Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = cobalt manganese oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 10414 KiB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 219
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

21 pages, 2687 KiB  
Review
Non-Noble Metal Catalysts for Efficient Formaldehyde Removal at Room Temperature
by Yiqing Feng and Rui Wang
Catalysts 2025, 15(8), 723; https://doi.org/10.3390/catal15080723 - 30 Jul 2025
Viewed by 309
Abstract
This review examines the research progress on non-noble-metal-based catalysts for formaldehyde (HCHO) oxidation at room temperature. It begins with an introduction to the hazards of HCHO as an indoor pollutant and the urgency of its removal, comparing several HCHO removal technologies and highlighting [...] Read more.
This review examines the research progress on non-noble-metal-based catalysts for formaldehyde (HCHO) oxidation at room temperature. It begins with an introduction to the hazards of HCHO as an indoor pollutant and the urgency of its removal, comparing several HCHO removal technologies and highlighting the advantages of room-temperature catalytic oxidation. It delves into the classification, preparation methods, and regulation strategies for non-precious metal catalysts, with a focus on manganese-based, cobalt-based, and other transition metal-based catalysts. The effects of catalyst preparation methods, morphological structure, and specific surface area on catalytic performance are discussed, and the catalytic oxidation mechanisms of HCHO, including the Eley–Rideal, Langmuir–Hinshelwood, and Mars–van Krevelen mechanisms, are analyzed. Finally, the challenges faced by non-precious metal catalysts are summarized, such as issues related to the powder form of catalysts in practical applications, lower catalytic activity at room temperature, and insufficient research in the presence of multiple VOC molecules. Suggestions for future research directions are also provided. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(8), 686; https://doi.org/10.3390/cryst15080686 - 28 Jul 2025
Viewed by 238
Abstract
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site [...] Read more.
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site doping varied from 0 to 30 at%, yielding a composition of La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ. The resulting perovskite powders were pressurelessly sintered in air at 1400 °C for 2 h. Sintered densities were measured, and the grain structure was imaged via scanning electron microscopy to investigate the effect of doping. Samples were cut and polished, and their resistance was measured at varying temperatures in air to obtain the electrical conductivity and the mechanism that governs it. Plots of electrical conductivity as a function of composition and temperature indicate that the increased configurational entropy of the perovskite materials has a demonstrable effect. Full article
Show Figures

Figure 1

21 pages, 3984 KiB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Viewed by 387
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

15 pages, 11303 KiB  
Article
Hierarchical Manganese-Doped Nickel–Cobalt Oxide Electrodes with Graphene for Use as High-Energy-Density Supercapacitors
by Kuan-Ching Lee, Guan-Ting Pan, Thomas Chung-Kuang Yang, Po-Cheng Shen, Kuan Lun Pan, Timm Joyce Tiong, Aleksandar N. Nikoloski and Chao-Ming Huang
Surfaces 2025, 8(3), 43; https://doi.org/10.3390/surfaces8030043 - 25 Jun 2025
Viewed by 388
Abstract
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples [...] Read more.
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples also increase. The microstructure of these samples evolves into hierarchical vertical flake structures. Cyclic voltammetry measurements conducted within the potential range of 0–1.2 V reveal that the electrode with the highest graphene content achieves the highest specific capacitance, approximately 475 F/g. Furthermore, it exhibits excellent cycling durability, maintaining 95.0% of its initial capacitance after 10,000 cycles. The superior electrochemical performance of the graphene-enhanced, manganese-doped nickel–cobalt oxide electrode is attributed to the synergistic contributions of the hierarchical G@MNCO structure, the three-dimensional Cu foam current collector, and the binder-free fabrication process. These features promote quicker electrolyte ion diffusion into the electrode material and ensure robust adhesion of the active materials to the current collector. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

