure, and corrosion, the material properties and structure will be unavoidably damaged or degraded, especially cracks and other damages at key positions such as welded joints, which [...] Read more.
For long-serviced pressure equipment that is under severe working conditions such as a high temperature, high pressure, and corrosion, the material properties and structure will be unavoidably damaged or degraded, especially cracks and other damages at key positions such as welded joints, which seriously threaten the safe operation of the equipment. In order to promote the sustainable development of industries such as the chemical and petrochemical industries, remanufacturing technology has emerged worldwide, and various surface repair processes have also rapidly developed. As an important branch of surface repair technology, the high energy spark deposition (HESD) process is a new pulse cold welding repair technology developed from electro-spark deposition, which combines the advantages of multiple surface repair processes. The HESD process has the characteristics of a smaller heat affected zone and lower welding residual stress. It is a new type of repair method that is worthy of popularization and application. The process has been initially applied in the fields of surface modification and die steel repair. In this paper, the application of the HESD process to the repair of welded joints was introduced, the mechanical properties of the joints and the residual stress distribution after welding were analyzed, and the feasibility of HESD as a repair welding method for pressure structures was discussed. First, a numerical simulation of the temperature and stress field of HESD was proposed by using ABAQUS and the related subprograms, and the validity of the simulation results was verified by the residual stress test with the indentation strain method. Due to the precise control of the heat and pulse discharge working mode, the heat-affected zone and deformation caused by the HESD were extremely small, and the residual stress that was generated was low and only concentrated on the repair welding seam. Second, according to the numerical simulation and the test results of the mechanical properties of the welded joint, the optimal repair welding process parameters were obtained through the orthogonal experiment: peak current 45 A, pulse width 90 ms, and output voltage 10 V. Full article
Show Figures

Figure 1

13 pages, 7668 KiB  
Article
Thick β-SiC CVD-Coated SiC Die System for Dry Cold Forging of Metals
by Tatsuhiko Aizawa, Tomoaki Yoshino, Ko-Ichi Ito and Tatsuya Fukuda
Crystals 2020, 10(6), 539; https://doi.org/10.3390/cryst10060539 - 24 Jun 2020
Cited by 11 | Viewed by 3840
Abstract
A thick β-SiC CVD (chemical vapor deposition)-coated SiC device was developed as a new punch and die system for dry, cold forging of pure titanium and austenitic stainless-steel works. This β-SiC coating thickness was 4 mm, enough to make mechanical machining of a [...] Read more.
A thick β-SiC CVD (chemical vapor deposition)-coated SiC device was developed as a new punch and die system for dry, cold forging of pure titanium and austenitic stainless-steel works. This β-SiC coating thickness was 4 mm, enough to make mechanical machining of a cavity into β-SiC coating core die. These β-SiC-coated punch and core dies were fixed into the cassette die for dry, cold forging experiments. The stainless steel and titanium wires with diameters of 1.0 mm were employed as the work material. Different from the conventional metallic and ceramic die systems suffering from work material transfer, this system sustained the galling-free cold, dry forging behavior up to a higher reduction of thickness than 30%. The power to stroke the relationship was in situ monitored to describe this forging behavior up to the specified reduction of the wires together with observations on the geometric change from a circular wire to a pentagonal prism bar. Precise scanning electron microscopy-electron-dispersive X-ray spectroscopy (SEM-EDX) analyses were performed to describe the material compatibility on the contact interface between β-SiC coating and elastoplastically deforming works. Full article
(This article belongs to the Special Issue Development and Investigation of SiC and SiC-based devices)
Show Figures

