Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = co-seismic deformation field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 34153 KiB  
Article
Study on Lithospheric Tectonic Features of Tianshan and Adjacent Regions and the Genesis Mechanism of the Wushi Ms7.1 Earthquake
by Kai Han, Daiqin Liu, Ailixiati Yushan, Wen Shi, Jie Li, Xiangkui Kong and Hao He
Remote Sens. 2025, 17(15), 2655; https://doi.org/10.3390/rs17152655 - 31 Jul 2025
Viewed by 179
Abstract
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which [...] Read more.
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which led to the following conclusions: (1) The effective elastic thickness (Te) of the Tianshan lithosphere is low (13–28 km) and weak, while the Tarim and Junggar basins have Te > 30 km with high intensity, and the loads are all mainly from the surface (F < 0.5). Earthquakes occur mostly in areas with low values of Te. (2) Medium and strong earthquakes are prone to occur in regions with alternating positive and negative changes in the gravity field during the stage of large-scale reverse adjustment. It is expected that the risk of a moderate-to-strong earthquake occurring again in the vicinity of the survey area between 2025 and 2026 is relatively high. (3) Before the Wushi earthquake, the positive and negative boundaries of the apparent density of the crust at 12 km shifted to be approximately parallel to the seismic fault, and the earthquake was triggered after undergoing a “solidification” process. (4) The Wushi earthquake is a leptokurtic strike-slip backwash type of earthquake; coseismic deformation shows that subsidence occurs in the high-visual-density zone, and vice versa for uplift. The results of this study reveal the lithosphere-conceiving environment of the Tianshan and adjacent areas and provide a basis for regional earthquake monitoring, early warning, and post-disaster disposal. Full article
Show Figures

Graphical abstract

16 pages, 57657 KiB  
Article
InSAR Inversion of the Source Mechanism of the 23 January 2024 Xinjiang Wushi Mw7.0 Earthquake
by Mingyang Jin, Yongsheng Li and Yujiang Li
Remote Sens. 2025, 17(14), 2435; https://doi.org/10.3390/rs17142435 - 14 Jul 2025
Viewed by 281
Abstract
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. [...] Read more.
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. This event caused significant surface deformation and triggered a series of secondary geologic hazards. In this study, data from two satellites, Sentinel-1A and LuTan-1, were combined to obtain the coseismic deformation field of the earthquake. The two-step inversion method was applied to determine the geometrical parameters and slip characteristics of the mainshock fault. The results indicate that the seismicity is primarily driven by reverse faulting, with a contribution from sinistral strike–slip faulting, and the maximum dip–slip displacement is 4.2 m. Additionally, an aftershock of magnitude 5.7 occurring on January 30 was identified in the LT-1 data. This aftershock was controlled by a reverse fault dipping opposite to the mainshock fault, and its maximum slip is 0.65 m. Analysis of the Coulomb stress triggering effect suggests that the Wushi earthquake may have induced the aftershock. Full article
Show Figures

Figure 1

23 pages, 81584 KiB  
Article
GNSS-Based Models of Displacement, Stress, and Strain in the SHETPENANT Region: Impact of Geodynamic Activity from the ORCA Submarine Volcano
by Belén Rosado, Vanessa Jiménez, Alejandro Pérez-Peña, Rosa Martín, Amós de Gil, Enrique Carmona, Jorge Gárate and Manuel Berrocoso
Remote Sens. 2025, 17(14), 2370; https://doi.org/10.3390/rs17142370 - 10 Jul 2025
Viewed by 409
Abstract
The South Shetland Islands and Antarctic Peninsula (SHETPENANT region) constitute a geodynamically active area shaped by the interaction of major tectonic plates and active magmatic systems. This study analyzes GNSS time series spanning from 2017 to 2024 to investigate surface deformation associated with [...] Read more.
The South Shetland Islands and Antarctic Peninsula (SHETPENANT region) constitute a geodynamically active area shaped by the interaction of major tectonic plates and active magmatic systems. This study analyzes GNSS time series spanning from 2017 to 2024 to investigate surface deformation associated with the 2020–2021 seismic swarm near the Orca submarine volcano. Horizontal and vertical displacement velocities were estimated for the preseismic, coseismic, and postseismic phases using the CATS method. Results reveal significant coseismic displacements exceeding 20 mm in the horizontal components near Orca, associated with rapid magmatic pressure release and dike intrusion. Postseismic velocities indicate continued, though slower, deformation attributed to crustal relaxation. Stations located near the Orca exhibit nonlinear, transient behavior, whereas more distant stations display stable, linear trends, highlighting the spatial heterogeneity of crustal deformation. Stress and strain fields derived from the velocity models identify zones of extensional dilatation in the central Bransfield Basin and localized compression near magmatic intrusions. Maximum strain rates during the coseismic phase exceeded 200 νstrain/year, supporting a scenario of crustal thinning and fault reactivation. These patterns align with the known structural framework of the region. The integration of GNSS-based displacement and strain modeling proves essential for resolving active volcano-tectonic interactions. The findings enhance our understanding of back-arc deformation processes in polar regions and support the development of more effective geohazard monitoring strategies. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

