Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (723)

Search Parameters:
Keywords = coating film characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4240 KiB  
Article
Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
by Alessandro A. Quarta
Appl. Sci. 2025, 15(15), 8755; https://doi.org/10.3390/app15158755 (registering DOI) - 7 Aug 2025
Abstract
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation [...] Read more.
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation pressure into thrust using a large reflective surface typically coated with a thin metallic film. In contrast, the diffractive sail proposed by Swartzlander leverages the properties of an advanced metamaterial-based film to generate a net transverse thrust even when the sail is Sun-facing, i.e., in a configuration that can be passively maintained by a suitably designed spacecraft. Specifically, this study considers a sail membrane covered with a set of electro-optically controlled diffractive panels. These panels employ a (controlled) binary metamaterial arrayed grating to steer the direction of photons exiting the diffractive film. This control technique has recently been applied to achieve a circle-to-circle interplanetary transfer using a Sun-facing diffractive sail. In this work, an optimal control law is employed to execute a rapid phasing maneuver along an elliptical heliocentric orbit with specified characteristics, such as those of Earth and Mercury. The analysis also includes a limiting case involving a circular heliocentric orbit. For this latter scenario, a simplified and elegant control law is proposed based on a linearized form of the equations of motion to describe the heliocentric dynamics of the diffractive sail-based spacecraft during the phasing maneuver. Full article
Show Figures

Figure 1

12 pages, 1774 KiB  
Article
Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
by Kei Ichikawa, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa and Naoki Yamamoto
Medicina 2025, 61(8), 1384; https://doi.org/10.3390/medicina61081384 - 30 Jul 2025
Viewed by 225
Abstract
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend [...] Read more.
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend of collagen and hydroxyethyl methacrylate (HEMA), has demonstrated excellent long-term biocompatibility and optical clarity. Recently, hydrophilic acrylic Phakic-ICLs, such as the Implantable Phakic Contact Lens (IPCL), have been introduced. This study investigated the material differences among Phakic-ICLs and their interaction with fibronectin (FN), which has been reported to adhere to intraocular lens (IOL) surfaces following implantation. The aim was to compare Collamer, IPCL, and LENTIS lenses (used as control) in terms of FN distribution and cell adhesion using a small number of explanted Phakic-ICLs. Materials and Methods: Three lens types were analyzed: a Collamer Phakic-ICL (EVO+ Visian ICL), a hydrophilic acrylic IPCL, and a hydrophilic acrylic phakic-IOL (LENTIS). FN distribution and cell adhesion were evaluated across different regions of each lens. An in vitro FN-coating experiment was conducted to assess its effect on cell adhesion. Results: All lenses demonstrated minimal FN deposition and cellular adhesion in the central optical zone. A thin FN film was observed on the haptics of Collamer lenses, while FN adhesion was weaker or absent on IPCL and LENTIS surfaces. Following FN coating, Collamer lenses supported more uniform FN film formation; however, this did not significantly enhance cell adhesion. Conclusions: Collamer, which contains collagen, promotes FN film formation. Although FN film formation was enhanced, the low cell-adhesive properties of HEMA resulted in minimal cell adhesion even with FN presence. This characteristic may contribute to the long-term transparency and biocompatibility observed clinically. In contrast, hydrophilic acrylic materials used in IPCL and LENTIS demonstrated limited FN interaction. These material differences may influence extracellular matrix protein deposition and biocompatibility in clinical settings, warranting further investigation. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

17 pages, 2815 KiB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Viewed by 266
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 239
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

19 pages, 4571 KiB  
Article
Modified Asphalt Prepared by Coating Rubber Powder with Waste Cooking Oil: Performance Evaluation and Mechanism Analysis
by Jianwei Zhang, Meizhu Chen, Yuan Yan, Muyan Han and Yuechao Zhao
Coatings 2025, 15(7), 844; https://doi.org/10.3390/coatings15070844 - 18 Jul 2025
Viewed by 335
Abstract
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for [...] Read more.
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for rubber powder (RP) and as a compatibilizer in rubber powder-modified asphalt (RPMA) on the performance of modified asphalt. Specifically, the microstructure and functional groups of WCO-coated RP were first characterized. Then, RPMAs with different RP dosages were prepared, and the storage stability and rheological properties of RPMAs were thoroughly investigated. Finally, the flue gas emission characteristics of different RPMAs at 30% RP dosing were further analyzed, and the corresponding inhibition mechanisms were proposed. The results showed that the RP coated by WCO was fully solubilized internally, and the WCO formed a uniform and continuous coating film on the RP surface. Comparative analysis revealed that when WCO was used as a swelling agent, the prepared S-RPMA exhibited superior storage stability. At a 30% RP content, the softening point difference value of S-RPMA was only 1.8 °C, and the reduction rate of the segregation index reached 40.91%. Surprisingly, after WCO was used to coat the RP, the average concentrations of VOCs and H2S in S-RPMA30 were reduced to 146.7 mg/m3 and 10.6 ppm, respectively, representing decreases of 20.8% and 22.1% compared with the original RPMA30. These findings demonstrate that using WCO as a swelling agent enhances both the physical stability and environmental performance of RPMA, offering valuable insights for the rational application and optimization of WCO incorporation methods in asphalt modification. It also makes meaningful contributions to the fields of coating science and sustainable materials engineering. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 611
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