22 pages, 2958 KiB  
Article
Accurate Chemistry Identification of Lithium-Ion Batteries Based on Temperature Dynamics with Machine Learning
by Ote Amuta, Jiaqi Yao, Dominik Droese and Julia Kowal
Batteries 2025, 11(6), 208; https://doi.org/10.3390/batteries11060208 - 26 May 2025
Viewed by 704
Abstract
Lithium-ion batteries (LIBs) are widely used in diverse applications, ranging from portable ones to stationary ones. The appropriate handling of the immense amount of spent batteries has, therefore, become significant. Whether recycled or repurposed for second-life applications, knowing their chemistry type can lead [...] Read more.
Lithium-ion batteries (LIBs) are widely used in diverse applications, ranging from portable ones to stationary ones. The appropriate handling of the immense amount of spent batteries has, therefore, become significant. Whether recycled or repurposed for second-life applications, knowing their chemistry type can lead to higher efficiency. In this paper, we propose a novel machine learning-based approach for accurate chemistry identification of the electrode materials in LIBs based on their temperature dynamics under constant current cycling using gated recurrent unit (GRU) networks. Three different chemistry types, namely lithium nickel cobalt aluminium oxide cathode with silicon-doped graphite anode (NCA-GS), nickel cobalt aluminium oxide cathode with graphite anode (NCA-G), and lithium nickel manganese cobalt oxide cathode with graphite anode (NMC-G), were examined under four conditions, 0.2 C charge, 0.2 C discharge, 1 C charge, and 1 C discharge. Experimental results showed that the unique characteristics in the surface temperature measurement during the full charge or discharge of the different chemistry types can accurately carry out the classification task in both experimental setups, where the model is trained on data under different cycling conditions separately and jointly. Furthermore, experimental results show that the proposed approach for chemistry type identification based on temperature dynamics appears to be more universal than voltage characteristics. As the proposed approach has proven to be efficient in the chemistry identification of the electrode materials LIBs in most cases, we believe it can greatly benefit the recycling and second-life application of spent LIBs in real-life applications. Full article
Show Figures

Graphical abstract

18 pages, 2959 KiB  
Article
Evaluating Performance of Metal-Organic Complexes as Electrodes in Hydrogen Peroxide Fuel Cells
by Faraz Alderson, Raveen Appuhamy and Stephen Andrew Gadsden
Energies 2025, 18(10), 2598; https://doi.org/10.3390/en18102598 - 17 May 2025
Viewed by 346
Abstract
With increasing energy demands, fuel cells are a popular avenue for portability and low waste emissions. Hydrogen fuel cells are popular due to their potential output power and clean waste. However, due to storage and transport concerns, hydrogen peroxide fuel cells are a [...] Read more.
With increasing energy demands, fuel cells are a popular avenue for portability and low waste emissions. Hydrogen fuel cells are popular due to their potential output power and clean waste. However, due to storage and transport concerns, hydrogen peroxide fuel cells are a promising alternative. Although they have a lower output potential compared to hydrogen fuel cells, peroxide can act as both the oxidizing and reducing agent, simplifying the structure of the cell. In addition to reducing the complexity, hydrogen peroxide is stable in liquid form and can be stored in less demanding methods. This paper investigates chelated metals as electrode material for hydrogen peroxide fuel cells. Chelated metal complexes are ring-like structures that form from binding organic or inorganic compounds with metal ions. They are used in medical imaging, water treatment, and as catalysts for reactions. Copper(II) phthalocyanine, phthalocyanine green, poly(copper phthalocyanine), bis(ethylenediamine)copper(II) hydroxide, iron(III) ferrocyanine, graphene oxide decorated with Fe3O4, zinc phthalocyanine, magnesium phthalocyanine, manganese(II) phthalocyanine, cobalt(II) phthalocyanine are investigated as electrode materials for peroxide fuel cells. In this study, the performance of these materials is evaluated using cyclic voltammetry. The voltammograms are compared, as well as observations are made during the materials’ use to measure their effectiveness as electrode material. There has been limited research comparing the use of these chelated metals in the context of hydrogen peroxide fuel cells. Through this research, the goal is to further the viability of hydrogen peroxide fuel cells. Poly(copper phthalocyanine) and graphene oxide doped with iron oxides had strong redox catalytic activity for use in acidic peroxide single-compartment fuel cells, where the poly(copper phthalocyanine) electrode compound generated the highest peak power density of 7.92 mW/cm2 and cell output potential of 0.634 V. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

