Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations
Abstract
1. Introduction
2. Material and Methods
2.1. The 2020 MW 6.8 Elazığ and 2023 MW 7.8 and 7.6 Kahramanmaraş Seismic Sequences Along the EAFZ
2.2. The 4 August 2020 MW 5.6 and the 9 April 2022 MW 5.3 Events Along the Pütürge Segment
2.3. The Ground Deformation from InSAR and GNSS During the 2023 Kahramanmaraş Seismic Sequence
2.4. The Ground Deformation from InSAR During the 2020 MW 5.6 and the 2022 MW 5.3 Earthquakes
2.5. Geodetic Modeling
3. Results
3.1. The 6 February 2023 MW 7.8 and 7.6 Kahramanmaraş Earthquake Doublet
3.2. The 20 February 2023 MW 6.4 Antakya–Hatay Aftershock
3.3. The Source Modeling of the Smaller Seismic Events Along the Pütürge Segment (2020 and 2022)
3.4. Strain-Rate Estimation and Dislocation Modeling from GNSS Data
4. Discussion
4.1. Source Modeling of the 6 February 2023 MW 7.8 and 7.6 Kahramanmaraş Earthquake Doublet
4.2. The Northeastern Termination of the 2023 Rupture: The Pütürge Segment
4.3. The Southwestern Termination of the 2023 Rupture: The Hatay Region
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 2006, 111, B05411. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Aktung, B.; Ozener, H.; Dogru, A.; Sanbucu, A.; Turgut, B.; Halicioglu, K.; Yilmaz, O.; Havazli, E. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J. Geod. 2016, 94–95, 1–12. [Google Scholar] [CrossRef]
- Hempton, M.R.; Dewey, J.F.; Saroglu, F. The East Anatolian transform fault: Along strike variations in geometry and behavior. Eos Tran. Am. Geophys. Union 1981, 62, 393. [Google Scholar]
- Barka, A.A.; Kandinsky-Cade, K. Strike-slip fault geometry in Turkey and its influence in earthquake activity. Tectonics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Saroglu, F.; Emre, O.; Kuscu, O. The East Anatolian fault zone of Turkey. Ann. Tecton. 1992, 6, 99–125. [Google Scholar]
- Duman, T.Y.; Emre, O. The East Anatolian Fault: Geometry, segmentation and jog characteristics. Geol. Soc. Lond. Spec. Publ. 2013, 372, 495–529. [Google Scholar] [CrossRef]
- Ambraseys, N.N. Temporary seismic quiescence: SE Turkey. Geophys. J. Int. 1989, 96, 311–331. [Google Scholar] [CrossRef]
- Bletery, Q.; Cavalie, O.; Nocquet, J.-M.; Ragon, T. Distribution of interseismic coupling along the North and East Anatolian Faults inferred from InSAR and GPS data. Geophys. Res. Lett. 2020, 47, e2020GL087775. [Google Scholar] [CrossRef]
- Cheloni, D.; Akinci, A. Source modelling and strong ground motion simulations for the 24 January 2020, Mw 6.8 Elazığ earthquake, Turkey. Geophys. J. Int. 2020, 223, 1054–1068. [Google Scholar] [CrossRef]
- Melgar, D.; Taymaz, T.; Ganas, A.; Crowell, B.; Öcalan, T.; Kahraman, M.; Tsironi, V.; Yolsal-Çevikbilen, S.; Valkaniotis, S.; Irmak, T.S.; et al. Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica 2023, 2, 1–10. [Google Scholar] [CrossRef]
- Barbot, S.; Luo, H.; Want, T.; Hamiel, Y.; Platibratova, O.; Javed, M.T.; Braitenberg, C.; Gurbuz, G. Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6 Kahramanmaras, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica 2023, 2, 1–17. [Google Scholar] [CrossRef]