24 pages, 7332 KiB  
Article
High-Performance Natural Dye-Sensitized Solar Cells Employing a New Semiconductor: Gd2Ru2O7 Pyrochlore Oxide
by Assohoun F. Kraidy, Abé S. Yapi, Joseph K. Datte, Michel Voue, Mimoun El Marssi, Anthony Ferri and Yaovi Gagou
Condens. Matter 2025, 10(3), 38; https://doi.org/10.3390/condmat10030038 - 14 Jul 2025
Viewed by 645
Abstract
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films [...] Read more.
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films were fabricated using the spin-coating technique, resulting in spherical grains with an estimated mean diameter of 0.2 µm, as observed via scanning electron microscopy (SEM). This innovative photoactive gadolinium ruthenate pyrochlore oxide demonstrated strong absorption in the visible range and excellent dye adhesion after just one hour of exposure to natural dye. X-ray diffraction confirmed the presence of the pyrochlore phase, where Raman spectroscopy identified various vibration modes characteristic of the pyrochlore structure. Incorporating Gd2Ru2O7 as the photoanode significantly enhanced the overall efficiency of the DSSCs. The device configuration FTO/compact-layer/Gd2Ru2O7/Hibiscus-sabdariffa/electrolyte(I/I3)/Pt achieved a high efficiency of 9.65%, an open-circuit voltage (Voc) of approximately 3.82 V, and a current density of 4.35 mA/cm2 for an active surface area of 0.38 cm2. A mesoporous TiO2-based DSSC was fabricated under the same conditions for comparison. Using impedance spectroscopy and cyclic voltammetry measurements, we provided evidence of the mechanism of conductivity and the charge carrier’s contribution or defect contributions in the DSSC cells to explain the obtained Voc value. Through cyclic voltammetry measurements, we highlight the redox activities of hibiscus dye and electrolyte (I/I3), which confirmed electrochemical processes in addition to a photovoltaic response. The high and unusual obtained Voc value was also attributed to the presence in the photoanode of active dipoles, the layer thickness, dye concentration, and the nature of the electrolyte. Full article
Show Figures

Figure 1

21 pages, 13173 KiB  
Article
Surface Modification by Plasma Electrolytic Oxidation of Friction Surfacing 4043 Aluminum-Based Alloys Deposited onto Structural S235 Steel Substrate
by Roxana Muntean and Ion-Dragoș Uțu
Materials 2025, 18(14), 3302; https://doi.org/10.3390/ma18143302 - 13 Jul 2025
Viewed by 467
Abstract
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without [...] Read more.
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without melting the material, classifies this technique as distinct from other standard methods. This unconventional deposition method is based on the severe plastic deformation that appears on a rotating metallic rod (consumable material) pressed against the substrate under an axial load. The present study aims to investigate the tribological properties and corrosion resistance provided by the aluminum-based FS coatings deposited onto a structural S235 steel substrate and further modified by plasma electrolytic oxidation (PEO). During the PEO treatment, the formation of a ceramic film is enabled, while the hardness, chemical stability, corrosion, and wear resistance of the modified surfaces are considerably increased. The morpho-structural characteristics and chemical composition of the PEO-modified FS coatings are further investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the PEO-modified aluminum-based coatings was carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated in a 3.5 wt.% NaCl solution. The corrosion rates of the aluminum-based coatings decreased significantly when the PEO treatment was applied, while the wear rate was substantially reduced compared to the untreated aluminum-based coating and steel substrate, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 3936 KiB  
Article
Atums Green Conjugated Polymer Heterojunction Films as Blue-Sensitive Photodiodes
by Zahida Batool, Razieh Firouzihaji, Mariia Babiichuk, Aria Khalili, John C. Garcia, Jau-Young Cho, Preeti Gahtori, Lukas Eylert, Karthik Shankar, Sergey I. Vagin, Julianne Gibbs and Alkiviathes Meldrum
Polymers 2025, 17(13), 1770; https://doi.org/10.3390/polym17131770 - 26 Jun 2025
Viewed by 467
Abstract
Conjugated polymers (CPs) offer many attractive features for photodiodes and photovoltaics, including solution processability, ease of scale-up, light weight, low cost, and mechanical flexibility. CPs have a wide range of energy gaps; thus, the choice of the specific polymer determines the optimum operational [...] Read more.
Conjugated polymers (CPs) offer many attractive features for photodiodes and photovoltaics, including solution processability, ease of scale-up, light weight, low cost, and mechanical flexibility. CPs have a wide range of energy gaps; thus, the choice of the specific polymer determines the optimum operational wavelength range. However, there are relatively few CPs with a strong absorption in the blue region of the spectrum where the human eye is most sensitive (440 to 470 nm) and none with an energy gap at 2.75 eV (450 nm), which corresponds to the peak of the CIE-1931 z(λ) color-matching function and the dominant blue light emission wavelength in computer and smartphone displays. Blue-light detectors in this wavelength range are important for light hazard control, sky polarization studies, and for blue-light information devices, where 450 nm corresponds to the principal emission of GaN-based light sources. We report on a new CP called Atums Green (AG), which shows promising characteristics as a blue-light photodetection polymer optimized for exactly this range of wavelengths centered around 450 nm. We built and measured a simple photodetector made from spin-coated films of AG and showed that its photosensitivity can be improved by the addition of asphaltene, a low-cost carbonaceous waste product. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