24 pages, 3003 KiB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 416
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

23 pages, 24779 KiB  
Article
Fault Movement and Uplift Mechanism of Mt. Gongga, Sichuan Province, Constrained by Co-Seismic Deformation Fields from GNSS Observations
by Zheng Xu, Yong Li, Guixi Yi, Shaoze Zhao and Shujun Liu
Remote Sens. 2025, 17(13), 2286; https://doi.org/10.3390/rs17132286 - 3 Jul 2025
Viewed by 354
Abstract
On 5 September 2022, a Mw 6.6 earthquake occurred in Luding, Sichuan Province, China. The epicenter of this earthquake was located in the vicinity of Mt. Gongga. The China Earthquake Administration employed the Global Navigation Satellite System (GNSS) to conduct concurrent deformation [...] Read more.
On 5 September 2022, a Mw 6.6 earthquake occurred in Luding, Sichuan Province, China. The epicenter of this earthquake was located in the vicinity of Mt. Gongga. The China Earthquake Administration employed the Global Navigation Satellite System (GNSS) to conduct concurrent deformation field monitoring of the main fault associated with the Luding earthquake. The research area surrounding Mt. Gongga exhibits intricate structural and dynamic processes. However, previous studies have lacked a comprehensive three-dimensional analysis of the uplift mechanism of Mt. Gongga. This study utilizes GNSS data to constrain simulations and employs the FLAC3D numerical model to simulate the primary fault movement during the earthquake and the subsequent changes in the uplift of Mt. Gongga. These investigations are supported by seismic analysis, mechanical analysis, and inversion studies, facilitating the formulation of its uplift mechanism. The results indicate the following: (1) The seismic source analysis of the earthquake reveals a steep dip angle of the primary fault plane, with a predominant inclination toward the northeast. (2) Numerical simulations demonstrate a consistent correlation between the horizontal displacement pattern and the arcuate structure of the Sichuan–Yunnan block, promoting the counterclockwise uplift of Mt. Gongga. The vertical displacement pattern indicates that this earthquake accelerated the overall uplift of Mt. Gongga. (3) Mt. Gongga undergoes a multiple coupling uplift mechanism characterized by “clockwise uplift + rotational flexure + asthenospheric upwelling”. Seismic analysis, mechanical analysis and the results of numerical inversion serve as a useful basis for understanding the uplift of Mt. Gongga and for understanding high mountain uplift in orogen-foreland systems in general. Full article
Show Figures