- Tong, X.; Wang, Y.; Chen, S. Coseismic Deformation of the 2023 Türkiye Earthquake Doublet from Sentinel-1 InSAR and Implications for Earthquake Hazard. Seismol. Res. Lett. 2023, 95, 574–583. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Wang, R.; Taymaz, T.; Xie, Z.; Xiong, X.; Irmak, T.S.; Kahraman, M.; Erman, C. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye. Nat. Commun. 2023, 14, 5564. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Aoki, Y.; Wang, J.; Cui, Y.; Chen, Q.; Yang, Y.; Yao, Z. The 2023 Mw 7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard. Seismol. Res. Lett. 2023, 95, 562–573. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Taymaz, T.; He, Z.; Xu, T.; Zhang, Z. Dynamic Rupture Process of the 2023 Mw 7.8 Kahramanmaras Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard. Geophys. Res. Lett. 2023, 50, e2023GL104787. [Google Scholar] [CrossRef]
- Delouis, B.; van den Ende, M.; Ampuero, J.-P. Kinematic Rupture Model of the 6 February 2023 Mw 7.8 Türkiye Earthquake from a Large Set of Near-Source Strong-Motion Records Combined with GNSS Offsets Reveals Intermittent Supershear Rupture. Bull. Seismol. Soc. Am. 2023, 114, 726–740. [Google Scholar] [CrossRef]
- Okuwaki, R.; Yagi, Y.; Taymaz, T.; Hicks, S.P. Multi-Scale Rupture Growth With Alternating Directions in a Complex Fault Network During the 2023 South-Eastern Türkiye and Syria Earthquake Doublet. Geophys. Res. Lett. 2023, 50, e2023GL103480. [Google Scholar] [CrossRef]
- Jia, Z.; Jin, Z.; Marchandon, M.; Ulrich, T.; Gabriel, A.-A.; Fan, W.; Shearer, P.; Zou, X.; Resoske, J.; Bulut, F.; et al. The complex dynamics of the 2023 Kahramanmaras, Turkey, Mw 7.8-7.7 earthquake doublet. Science 2023, 381, 985–990. [Google Scholar] [CrossRef]
- Tung, S.; Sippl, C.; Shirzaei, M.; Taymaz, T.; Masterlark, T.; Medved, I. Structural Controls on Fault Slip Models of the 6 February 2023 Kahramanmaras, Türkiye Earthquake Doublet With Finite Element Analyses. Geophys. Res. Lett. 2024, 51, e2023GL107472. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Taymaz, T.; Hu, N.; Zhao, Z.; Yue, H.; Song, X.; Shen, Z.; Xu, H.; Geng, J.; et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaras, Türkiye, earthquake doublet. Science 2024, 383, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, Y.; Zhang, Y.; Feng, W.; Taymaz, T.; Chen, Y.-T.; Xu, C.; Xu, B.; Wang, R.; Shi, F.; et al. Geometric barriers impacted rupture processes and stress releases of the 2023 Kahramanmaras, Turkiye, earthquake doublet. Commun. Earth Environ. 2025, 6, 56. [Google Scholar] [CrossRef]
- Liu, J.; Huang, C.; Zhang, G.; Shan, X.; Korzhenkov, A.; Taymaz, T. Immature characteristics of the East Anatolian Fault Zone from SAR, GNSS and strong motion data of the 2023 Turkiye-Syria earthquake doublet. Sci. Rep. 2024, 14, 10625. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Chen, Q.; Yang, Y.-H.; Xu, Q. Coseismic Faulting Model and Post-Seismic Surface Motion of the 2023 Turkey-Syria Earthquake Doublet Revealed by InSAR and GPS Measurements. Remote Sens. 2023, 15, 3327. [Google Scholar] [CrossRef]
- Nalbant, S.S.; McCluskey, J.; Steacy, S.; Barka, A.A. Stress accumulation and increased seismic risk in eastern Turkey. Earth Planet. Sci. Lett. 2002, 195, 291–298. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Jackson, J.A. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int. 1998, 133, 390–406. [Google Scholar] [CrossRef]
- Herece, E. Dogu Anadolu Fayi (DAF) Atlasi. General Directorate of Mineral Research and Exploration; Serial Number, 14; Special Publications: Ankara, Turkey, 2008; p. 359. [Google Scholar]
- Kondorskaya, N.V.; Ulomov, V.I. Special Catalogue of Earthquakes of Northern Eurasia from Ancient Times Through 1995 (SECNE). 1999. Available online: http://seismo.ethz.ch/static/gshap/neurasia/nordasiacat.txt (accessed on 1 February 2024).