19 pages, 1500 KiB  
Article
Comprehensive Study of the Gas Volume and Composition Generated by 5 Ah Nickel Manganese Cobalt Oxide (NMC) Li-Ion Pouch Cells Through Different Failure Mechanisms at Varying States of Charge
by Gemma E. Howard, Katie C. Abbott, Jonathan E. H. Buston, Jason Gill, Steven L. Goddard and Daniel Howard
Batteries 2025, 11(5), 197; https://doi.org/10.3390/batteries11050197 - 17 May 2025
Cited by 1 | Viewed by 662
Abstract
Lithium-ion batteries risk failing when subjected to different abuse tests, resulting in gas and flames. In this study, 5 Ah nickel manganese cobalt oxide (NMC) pouch cells were subjected to external heating; overcharge at rates of 2.5, 5 and 10 A; and nail [...] Read more.
Lithium-ion batteries risk failing when subjected to different abuse tests, resulting in gas and flames. In this study, 5 Ah nickel manganese cobalt oxide (NMC) pouch cells were subjected to external heating; overcharge at rates of 2.5, 5 and 10 A; and nail penetration. Tests were conducted in air and N2 atmospheres. Additional external heat tests were performed on cells at 5, 25, 50, and 75% SoC and on two, three, and four cell blocks. Gas volumes were calculated, and the gas composition was given for H2, CO, CO2, C2H4, C2H6, CH4, C3H6, and C3H8. For tests under an air atmosphere at 100% SoC, the volume of gas varied between abuse methods: 3.9 L (external heat), 6.4 L (overcharge), and 8.9 L (nail penetration). The gas composition was found to predominantly contain H2, CO2, and CO for all abuse methods; however, higher concentrations of H2 and CO were present in tests performed under N2. External heat tests at different SoCs showed that the gas volume decreased with SoC. Overall, the type of abuse method can have a large effect on the gas volume and composition produced by cell failure. Full article
Show Figures

Figure 1

15 pages, 3012 KiB  
Article
Efficient Extraction of Lithium, Cobalt, and Nickel from Nickel-Manganese-Cobalt Oxide Cathodes with Cholin Chloride/Pyrogallol-Based Deep Eutectic Solvent
by Aisulu Batkal, Kaster Kamunur, Lyazzat Mussapyrova, Yerzhan Mukanov and Rashid Nadirov
Recycling 2025, 10(3), 88; https://doi.org/10.3390/recycling10030088 - 3 May 2025
Viewed by 918
Abstract
This study explores the use of a deep eutectic solvent (DES) composed of choline chloride and pyrogallol (1:1 molar ratio) for the recovery of lithium, cobalt, and nickel from spent lithium-ion battery cathodes based on LiNi0.33Co0.33Mn0.33O2 [...] Read more.
This study explores the use of a deep eutectic solvent (DES) composed of choline chloride and pyrogallol (1:1 molar ratio) for the recovery of lithium, cobalt, and nickel from spent lithium-ion battery cathodes based on LiNi0.33Co0.33Mn0.33O2 (NMC111). The DES exhibits moderate viscosity, intrinsic redox activity, and strong complexation ability, enabling efficient metal dissolution under mild conditions. The effects of both temperature (50–80 °C) and time (up to 12 h) on leaching efficiency were systematically investigated. Optimal leaching parameters—80 °C, 8 h, and a liquid-to-solid ratio of 50—yielded extraction efficiencies of 92% for Li, 85% for Co, and 88% for Ni. Kinetic modeling indicated pseudo-first-order behavior with activation energies of 26.6, 22.1, and 25.2 kJ/mol for Li, Co, and Ni, respectively. Mechanistic analysis confirmed the dual role of pyrogallol as both reducing agent (facilitating Co3+ to Co2+ conversion) and chelating ligand. Full article
Show Figures