Figure 1

39 pages, 15659 KiB  
Article
Examples of Rupture Patterns of the 2023, Mw 7.8 Kahramanmaraş Surface-Faulting Earthquake, Türkiye
by Stefano Pucci, Marco Caciagli, Raffaele Azzaro, Pio Di Manna, Anna Maria Blumetti, Valerio Poggi, Paolo Marco De Martini, Riccardo Civico, Rosa Nappi, Elif Ünsal and Orhan Tatar
Geosciences 2025, 15(7), 252; https://doi.org/10.3390/geosciences15070252 - 2 Jul 2025
Viewed by 440
Abstract
Field surveys focused on detailed mapping and measurements of coseismic surface ruptures along the causative fault of the 6 February 2023, Mw 7.8 Kahramanmaraş earthquake. The aim was filling gaps in the previously available surface-faulting trace, validating the accuracy of data obtained from [...] Read more.
Field surveys focused on detailed mapping and measurements of coseismic surface ruptures along the causative fault of the 6 February 2023, Mw 7.8 Kahramanmaraş earthquake. The aim was filling gaps in the previously available surface-faulting trace, validating the accuracy of data obtained from remote sensing, refining fault offset estimates, and gaining a deeper understanding of both the local and overall patterns of the main rupture strands. Measurements and observations confirm dominating sinistral strike-slip movement. An integrated and comprehensive slip distribution curve shows peaks reaching over 700 cm, highlighting the near-fault expressing up to 70% of the deep net offset. In general, the slip distribution curve shows a strong correlation with the larger north-eastern deformation of the geodetic far field dislocation field and major deep slip patches. The overall rupture trace is generally straight and narrow with significant geometric complexities at a local scale. This results in transtensional and transpressional secondary structures, as multi-strand positive and negative tectonic flowers, hosting different patterns of the mole-tracks at the outcrop scale. The comprehensive and detailed field survey allowed characterizing the structural framework and geometric complexity of the surface faulting, ensuring accurate offset measurements and the reliable interpretation of both morphological and geometric features. Full article
Show Figures

Figure 1

28 pages, 17579 KiB  
Article
Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations
by Daniele Cheloni, Nicola Angelo Famiglietti, Aybige Akinci, Riccardo Caputo and Annamaria Vicari
Remote Sens. 2025, 17(13), 2270; https://doi.org/10.3390/rs17132270 - 2 Jul 2025
Viewed by 1497
Abstract
The 6 February 2023 MW 7.8 and MW 7.6 earthquakes in southeastern Türkiye ruptured more than 400 km of the East Anatolian Fault Zone (EAFZ), producing one of the most destructive seismic sequences in recent history. Here, we integrate InSAR data, [...] Read more.
The 6 February 2023 MW 7.8 and MW 7.6 earthquakes in southeastern Türkiye ruptured more than 400 km of the East Anatolian Fault Zone (EAFZ), producing one of the most destructive seismic sequences in recent history. Here, we integrate InSAR data, a new GNSS velocity field, and small-magnitude earthquakes to investigate the coseismic deformation, rupture geometry, and interseismic strain accumulation along the EAFZ. Using elastic dislocation modeling with a variable-strike, multi-segment fault geometry, we constrain the slip distribution of the mainshocks, showing improved fits to the surface displacement compared to the planar fault model. The MW 7.8 event ruptured a number of fault segments over ~300 km, while the MW 7.6 event activated a more localized fault system with a peak slip exceeding 15 m. We also model two moderate events (MW 5.6 in 2020 and MW 5.3 in 2022) along the southwestern part of the Pütürge segment—an area not ruptured during the 2020 or 2023 sequences. GNSS-derived strain-rate and locking depth estimates reveal strong interseismic coupling and significant strain accumulation in this region, suggesting the potential for a future large earthquake (MW 6.6–7.1). Similarly, the Hatay region, at the southwestern termination of the 2023 rupture, shows a persistent strain accumulation and complex fault interactions involving the Dead Sea Fault and the Cyprus Arc. Our results demonstrate the importance of combining remote sensing and geodetic data to constrain fault kinematics, evaluate rupture segmentation, and assess the seismic hazard in tectonically active regions. Targeted monitoring at rupture terminations—such as the Pütürge and Hatay sectors—may be crucial for anticipating future large-magnitude earthquakes. Full article
Show Figures