- Caputo, R. Ground effects of large morphogenic earthquakes. J. Geodyn. 2005, 40, 113–118. [Google Scholar] [CrossRef]
- Reitman, N.G.; Briggs, R.W.; Barnhart, W.D.; Hatem, A.E.; Jobe, J.A.T.; DuRoss, C.B.; Gold, R.D.; Mejstrik, J.D.; Collett, C.; Koehler, R.D.; et al. Rapid surface rupture mapping from satellite data: The 2023 Kahramanmaras, Turkey (Türkiye), earthquake sequence. Seism. Rec. 2023, 3, 289–298. [Google Scholar] [CrossRef]
- Lomax, A. Precise, NNL-SSST-Coherence Hypocenter Catalog for the 2023 Mw 7.8 and Mw 7.6 Turkey Earthquake Sequence, March 2023. 2023. Available online: https://zenodo.org/records/7699882 (accessed on 1 February 2024). [CrossRef]
- Melgar, D.; Ganas, A.; Taymaz, T.; Valkaniotis, S.; Crowell, B.W.; Kapetanidis, V.; Tsironi, V.; Yolsal-Cevikbilen, S.; Ocalan, T. Rupture kinematics of 2020 January 24 Mw 6.7 Doganyiol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophys. J. Int. 2020, 223, 862–874. [Google Scholar] [CrossRef]
- Cetin, H.; Guneyli, H.; Mayer, K. Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian Fault Zone, Turkey. Tectonophysics 2003, 374, 163–197. [Google Scholar] [CrossRef]
- Cakir, Z.; Dogan, U.; Akoglu, A.M.; Ergintav, S.; Ozarpaci, S.; Ozdemir, A.; Nozadkhalil, T.; Cakir, N.; Zabci, C.; Ekoc, M.H.; et al. Arrest of the Mw 6.8 January 24, 2020 Elazig (Turkey) earthquake by shallow fault creep. Earth Planet. Sci. Lett. 2023, 608, 118085. [Google Scholar] [CrossRef]
- Pousse-Beltran, L.; Nissen, E.; Bergman, E.A.; Cambaz, M.D.; Gaudreau, E.; Karasozen, E.; Tan, F. The 2020 Mw 6.8 Elazig (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophys. Res. Lett. 2020, 47, e2020GL088136. [Google Scholar] [CrossRef]
- Guvercin, S.E. 2023 Earthquake Doublet in Türkiye Reveals the Complexities of the East Anatolian Fault Zone: Insights from Aftershock Patterns and Moment Tensor Solutions. Seismol. Res. Lett. 2023, 95, 664–679. [Google Scholar] [CrossRef]
- Seyrek, A.; Demir, T.; Westway, R.; Guillou, H.; Scaillet, S.; White, T.S.; Bridgland, D.R. The kinematics of central-southern Turkey and northwest Syria revisited. Tectonophysics 2014, 618, 35–66. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T.; Tsutsui, K. Generation of high resolution global DSM from ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-4, 243–248. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosyst. 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Cheloni, D.; Falcucci, E.; Gori, S. Half-Graben Rupture Geometry of the 30 October 2016 Mw 6.6 Mt. Vettore-Mt. Bove Earthquake, Central Italy. J. Geophys. Res. 2019, 124, 4091–4118. [Google Scholar] [CrossRef]
- Atzori, S.; Hunstad, I.; Chini, M.; Salvi, S.; Tolomei, C.; Bignami, C.; Stramondo, S.; Trasatti, E.; Antonioli, A.; Boschi, E. Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (Central Italy). Geophys. Res. Lett. 2009, 36, L15305. [Google Scholar] [CrossRef]
- Cheloni, D.; D’Agostino, N.; D’Anastasio, E.; Avallone, A.; Mantenuto, S.; Giuliani, R.; Mattone, M.; Calcaterra, S.; Gambino, P.; Dominici, D.; et al. Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements. Geophys. J. Int. 2010, 181, 1539–1546. [Google Scholar] [CrossRef]
- Cheloni, D.; Famiglietti, N.A.; Caputo, R.; Tolomei, C.; Vicari, A. A Composite Fault Model for the 2024 Mw 7.4 Hualien Earthquake Sequence in Eastern Taiwan Inferred From GNSS and InSAR data. Geophys. Res. Lett. 2024, 51, e2024GL110255. [Google Scholar] [CrossRef]
- Stark, P.B.; Parker, R.L. Bounded-values least-squares algorithm—An algorithm and implications. Comput. Stat. 1995, 10, 129–141. [Google Scholar]
- Corana, A.; Marchesi, M.; Martini, C.; Ridella, S. Minimizing multimodal functions of continuous variables with the “Simulated Annealing” algorithm. ACM Trans. Math. Softw. 1987, 13, 262–280. [Google Scholar] [CrossRef]
- Kurt, A.I.; Ozbakir, A.D.; Cingoz, A.; Ergintav, S.; Dogan, U.; Ozarpaci, S. Contemporary Velocity Field for Turkey Inferred from Combination of a Dense Network of Long Term GNSS Observations. Turk. J. Earth Sci. 2023, 32, 275–293. [Google Scholar] [CrossRef]
- Kremer, C.; Blewitt, G.; Klein, E.C. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Shen, Z.-K.; Wang, M.; Zeng, Y.; Wang, F. Optimal Interpolation of Spatially Discretized Geodetic Data. Bull. Seism. Soc. Am. 2015, 105, 2117–2127. [Google Scholar] [CrossRef]
- Walters, R.J.; Parsons, B.; Wright, T.J. Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. J. Geophys. Res. 2014, 119, 5215–5234. [Google Scholar] [CrossRef]
- Cavalié, O.; Jonsson, S. Block-like plate movements in eastern Anatolia observed by InSAR. Geophys. Res. Lett. 2014, 41, 26–31. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rolling, C.; et al. High-Resolution Surface Velocities and Strain for Anatolia From Sentinel-1 InSAR and GNSS Data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Cetin, S.; Ergintav, S.; Dogan, U.; Cakir, Z.; Senturk, S.; Karabulut, H.; Saroglu, F.; Julaiti, W.; Ozener, H. Investigation of the Creep Along the Hazar-Palu Section of the East Anatolian Fault (Turkey) Using InSAR and GPS Observations. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016; Geophysical Research Abstracts. 2016; Volume 18, p. EGU2016-3938. Available online: https://meetingorganizer.copernicus.org/EGU2016/EGU2016-3938.pdf (accessed on 1 February 2024).