Figure 1

25 pages, 5338 KiB  
Review
Advances in Selective Photocatalytic Oxidation of p-Xylene to Terephthalic Acid as a Sustainable Route: A Short Review on Photocatalyst Formulation and Related Reaction Mechanisms
by Antonietta Mancuso, Olga Sacco and Vincenzo Vaiano
Photochem 2025, 5(2), 11; https://doi.org/10.3390/photochem5020011 - 23 Apr 2025
Viewed by 1332
Abstract
This review examines the production of terephthalic acid via the oxidation of p-xylene, comparing catalytic and photocatalytic approaches. The commercial AMOCO process employs a cobalt/manganese/bromide catalyst system but requires harsh conditions, including high temperatures and acidic environments, raising environmental and safety concerns. [...] Read more.
This review examines the production of terephthalic acid via the oxidation of p-xylene, comparing catalytic and photocatalytic approaches. The commercial AMOCO process employs a cobalt/manganese/bromide catalyst system but requires harsh conditions, including high temperatures and acidic environments, raising environmental and safety concerns. While effective, its complexity and severe reaction conditions highlight the need for further optimization. In contrast, photocatalytic oxidation under milder conditions offers a more sustainable alternative. However, research on truly heterogeneous photocatalysts remains limited. The development of hybrid catalysts that exclude expensive noble metals holds promise for selective terephthalic acid production with minimal by-products. Advances in photocatalyst design—particularly in non-metallic and hybrid systems—could address key challenges such as limited light absorption and charge recombination, enhancing overall efficiency. Despite these advancements, maintaining high selectivity for terephthalic acid while minimizing by-product formation remains a critical challenge. Additionally, scaling up the photocatalytic process for industrial applications requires overcoming issues related to catalyst stability, recyclability, and cost-effectiveness. Continued research on improving catalyst performance and long-term stability will be essential for establishing photocatalytic oxidation of p-xylene as a viable and environmentally friendly route for terephthalic acid production. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Entropy Profiles for Li-Ion Batteries—Effects of Chemistries and Degradation
by Julia Wind and Preben J. S. Vie
Entropy 2025, 27(4), 364; https://doi.org/10.3390/e27040364 - 29 Mar 2025
Viewed by 961
Abstract
This paper presents entropy measurements for a large set of commercial Li-ion cells. We present entropy data on full cells with a variety of common Li-ion cell electrode chemistries; graphite, hard carbon, lithium-titanium-oxide (LTO), lithium cobalt-oxide (LCO), nickel manganese cobalt oxides (NMC), nickel [...] Read more.
This paper presents entropy measurements for a large set of commercial Li-ion cells. We present entropy data on full cells with a variety of common Li-ion cell electrode chemistries; graphite, hard carbon, lithium-titanium-oxide (LTO), lithium cobalt-oxide (LCO), nickel manganese cobalt oxides (NMC), nickel cobalt aluminium oxide (NCA), lithium iron-phosphate (LFP), as well as electrodes with mixes of these. All data were collected using an accelerated potentiometric method in steps of approximately 5% State-of-Charge (SoC) across the full SoC window. We observe that the entropy profiles depend on the chemistry of the Li-ion cells, but that they also vary between different commercial cells with the same chemistry. Entropy contributions are quantified with respect to both, their means, positive and negative contributions as well as their SoC variation. In addition, we present how different cyclic ageing temperatures change the entropy profiles for a selected commercial Li-ion cell through ageing. A clear difference in entropy profiles is observed after a capacity loss of 20%. This difference can be attributed to different ageing mechanisms within the Li-ion cells, leading to changes in the balancing of electrodes, as well as changes in the electrode materials. Full article
Show Figures