Figure 1

16 pages, 3645 KiB  
Article
A Global Coseismic InSAR Dataset for Deep Learning: Automated Construction from Sentinel-1 Observations (2015–2024)
by Xu Liu, Zhenjie Wang, Yingfeng Zhang, Xinjian Shan and Ziwei Liu
Remote Sens. 2025, 17(11), 1832; https://doi.org/10.3390/rs17111832 - 23 May 2025
Viewed by 842
Abstract
Interferometric synthetic aperture radar (InSAR) technology has been widely employed in the rapid monitoring of earthquakes and associated geological hazards. With the continued advancement of InSAR technology, the growing volume of satellite-acquired data has opened new avenues for applying deep learning (DL) techniques [...] Read more.
Interferometric synthetic aperture radar (InSAR) technology has been widely employed in the rapid monitoring of earthquakes and associated geological hazards. With the continued advancement of InSAR technology, the growing volume of satellite-acquired data has opened new avenues for applying deep learning (DL) techniques to the analysis of earthquake-induced surface deformation. Although DL holds great promise for processing InSAR data, its development progress has been significantly constrained by the absence of large-scale, accurately annotated datasets related to earthquake-induced deformation. To address this limitation, we propose an automated method for constructing deep learning training datasets by integrating the Global Centroid Moment Tensor (GCMT) earthquake catalog with Sentinel-1 InSAR observations. This approach reduces the inefficiencies and manual labor typically involved in InSAR data preparation, thereby significantly enhancing the efficiency and automation of constructing deep learning datasets for coseismic deformation. Using this method, we developed and publicly released a large-scale training dataset consisting of coseismic InSAR samples. The dataset contained 353 Sentinel-1 interferograms corresponding to 62 global earthquakes that occurred between 2015 and 2024. Following standardized preprocessing and data augmentation (DA), a large number of image samples were generated for model training. Multidimensional analyses of the dataset confirmed its high quality and strong representativeness, making it a valuable asset for deep learning research on coseismic deformation. The dataset construction process followed a standardized and reproducible workflow, ensuring objectivity and consistency throughout data generation. As additional coseismic InSAR observations become available, the dataset can be continuously expanded, evolving into a comprehensive, high-quality, and diverse training resource. It serves as a solid foundation for advancing deep learning applications in the field of InSAR-based coseismic deformation analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence and Remote Sensing for Geohazards)
Show Figures

Figure 1

15 pages, 3313 KiB  
Technical Note
Early Post-Seismic Deformation Revealed After the Wushi (China) Earthquake (Mw = 7.1) Occurred on 22 January 2024
by Xiaoran Lv, Guichun Luo, Lifu Zheng, Bozhi Zhang and Chen Zhang
Remote Sens. 2025, 17(8), 1340; https://doi.org/10.3390/rs17081340 - 9 Apr 2025
Cited by 2 | Viewed by 563
Abstract
The Mw = 7.1 Wushi earthquake is the second-largest digitally recorded earthquake in the Tianshan seismic zone and provides an opportunity to explore the structural characteristics of the Tianshan seismic zone. In this study, we calculated the early (11-month) post-seismic deformation of the [...] Read more.
The Mw = 7.1 Wushi earthquake is the second-largest digitally recorded earthquake in the Tianshan seismic zone and provides an opportunity to explore the structural characteristics of the Tianshan seismic zone. In this study, we calculated the early (11-month) post-seismic deformation of the Wushi earthquake using Sentine-1 ascending and descending InSAR time series data. We found that the 11-month post-seismic deformation was dominated by afterslip along the up-dip continuation of the coseismic fault. The seismic moment released by the afterslip was Mw = 6.20, with 6.5% of that released by the mainshock. Moreover, we explored four slip models for the Mw = 5.7 aftershock that occurred on 29 January and found that this event primarily ruptured a thrust fault. However, determining the thrust fault type based on the current field investigations and InSAR data remains difficult. Finally, the Coulomb stress changes indicated that both the afterslip and aftershock were promoted by the Wushi earthquake. Full article
Show Figures