17 pages, 4222 KiB  
Article
Grooved High-Reflective Films for Ultraviolet Emission Enhancement
by Hengrui Zhang, Zhanhua Huang and Lin Zhang
Photonics 2025, 12(7), 644; https://doi.org/10.3390/photonics12070644 - 25 Jun 2025
Viewed by 286
Abstract
Conventional ultraviolet microplasma sources typically lack a back-reflection structure, resulting in radiative power loss from the backside. To enhance the emission efficiency of ultraviolet microplasma devices around 220 nm, we propose a multilayer reflective coating composed of alternating high- and low-refractive-index layers of [...] Read more.
Conventional ultraviolet microplasma sources typically lack a back-reflection structure, resulting in radiative power loss from the backside. To enhance the emission efficiency of ultraviolet microplasma devices around 220 nm, we propose a multilayer reflective coating composed of alternating high- and low-refractive-index layers of Al2O3 and SiO2, within a V-shaped groove. Key structural parameters, including the number of alternating film layer pairs, groove width, and light source position, are investigated to show their effects on ultraviolet reflection characteristics. The results show that reducing the groove width greatly enhances light reflection. When the groove width is 6.5 μm, the device exhibits a reflection efficiency of 47.82% and power enhancement of 91.66%, representing improvements of 2.5-fold and 4.2-fold, respectively, compared to non-optimized cases. Device performance is also influenced by the offset of the light source, which is more sensitive along the horizontal direction. This study provides a practical solution for developing high-efficiency ultraviolet emission devices. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

16 pages, 717 KiB  
Review
Modification of Cellulose Nanocrystals Using Polydopamine for the Modulation of Biodegradable Packaging, Polymeric Films: A Mini Review
by Amanda L. Souza, Victor G. L. Souza, Meirielly Jesus, Fernando Mata, Taila V. de Oliveira and Nilda de F. F. Soares
Sustainability 2025, 17(12), 5633; https://doi.org/10.3390/su17125633 - 18 Jun 2025
Cited by 1 | Viewed by 705
Abstract
This review delves into environmentally conscious sustainable packaging materials, focusing on biodegradable polymers and innovative surface modification methodologies. Synthetic plastics have revolutionized various industries due to their physical attributes and affordability, particularly in packaging applications. Nonetheless, the substantial volume of plastic waste, especially [...] Read more.
This review delves into environmentally conscious sustainable packaging materials, focusing on biodegradable polymers and innovative surface modification methodologies. Synthetic plastics have revolutionized various industries due to their physical attributes and affordability, particularly in packaging applications. Nonetheless, the substantial volume of plastic waste, especially from non-biodegradable sources, has provoked heightened environmental apprehensions. Notably, polymers derived from natural sources, such as cellulose, are classified as biopolymers and esteemed for their ecological benevolence. Among these, cellulose and its derivatives stand out as renewable and abundant substances, holding promise for sustainable packaging solutions. Nano-sized cellulose fibers’ incorporation into biodegradable films garners interest due to their remarkable surface area, robust mechanical strength, and other commendable properties. Surface modification techniques, such as a polydopamine (PDA) coating, have been explored to improve the dispersion, interfacial compatibility, and mechanical performance of cellulose nanocrystals (CNC) when incorporated into biodegradable polymer films. In this sense, PDA, derived from mussel proteins’ dopamine component, displays exceptional adhesion to diverse surfaces and has been extensively scrutinized for its distinctive attributes. Therefore, the core focus of this review was to approach ecologically friendly packaging materials, specifically investigating the synergy between CNC and PDA. The unparalleled adhesive characteristics of PDA serve as a catalyst for enhancing CNC, thereby elevating the performance of biodegradable polymers with potential implications across various domains. Full article
Show Figures