Figure 1

27 pages, 6691 KiB  
Article
Efficient Hybrid Deep Learning Model for Battery State of Health Estimation Using Transfer Learning
by Jinling Ren, Misheng Cai and Dapai Shi
Energies 2025, 18(6), 1491; https://doi.org/10.3390/en18061491 - 18 Mar 2025
Viewed by 740
Abstract
Achieving accurate battery state of health (SOH) estimation is crucial, but existing methods still face many challenges in terms of data quality, computational efficiency, and cross-scenario generalization capabilities. This study proposes a hybrid deep learning framework incorporating transfer learning to address these challenges. [...] Read more.
Achieving accurate battery state of health (SOH) estimation is crucial, but existing methods still face many challenges in terms of data quality, computational efficiency, and cross-scenario generalization capabilities. This study proposes a hybrid deep learning framework incorporating transfer learning to address these challenges. The framework integrates inception depthwise convolution (IDC), channel reduction attention (CRA) mechanism, and staged training strategy to improve the accuracy and generalization ability of SOH estimation. The IDC module of the proposed model is capable of extracting battery degradation time series features from multiple scales while reducing the computational overhead. The CRA module effectively reduces the computational complexity and memory usage of global feature capture by compressing the channel dimensions. A well-designed pre-training/fine-tuning two-stage training strategy achieves accurate cross-scene SOH estimation by utilizing large-scale source-domain data to learn generalized aging features and then uses a small amount of new data to quickly fine-tune the base model. The proposed method is validated using two publicly available datasets, including 54 nickel cobalt manganese oxide (NCM) cells and 16 nickel manganese cobalt oxide (NMC) cells. The experimental results show that the root mean square error (RMSE) of the model on the NCM and NMC datasets is 0.522% and 0.283%, respectively, with a coefficient of determination (R2) not less than 0.98 and mean absolute percentage error (MAPE) of 0.431% and 0.22%, respectively. The proposed method not only achieves high-precision SOH estimation among the same type of batteries but also demonstrates strong generalization ability under different battery chemistries and scenarios. Full article
Show Figures

Figure 1

11 pages, 2472 KiB  
Article
Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials
by Ijaz Ul Haq and Seungjun Lee
Crystals 2025, 15(3), 272; https://doi.org/10.3390/cryst15030272 - 15 Mar 2025
Cited by 1 | Viewed by 1146
Abstract
Lithium nickel manganese cobalt oxides (NMCs) are widely used as cathode materials in commercial batteries. Efforts have been made to enhance battery energy density and stability by adjusting the element ratio. Nickel-rich NMC shows promise due to its high capacity; however, its commercial [...] Read more.
Lithium nickel manganese cobalt oxides (NMCs) are widely used as cathode materials in commercial batteries. Efforts have been made to enhance battery energy density and stability by adjusting the element ratio. Nickel-rich NMC shows promise due to its high capacity; however, its commercial viability is hindered by severe capacity fade, primarily caused by poor mechanical stability. To address this, understanding the chemo-mechanical behavior of Ni-rich NMC is crucial. The mechanical failure of Ni-rich NMC materials during battery operation has been widely studied through theoretical approaches to identify possible solutions. The elastic properties are key parameters for structural analysis. However, experimental data on NMC materials are scarce due to the inherent difficulty of measuring the properties of electrode active particles at such a small scale. In this study, we employ molecular dynamics (MDs) simulations to investigate the elastic properties of NMC materials with varying compositions (NMC111, NMC532, NMC622, NMC721, and NMC811). Our results reveal that elasticity increases with nickel content, ranging from 200 GPa for NMC111 to 290 GPa for NMC811. We further analyze the contributing factors to this trend by examining the individual components of the elastic properties. The simulation results provide valuable input parameters for theoretical models and continuum simulations, offering insights into strategies for reducing the mechanical instability of Ni-rich NMC materials. Full article
(This article belongs to the Special Issue Electrode Materials in Lithium-Ion Batteries)
Show Figures