Figure 1

20 pages, 22788 KiB  
Article
Structural Deformation Style and Seismic Potential of the Maoyaba Fault, Southeastern Margin of the Tibet Plateau
by Xianbing Zhang, Ning Zhong, Xiao Yu, Guifang Yang and Haibing Li
Remote Sens. 2025, 17(7), 1288; https://doi.org/10.3390/rs17071288 - 4 Apr 2025
Viewed by 453
Abstract
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the [...] Read more.
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the northwest Sichuan sub-block on the southeastern margin of the Tibet Plateau, running almost parallel to the Xianshuihe fault zone and forming a V-shaped conjugate structure system with the Batang fault zone (BTFZ). The Maoyaba fault (MYBF) is a significant component of the northwestern part of the LTFZ, exhibiting activity in the late Quaternary. It triggered the ancient Luanshibao landslide and caused the Litang earthquake in 1729 AD, demonstrating intense seismic activity. Employing high-resolution remote sensing interpretation, field surveys, UAV photogrammetry, and UAV LiDAR, this study further examines the geometric distribution and kinematic properties of the MYBF, as well as paleoearthquake events recorded by the fault scarps. Combined with the geometric distribution and kinematic properties of the Hagala fault (HGLF) and Zimeihu fault (ZMHF), this study discusses the late Quaternary structural deformation style and seismic potential of the MYBF. The MYBF could produce earthquakes of approximately Mw 6.7 ± 0.3, with an average co-seismic slip of about 0.68 m and an average recurrence interval of strong earthquakes since the late Quaternary ranging from 0.9 to 1.1 ky. The likelihood of surface rupture earthquakes occurring in the near future is low; however, the expansion of the HGLF could induce moderate to strong earthquakes in the MYB area. The variation in the local tectonic stress field, which is influenced by the Litang–Batang V-shaped structure system and lithological differences, results in the formation of an extensional horsetail structure in the northwestern segment of the LTFZ. Both the HGLF and ZMHF remain active faults. Under the influence of nearly north–south tensile stress, these faults and the Litang–Batang V-shaped structure system collectively regulate the movement of regional crustal material. Full article
Show Figures

Figure 1

13 pages, 11404 KiB  
Essay
The Tectonic Significance of the Mw7.1 Earthquake Source Model in Tibet in 2025 Constrained by InSAR Data
by Shuyuan Yu, Shubi Zhang, Jiaji Luo, Zhejun Li and Juan Ding
Remote Sens. 2025, 17(5), 936; https://doi.org/10.3390/rs17050936 - 6 Mar 2025
Cited by 2 | Viewed by 1546
Abstract
On 7 January 2025, at Beijing time, an Mw7.1 earthquake occurred in Dingri County, Shigatse, Tibet. To accurately determine the fault that caused this earthquake and understand the source mechanism, this study utilized Differential Interferometric Synthetic Aperture Radar (DInSAR) technology to [...] Read more.
On 7 January 2025, at Beijing time, an Mw7.1 earthquake occurred in Dingri County, Shigatse, Tibet. To accurately determine the fault that caused this earthquake and understand the source mechanism, this study utilized Differential Interferometric Synthetic Aperture Radar (DInSAR) technology to process Sentinel-A data, obtaining the line-of-sight (LOS) co-seismic deformation field for this earthquake. This deformation field was used as constraint data to invert the geometric parameters and slip distribution of the fault. The co-seismic deformation field indicates that the main characteristics of the earthquake-affected area are vertical deformation and east-west extension, with maximum deformation amounts of 1.6 m and 1.0 m for the ascending and descending tracks, respectively. A Bayesian method based on sequential Monte Carlo sampling was employed to invert the position and geometric parameters of the fault, and on this basis, the slip distribution was inverted using the steepest descent method. The inversion results show that the fault has a strike of 189.2°, a dip angle of 40.6°, and is classified as a westward-dipping normal fault, with a rupture length of 20 km, a maximum slip of approximately 4.6 m, and an average slip angle of about −82.81°. This indicates that the earthquake predominantly involved normal faulting with a small amount of left–lateral strike–slip, corresponding to a moment magnitude of Mw7.1, suggesting that the fault responsible for the earthquake was the northern segment of the DMCF (Deng Me Cuo Fault). The slip distribution results obtained from the finite fault model inversion show that this earthquake led to a significant increase in Coulomb stress at both ends of the fault and in the northeastern–southwestern region, with stress loading far exceeding the earthquake triggering threshold of 0.03 MPa. Through analysis, we believe that this Dingri earthquake occurred at the intersection of a “Y”-shaped structural feature where stress concentration is likely, which may be a primary reason for the frequent occurrence of moderate to strong earthquakes in this area. Full article
Show Figures