- Akinci, A.; Pitarka, P.; Artale, P.; De Gori, P.; Buttinelli, M. Impact of the Earthquake Rupture on Ground Motion Variability of the August 24, 2016 Mw6.2 Amatrice Earthquake, Italy. Bull. Seismol. Soc. Am. 2024, 114, 2823–2845. [Google Scholar] [CrossRef]
- Kostrov, V.V. Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Earth Phys. 1974, 1, 23–40. [Google Scholar]
- Funning, G.; Hofstetter, C.; Ozarpaci, S. Temporally variable creep behavior on the East Anatolian Fault and the arrest of the 2023 Pazarcik earthquake rupture. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025; Geophysical Research Abstracts. 2025; p. EGU25-15399. [Google Scholar] [CrossRef]
- Yildiz, S.S.; Ozkan, A.; Yavasoglu, H.H.; Masson, F.; Tiryakioglu, I.; Alkan, M.N.; Bilgi, S. Determination of recent tectonic deformations in the vicinity of Adana-Osmaniye-Hatay-Gaziantep triple junction region by half-space modeling. C. R. Geosci. 2020, 352, 225–234. [Google Scholar] [CrossRef]
- Ozkan, A.; Yavasoglu, H.H.; Masson, F. Present-day strain accumulations and fault kinematics at the Hatay Triple Junction using new geodetic constraints. Tectonophysics 2023, 854, 229819. [Google Scholar] [CrossRef]
- Li, X.; Jonsson, S.; Liu, S.; Ma, Z.; Castro-Perdomo, N.; Cesca, S.; Masson, F.; Klinger, Y. Resolving the slip-rate inconsistency of the northern Dead Sea Fault. Sci. Adv. 2024, 10, eadj8408. [Google Scholar] [CrossRef]
- Pitarka, A.; Akinci, A.; De Gori, P.; Buttinelli, M. Deterministic 3D ground-motion simulations (0–5 Hz) and surface topography effects of the 30 October 2016 Mw 6.5 Norcia, Italy, earthquake. Bull. Seism. Soc. Am. 2022, 112, 262–286. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. New improved version of the generic mapping tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheloni, D.; Famiglietti, N.A.; Akinci, A.; Caputo, R.; Vicari, A. Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations. Remote Sens. 2025, 17, 2270. https://doi.org/10.3390/rs17132270
Cheloni D, Famiglietti NA, Akinci A, Caputo R, Vicari A. Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations. Remote Sensing. 2025; 17(13):2270. https://doi.org/10.3390/rs17132270
Chicago/Turabian StyleCheloni, Daniele, Nicola Angelo Famiglietti, Aybige Akinci, Riccardo Caputo, and Annamaria Vicari. 2025. "Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations" Remote Sensing 17, no. 13: 2270. https://doi.org/10.3390/rs17132270
APA StyleCheloni, D., Famiglietti, N. A., Akinci, A., Caputo, R., & Vicari, A. (2025). Modeling the 2023 Türkiye Earthquakes and Strain Accumulation Along the East Anatolian Fault Zone: Insights from InSAR, GNSS, and Small-Magnitude Seismicity, with Implications for the Seismic Potential at Rupture Terminations. Remote Sensing, 17(13), 2270. https://doi.org/10.3390/rs17132270