Figure 1

11 pages, 3549 KiB  
Proceeding Paper
Surface Topography and Grain Morphology of Nanolayer TiAlN/TiSIN Coating Governed by Substrate Material and Rotation during Deposition
by Vladimir Terek, Aleksandar Miletić, Lazar Kovačević, Dragan Kukuruzović, Branko Škorić, Peter Panjan and Pal Terek
Mater. Proc. 2020, 2(1), 32; https://doi.org/10.3390/CIWC2020-06822 - 12 May 2020
Viewed by 1603
Abstract
Nanolayer TiAlN/TiSiN coating is one of the most advanced contemporary protective coatings. It has been applied for protection of machining tools, forming tools, and die casting tools. However, due to its versatile properties, there is a high potential for broadening its application; for [...] Read more.
Nanolayer TiAlN/TiSiN coating is one of the most advanced contemporary protective coatings. It has been applied for protection of machining tools, forming tools, and die casting tools. However, due to its versatile properties, there is a high potential for broadening its application; for example, for protection of biomedical implants. Each application requires specific base materials, for example cold working steels are used for forming, while stainless steels are applied for biomedical purposes. Different materials and their pre-treatment might result in different coating properties even if coating was conducted in a single batch. Real tools and components have complex geometries, and as such require a multiple-axis rotation during the deposition. Among other properties, grain morphology and surface topography are of great importance in a real application. Since systematic studies on the effect of substrate materials and rotation during deposition on these properties are very scarce, in this article we studied TiAlN/TiSiN coating magnetron sputtered on five different substrates, prepared with 1-, 2-, and 3-fold rotations. Cold-work tool steel (X153CrMoV12), hot-work tool steel (X37CrMoV5-1), plasma-nitrided hot-work tool steel, surgical stainless steel (X2CrNiMo18-15-3), and cemented carbide (WC/Co) were used as substrate materials. Three-dimensional stylus profilometry and atomic force microscopy were used for evaluation of micro and nano topography. The coated surgical steel has the highest roughness (Sa) which corresponds to the highest number of coating growth defects. However, the size of the individual growth defects was considerably smaller for this substrate than for other substrate materials. The observed difference is linked to differences in the concentration of specific carbides contained in a specific steel. Since different carbides have different polishing and ion-etching rates, coatings on different steels may have different concertation of defects. Columnar grain analysis revealed that coating on surgical steel exhibited the smallest column diameter (125 nm) and their highest uniformity. Column diameter on other substrates is around 215 nm, while hot-working tool steel exhibited the largest columns (235 nm). Such findings suggest that the same coating may exhibit different mechanical properties on different substrates. Coatings produced with the higher degree of rotation (2-fold, 3-fold) have fewer defects and a smoother surface. There was no clear trend between columnar grain size and the number of rotational degrees. Full article
(This article belongs to the Proceedings of 2nd Coatings and Interfaces Web Conference (CIWC-2 2020))
Show Figures

Figure 1

13 pages, 4881 KiB  
Article
Improvement in Tribological Properties of Cr12MoV Cold Work Die Steel by HVOF Sprayed WC-CoCr Cermet Coatings
by Sheng Hong, Yuping Wu, Bo Wang and Jinran Lin
Coatings 2019, 9(12), 825; https://doi.org/10.3390/coatings9120825 - 4 Dec 2019
Cited by 18 | Viewed by 3273
Abstract
The main objective of this study was to develop an efficient coating to increase the wear resistance of cold work die steel at different temperatures. The microstructures of high-velocity oxygen-fuel (HVOF)-sprayed WC-CoCr coatings were evaluated using scanning electron microscopy (SEM) and transmission electron [...] Read more.
The main objective of this study was to develop an efficient coating to increase the wear resistance of cold work die steel at different temperatures. The microstructures of high-velocity oxygen-fuel (HVOF)-sprayed WC-CoCr coatings were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of temperature on the tribological properties of the coatings and the reference Cr12MoV cold work die steel were both investigated by SEM, environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), and a pin-on-disk high-temperature tribometer. The coating exhibited a significantly lower wear rate and superior resistance against sliding wear as compared to the die steel at each test temperature, whereas no major differences in terms of the variation tendency of the friction coefficient as a function of temperature were observed in both the coatings and the die steels. These can be attributed to the presence of nanocrystalline grains and the fcc-Co phase in the coating. Moreover, the wear mechanisms of the coatings and the die steels were compared and discussed. The coating presented herein provided a competitive approach to improve the sliding wear performance of cold work die steel. Full article
Show Figures

Figure 1

23 pages, 17029 KiB  
Article
Application of Cold Metal Transfer Welding for High Pressure Die Casting Mold Restoration
by Janette Brezinová, Miroslav Džupon, Marek Vojtko, Ján Viňáš, Ondrej Milkovič, Jakub Brezina, Anna Guzanová and Dagmar Draganovská
Metals 2019, 9(11), 1232; https://doi.org/10.3390/met9111232 - 18 Nov 2019
Cited by 5 | Viewed by 4772
Abstract
This paper presents results of the research focused on the possibility of the restoration of the shape parts of molds made of X15CrNiSi20-12 (EN 100 95) heat-resistant austenitic chromium-nickel stainless steel working in high-pressure die casting of aluminum alloys by clad welding. There [...] Read more.
This paper presents results of the research focused on the possibility of the restoration of the shape parts of molds made of X15CrNiSi20-12 (EN 100 95) heat-resistant austenitic chromium-nickel stainless steel working in high-pressure die casting of aluminum alloys by clad welding. There were tested two welding wires—E Ni 6625 and E 18 8 Mn B 2 2—deposited on X15CrNiSi20-12 (EN 100 95) tool steel using cold metal transfer (CMT) welding in a protective atmosphere of Ar. The resistance of welds was tested against dissolution in molten aluminum alloy ENAC-AlSi9 and the testing procedure was designed. The resistance of welds against dissolution were assessed by exposition of welded clads in an aluminum melt for 120 and 300 min. The EDX semi-quantitative microanalyses of element distribution were performed at the welding–melt interface, and build-ups were also observed on the surface of welded clads. Full article
Show Figures