Graphical abstract

27 pages, 27633 KiB  
Article
Tracking the Seismic Deformation of Himalayan Glaciers Using Synthetic Aperture Radar Interferometry
by Sandeep Kumar Mondal, Rishikesh Bharti and Kristy F. Tiampo
Remote Sens. 2025, 17(5), 911; https://doi.org/10.3390/rs17050911 - 5 Mar 2025
Viewed by 1375
Abstract
The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of [...] Read more.
The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of the high-altitude Himalayan region. The impact of earthquakes can be easily studied in the plains and plateaus with the help of well-distributed seismogram networks and these regions’ accessibility is helpful for field- and lab-based studies. However, earthquakes triggered close to high-altitude Himalayan glaciers are tough to investigate for the impact over glaciers and glacial deposits. In this study, we attempt to understand the impact of earthquakes on and around Himalayan glaciers in terms of vertical displacement and coherence change using space-borne synthetic aperture radar (SAR). Eight earthquake events of various magnitudes and hypocenter depths occurring in the vicinity of Himalayan glacial bodies were studied using C-band Sentinel1-A/B SAR data. Differential interferometric SAR (DInSAR) analysis is applied to capture deformation of the glacial surface potentially related to earthquake occurrence. Glacial displacement varies from −38.9 mm to −5.4 mm for the 2020 Tibet earthquake (Mw 5.7) and the 2021 Nepal earthquake (Mw 4.1). However, small glacial and ground patches processed separately for vertical displacements reveal that the glacial mass shows much greater seismic displacement than the ground surface. This indicates the possibility of the presence of potential site-specific seismicity amplification properties within glacial bodies. A reduction in co-seismic coherence around the glaciers is observed in some cases, indicative of possible changes in the glacial moraine deposits and/or vegetation cover. The effect of two different seismic events (the 2020 and 2021 Nepal earthquakes) with different hypocenter depths but with the same magnitude at almost equal distances from the glaciers is assessed; a shallow earthquake is observed to result in a larger impact on glacial bodies in terms of vertical displacement. Earthquakes may induce glacial hazards such as glacial surging, ice avalanches, and the failure of moraine-/ice-dammed glacial lakes. This research may be able to play a possible role in identifying areas at risk and provide valuable insights for the planning and implementation of measures for disaster risk reduction. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 42329 KiB  
Article
Coseismic Deformation Monitoring and Seismogenic Fault Parameter Inversion Using Lutan-1 Data: A Comparative Analysis with Sentinel-1A Data
by Xu Li, Junhuan Peng, Yueze Zheng, Xue Chen, Yun Peng, Xu Ma, Yuhan Su, Mengyao Shi, Xiaoman Qi, Xinwei Jiang and Chenyu Wang
Remote Sens. 2025, 17(5), 894; https://doi.org/10.3390/rs17050894 - 3 Mar 2025
Viewed by 955
Abstract
Lutan-1 is the first L-band SAR satellite launched by China with the core mission of geohazard monitoring, but few studies have been conducted to apply it in the field of earthquakes. In this paper, the capability of Lutan-1 data in coseismic deformation analysis [...] Read more.
Lutan-1 is the first L-band SAR satellite launched by China with the core mission of geohazard monitoring, but few studies have been conducted to apply it in the field of earthquakes. In this paper, the capability of Lutan-1 data in coseismic deformation analysis and seismogenic fault parameter inversion was discussed by taking the 2023 Mw6.0 Jishishan earthquake as an example. Firstly, we utilized Lutan-1 data to acquire the coseismic deformation field of the Jishishan earthquake. Subsequently, the seismogenic fault parameter and slip distribution were inverted using both uniform slip and distributed slip models. Finally, a comprehensive comparison was conducted with Sentinel-1 data in terms of the coseismic deformation field, seismic source parameters, and coherence. The comparative results demonstrate that the coseismic deformation and seismogenic fault parameter inversion derived from Lutan-1 data are consistent with those obtained from Sentinel-1 data. Moreover, Lutan-1 data exhibit superior image quality and better coherence, confirming the effectiveness and superiority of Lutan-1 data for coseismic deformation and seismogenic fault analysis. This study provides a theoretical foundation for the application of Lutan-1 in the field of earthquake disaster monitoring. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Interferometry Symposium 2024)
Show Figures