Figure 1

28 pages, 12048 KiB  
Article
Exploring Thermal Runaway: Role of Battery Chemistry and Testing Methodology
by Sébastien Sallard, Oliver Nolte, Lorenz von Roemer, Brahim Soltani, Alexander Fandakov, Karsten Mueller, Maria Kalogirou and Marc Sens
World Electr. Veh. J. 2025, 16(3), 153; https://doi.org/10.3390/wevj16030153 - 6 Mar 2025
Cited by 3 | Viewed by 3324
Abstract
One of the major concerns for battery electric vehicles (BEVs) is the occurrence of thermal runaway (TR), usually of a single cell, and its propagation to adjacent cells in a battery pack. To guarantee sufficient safety for the vehicle occupants, the TR mechanisms [...] Read more.
One of the major concerns for battery electric vehicles (BEVs) is the occurrence of thermal runaway (TR), usually of a single cell, and its propagation to adjacent cells in a battery pack. To guarantee sufficient safety for the vehicle occupants, the TR mechanisms must be known and predictable. In this work, we compare thermal runaway scenarios using different initiation protocols (heat–wait–seek, constant heating, nail penetration) and battery chemistries (nickel manganese cobalt oxide, NMC; lithium iron phosphate, LFP; and sodium-ion batteries, SIB) with the cells in a fully charged state. Our goal is to specifically trigger a variety of different possible TR scenarios (internal failure, external hotspot, mechanical damage) with different types of chemistries to obtain reliable data that are subsequently employed for modeling and prediction of the phenomenon. The safety of the tested cells depending on their chemistry can be summarized as LFP > SIB >> NMC. The data of the TR experiments were used as the basis for high-fidelity modeling and predicting of TR phenomena in 3D. The models simulated reaction rates, represented by the typically employed Arrhenius approach. The effects of the investigated TR triggering methods and cell chemistries were represented with sufficient accuracy, enabling the application of the models for the simulation of thermal propagation in battery packs. Full article
Show Figures

Figure 1

22 pages, 3814 KiB  
Article
Addressing the Scientific Gaps Between Life Cycle Thinking and Multi-Criteria Decision Analysis for the Sustainability Assessment of Electric Vehicles’ Lithium-Ion Batteries
by Maria Tournaviti, Christos Vlachokostas, Alexandra V. Michailidou, Christodoulos Savva and Charisios Achillas
World Electr. Veh. J. 2025, 16(1), 44; https://doi.org/10.3390/wevj16010044 - 17 Jan 2025
Cited by 2 | Viewed by 2059
Abstract
Electric vehicles can substantially lower the overall carbon footprint of the transportation sector, and their batteries become key enablers of widespread electrification. Although high capacity and efficiency are essential for providing sufficient range and performance in electric vehicles, they can be compromised by [...] Read more.
Electric vehicles can substantially lower the overall carbon footprint of the transportation sector, and their batteries become key enablers of widespread electrification. Although high capacity and efficiency are essential for providing sufficient range and performance in electric vehicles, they can be compromised by the need to lower costs and environmental impacts and retain valuable materials. In the present work, multi-criteria decision analysis was adopted to assess the sustainability of different lithium-ion batteries. Life cycle carbon emissions and toxicity, material criticality, life cycle costs, specific energy, safety, and durability were considered in the analysis as key parameters of the transition to electric mobility. A subjective approach was chosen for the weight attribution of the criteria. Although certain alternatives, like lithium nickel cobalt manganese oxide (NCM) and lithium nickel cobalt aluminum oxide (NCA), outweigh others in specific energy, they lack in terms of safety, material preservation, and environmental impact. Addressing cost-related challenges is also important for making certain solutions competitive and largely accessible. Overall, while technical parameters are crucial for the development of lithium-ion batteries, it is equally important to consider the environmental burden, resource availability, and economic factors in the design process, alongside social aspects such as the ethical sourcing of materials to ensure their sustainability. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries for Electric Vehicle)
Show Figures

Graphical abstract

Back to TopTop