Figure 1

21 pages, 9969 KiB  
Review
Effect of Different Surface Conditions on Toughness of Vanadis 6 Cold Work Die Steel—A Review
by Peter Jurči
Materials 2019, 12(10), 1660; https://doi.org/10.3390/ma12101660 - 22 May 2019
Cited by 4 | Viewed by 2997
Abstract
The effects of surface roughness, presence of nitrided diffusion regions, and magnetron sputtering of Cr2N–6Ag thin films on the toughness of Cr–V ledeburitic Vanadis 6 die steel were investigated by using the flexural strength measurement method, which was coupled with careful [...] Read more.
The effects of surface roughness, presence of nitrided diffusion regions, and magnetron sputtering of Cr2N–6Ag thin films on the toughness of Cr–V ledeburitic Vanadis 6 die steel were investigated by using the flexural strength measurement method, which was coupled with careful microstructural investigations and analyses of fractured surfaces. The results undoubtedly show that enhanced surface roughness reduces the material toughness, since the cusps formed on the metallic surface as a result of the machining act as preferential sites for crack nucleation and growth. The presence of nitrided regions on the surface, on the other hand, forms a structural notch there, which has a strong detrimental effect on toughness. Deposition of Cr2N–6Ag thin films has only marginal effect on the steel toughness. Practical recommendations for the designers, heat treaters, and coaters of the tools are thus that they should maintain the surface finish quality of the tools as high as possible, avoid too thick and supersaturated nitrided regions, and that there is almost no risk of tool embrittlement due to physical vapor deposition (PVD) coating. Full article
(This article belongs to the Special Issue History, Developments and Trends in the Heat Treatment of Steel)
Show Figures

Figure 1

17 pages, 7375 KiB  
Article
Parametric Optimization of Trochoidal Step on Surface Roughness and Dish Angle in End Milling of AISID3 Steel Using Precise Measurements
by Santhakumar J and Mohammed Iqbal U
Materials 2019, 12(8), 1335; https://doi.org/10.3390/ma12081335 - 24 Apr 2019
Cited by 28 | Viewed by 5776
Abstract
Tool steel play a vital role in modern manufacturing industries due to its excellent properties. AISI D3 is a cold work tool steel which possess high strength, more hardenability and good wear resistance properties. It has a wide variety of applications in automobile [...] Read more.
Tool steel play a vital role in modern manufacturing industries due to its excellent properties. AISI D3 is a cold work tool steel which possess high strength, more hardenability and good wear resistance properties. It has a wide variety of applications in automobile and tool and die making industries such as blanking and forming tools, high stressed cutting, deep drawing and press tools. The novel ways of machining these steels and finding out the optimum process parameters to yield good output is of practical importance in the field of research. This research work explores an attempt to identify the optimized process parameter combinations in end milling of AISI D3 steel to yield low surface roughness and maximum dish angle using trochoidal milling tool path, which is considered as a novelty in this study. 20 experimental trials based on face centered central composite design (CCD) of response surface methodology (RSM) were executed by varying the input process factors such as cutting speed, feed rate and trochoidal step. Analysis of variance (ANOVA) was adopted to study the significance of selected process parameters and its relative interactions on the performance measures. Desirability-based multiple objective optimization was performed and the mathematical models were developed for prediction purposes. The developed mathematical model was statistically significant with optimum conditions of cutting speed of 41m/min, feed rate of 120 mm/min and trochoidal step of 0.9 mm. It was also found that the deviation between the experimental and predicted values is 6.10% for surface roughness and 1.33% for dish angle, respectively. Full article
(This article belongs to the Special Issue Machining—Recent Advances, Applications and Challenges)
Show Figures

Figure 1

Back to TopTop