Figure 1

18 pages, 16129 KiB  
Article
Revisiting the 2020 Mw 6.8 Elaziğ, Türkiye Earthquake with Physics-Based 3D Numerical Simulations Constrained by Geodetic and Seismic Observations
by Zhongqiu He, Yuchen Zhang, Wenqiang Wang, Zijia Wang, T. C. Sunilkumar and Zhenguo Zhang
Remote Sens. 2025, 17(4), 720; https://doi.org/10.3390/rs17040720 - 19 Feb 2025
Cited by 2 | Viewed by 720
Abstract
Dynamic rupture simulations of earthquakes offer crucial insights into the physical mechanisms of driving fault slip and seismic hazards. By incorporating non-planar fault models that accurately represent subsurface structures, this study provides a realistic depiction of the rupture processes of the 2020 Mw [...] Read more.
Dynamic rupture simulations of earthquakes offer crucial insights into the physical mechanisms of driving fault slip and seismic hazards. By incorporating non-planar fault models that accurately represent subsurface structures, this study provides a realistic depiction of the rupture processes of the 2020 Mw 6.8 Elazığ, Türkiye earthquake, influenced by geometric complexities. Initially, we determined its coseismic slip on the non-planar fault using near-field strong motion and InSAR observations. Subsequently, we established the heterogeneous initial stress on the fault plane based on the coseismic slip and integrated it into the dynamic rupture modeling to assess physics-based ground motion and seismic hazards. The numerical simulations utilized the curved grid finite-difference method (CGFDM), which effectively models rupture dynamics with heterogeneities in fault geometry, initial stress, and other factors. Our synthetic surface deformation and seismograms align well with the observational data obtained from InSAR and seismic instruments. We observed localized occurrences of supershear rupture during fault propagation. Furthermore, the intensity distribution we simulated closely aligns with the actual observations. These findings highlight the critical role of source heterogeneity in seismic hazard assessment, advancing our understanding of fault dynamics and enhancing predictive capabilities. Full article
Show Figures

Figure 1

15 pages, 7825 KiB  
Technical Note
D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake
by Yurong Ding, Xin Liu, Xiaofeng Dai, Gaoying Yin, Yang Yang and Jinyun Guo
Remote Sens. 2024, 16(22), 4319; https://doi.org/10.3390/rs16224319 - 19 Nov 2024
Cited by 2 | Viewed by 1170
Abstract
On 23 January 2024, an Mw 7.01 earthquake struck the Wushi County, Xinjiang Uygur Autonomous Region, China. The occurrence of this earthquake provides an opportunity to gain a deeper understanding of the rupture behavior and tectonic activity of the fault system in [...] Read more.
On 23 January 2024, an Mw 7.01 earthquake struck the Wushi County, Xinjiang Uygur Autonomous Region, China. The occurrence of this earthquake provides an opportunity to gain a deeper understanding of the rupture behavior and tectonic activity of the fault system in the Tianshan seismic belt. The coseismic deformation field of the Wushi earthquake was derived from Sentinel-1A ascending and descending track data using Differential Interferometric Synthetic Aperture Radar (D-InSAR) technology. The findings reveal a maximum line-of-sight (LOS) displacement of 81.1 cm in the uplift direction and 16 cm in subsidence. Source parameters were determined using an elastic half-space dislocation model. The slip distribution on the fault plane for the Mw 7.01 Wushi earthquake was further refined through a coseismic slip model, and Coulomb stress changes on nearby faults were calculated to evaluate seismic hazards in surrounding areas. Results indicate that the coseismic rupture in the Mw 7.01 Wushi earthquake sequence was mainly characterized by left-lateral strike-slip motion. The peak fault slip was 3.2 m, with a strike of 228.34° and a dip of 61.80°, concentrated primarily at depths between 5 and 25 km. The focal depth is 13 km. This is consistent with findings reported by organizations like the United States Geological Survey (USGS). The fault rupture extended to the surface, consistent with field investigations by the Xinjiang Uygur Autonomous Region Earthquake Bureau. Coulomb stress results suggest that several fault zones, including the Kuokesale, Dashixia, Piqiang North, Karaitike, southeastern sections of the Wensu, northwestern sections of the Tuoergan, and the Maidan-Sayram Fault Zone, are within regions of stress loading. These areas show an increased risk of future seismic activity and warrant close monitoring. Full article
Show Figures

Figure 1

Back to TopTop