Figure 1

14 pages, 3453 KiB  
Article
Enhanced Corrosion Resistance and Cytocompatibility of Magnesium Alloys with Mg(OH)2/Polydopamine Composite Coatings for Orthopedic Applications
by Chunlin Li, Boqiong Li and Wenxia Yan
Coatings 2025, 15(6), 729; https://doi.org/10.3390/coatings15060729 - 18 Jun 2025
Viewed by 421
Abstract
A critical barrier to the clinical translation of biodegradable magnesium (Mg)-based materials lies in their rapid degradation rate in physiological environment, which leads to premature structural failure and compromised cytocompatibility. Micro-arc oxidation (MAO) coatings offer preliminary corrosion mitigation for Mg alloys, while their [...] Read more.
A critical barrier to the clinical translation of biodegradable magnesium (Mg)-based materials lies in their rapid degradation rate in physiological environment, which leads to premature structural failure and compromised cytocompatibility. Micro-arc oxidation (MAO) coatings offer preliminary corrosion mitigation for Mg alloys, while their inherent structural porosity compromises long-term durability in physiological environment. To address this limitation, we developed a hierarchical coating system consisting of a dense Mg(OH)2 interlayer (MAO/HT) superimposed on the MAO-treated substrate, followed by a functional polydopamine (PDA) topcoat to create a MAO/HT/PDA composite architecture. The surface characteristics and crystalline structures of these coatings were systematically characterized using field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion resistance and interfacsial stability in physiological environment were quantitatively assessed through electrochemical analyses and long-term immersion tests in simulated body fluid (SBF). The cytocompatibility of the coatings was assessed by directly culturing osteoblast on the coated samples. The results reveal that the Mg(OH)2 film possesses a bulk-like structure and effectively seals the micro-pores of the MAO coating. The current density of MAO/HT/PDA sample decreases by two orders of magnitude compared to that of MAO sample, indicating excellent corrosion resistance. The PDA layer not only acts as a strong barrier to improve the corrosion performance of the coating but also helps maintain the stability of the coating, thus delaying coating destruction in SBF. Moreover, the osteoblast culture results suggest that the MAO/HT/PDA coating promotes cell spread and proliferation noticeably compared to both the MAO and MAO/HT coatings. This study provides compelling evidence that the Mg(OH)2/PDA composite coating is biodegradable and offers outstanding protection for micro-arc oxidized magnesium. As a result, it holds great promise for significant applications in the field of orthopedic medicine. Full article
(This article belongs to the Special Issue Deposition-Based Coating Solutions for Enhanced Surface Properties)
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 493
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

13 pages, 3758 KiB  
Article
Effect of Sputtering Process Parameters on Physical Properties and Electron Emission Level of Titanium Nitride Films
by Yang Xia and Dan Wang
Inorganics 2025, 13(6), 201; https://doi.org/10.3390/inorganics13060201 - 16 Jun 2025
Viewed by 435
Abstract
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the [...] Read more.
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the magnetron sputtering parameters. The microscopic analyses show that the film thicknesses ranged from about 355 to 459 nm. Moreover, with the process parameters used in this work, TiN nanostructures are formed more easily when the nitrogen flow rate is ≤5 sccm, and compact TiN films are formed more easily when the nitrogen flow rate is ≥10 sccm. Elemental analyses showed that the N:Ti atomic ratios of the TiN films ranged from about 0.587 to 1.40. The results of surface analysis showed the presence of a certain amount of oxygen on the surface of the TiN film, indicating that the surface TiN may exist in the form of TiN:O. The electrical resistance test showed that the resistivity of the TiN coating ranges from 1.59 × 10−4 to 1.83 × 10−1 Ω·m. And the closer the N:Ti atomic ratio is to one, the lower the TiN film resistivity is. The electron emission coefficient (EEC) results show that among the film samples from #3 to #10, sample #8 has the lowest EEC, with a peak EEC of only 1.61. By comparing the resistivity and EEC data, a novel phenomenon was discovered: a decrease in the resistivity of TiN films leads to a decrease in their EEC values. The results show that the resistivity and EEC of TiN films can be adjusted according to the film-forming components, which is important for the application of TiN in the electronics industry. Full article
(This article belongs to the Special Issue Novel Inorganic Coatings and Thin Films)
Show Figures

Figure 1

24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 559
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

Back to TopTop