Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (570)

Search Parameters:
Keywords = co-crystalline phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1917 KiB  
Article
Sequential Fractionation of Lignin for Interfacial Optimization and Enhanced Mechanical Performance in PBAT Composites
by Meng He, Mengfan Xu, Xian Yang, Chao Liu and Binghua Yan
Polymers 2025, 17(17), 2270; https://doi.org/10.3390/polym17172270 - 22 Aug 2025
Abstract
To address the inherent challenge of poor interfacial compatibility in lignin/poly(butylene adipate-co-terephthalate) (PBAT) composites, lignin was extracted from Camellia oleifera shells and subjected to sequential solvent fractionation using ethanol, acetone, and tetrahydrofuran (THF). Two representative fractions—acetone-soluble (ACL) and THF-soluble (THFL)—were selected for composite [...] Read more.
To address the inherent challenge of poor interfacial compatibility in lignin/poly(butylene adipate-co-terephthalate) (PBAT) composites, lignin was extracted from Camellia oleifera shells and subjected to sequential solvent fractionation using ethanol, acetone, and tetrahydrofuran (THF). Two representative fractions—acetone-soluble (ACL) and THF-soluble (THFL)—were selected for composite preparation with PBAT via solvent casting. The influence of lignin fractionation on the structural and performance characteristics of the resulting composites was systematically evaluated through Fourier-transform infrared (FTIR) spectroscopy, the water contact angle (WCA), differential scanning calorimetry (DSC), tensile testing, and scanning electron microscopy (SEM). The results revealed that the abundant hydroxyl groups and benzene rings present in both ACL and THFL facilitated hydrogen bonding and conjugation interactions with the PBAT matrix, significantly improving interfacial adhesion. Notably, the ACL fraction effectively suppressed phase separation and increased the glass transition temperature (Tg) by 1.9 °C, leading to a 13.9% enhancement in tensile strength compared to neat PBAT. More strikingly, the incorporation of only 7 wt% THFL resulted in a remarkable 31% improvement in tensile strength. This substantial enhancement was primarily attributed to the favorable polarity match between THFL and PBAT, as well as the nucleating effect of THFL, which increased the crystallinity of PBAT by 25.3%. This study highlights the effectiveness of sequential lignin fractionation in tailoring the interfacial properties of biodegradable polymer composites. It also provides a promising strategy for the high-value utilization of lignin toward the development of high-performance, environmentally friendly materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 3303 KiB  
Article
Waste Brick as Partial Replacement of Gypsum in Mortars: Mechanical Performance and Environmental Benefits for Sustainable Construction
by Said Beldjilali, Antonella Sarcinella, Mohamed Amine Ouared, Abdelkader Bougara, Khalil Naciri and Rodica-Mariana Ion
Sustainability 2025, 17(16), 7452; https://doi.org/10.3390/su17167452 - 18 Aug 2025
Viewed by 322
Abstract
Replacing virgin raw materials with recycled waste in construction products is a key strategy for advancing sustainable development. This study explores the partial substitution of commercial gypsum with powdered waste brick (WB) in gypsum mortars, assessing its impact on mechanical performance, water absorption, [...] Read more.
Replacing virgin raw materials with recycled waste in construction products is a key strategy for advancing sustainable development. This study explores the partial substitution of commercial gypsum with powdered waste brick (WB) in gypsum mortars, assessing its impact on mechanical performance, water absorption, and environmental footprint. Mortars were prepared with 0%, 5%, 10%, 20%, and 30% WB by weight. Results indicate that a 20% replacement level enhances flexural strength by 56% and compressive strength by 33% at 28 days, compared to the reference mix. SEM and XRD analyses revealed no formation of new crystalline phases, suggesting that the performance improvement is primarily due to physical interactions and microstructural effects. However, at 30% WB, a significant reduction in adhesion strength was observed, falling below the typical threshold for gypsum-based coatings, which may constrain practical application at higher replacement levels. Environmental assessment showed that both CO2 emissions and energy consumption decreased by up to 20% with a 30% substitution. A 20% WB content is therefore proposed as the optimal compromise between mechanical performance and environmental benefit. This approach supports circular economy principles by promoting the reuse of ceramic construction waste in the development of new sustainable materials. Full article
Show Figures

Figure 1

20 pages, 3199 KiB  
Article
The Application of a Simple Synthesis Process to Obtain Trirutile-Type Cobalt Antimonate Powders and the Study of Their Electrical Properties in Propane Atmospheres for Use in Gas Sensors
by Lucía Ivonne Juárez Amador, Héctor Guillén Bonilla, Alex Guillén Bonilla, José Trinidad Guillén Bonilla, Verónica María Rodríguez Betancourtt, Jorge Alberto Ramírez Ortega, Antonio Casillas Zamora and Emilio Huizar Padilla
Coatings 2025, 15(8), 952; https://doi.org/10.3390/coatings15080952 - 14 Aug 2025
Viewed by 339
Abstract
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, [...] Read more.
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, confirming the CoSb2O6 crystalline phase. The microstructural characteristics of the oxide were analyzed using scanning and transmission electron microscopy (SEM/TEM), revealing a high abundance of nanorods, nanoplates, and irregular nanoparticles. These nanoparticles have an average size of ~21 nm. Using UV-Vis, absorption bands associated with the electronic transitions of the CoSb2O6’s characteristic bonds were identified, which yielded a bandgap value of ~1.8 eV. Raman spectroscopy identified vibrational bands corresponding to the oxide’s Sb–O and Co–O bonds. Dynamic sensing tests at 300 °C confirmed the material’s p-type semiconductor behavior, showing an increase in resistance upon exposure to propane. Critically, these tests revealed that the sensor’s baseline resistance and overall response are tunable by the applied voltage (1–12 V), with the highest sensitivity observed at the lowest voltages. This establishes a clear relationship between the electrical operating parameters and the sensing performance. The samples exhibited good operational stability, capacity, and efficiency, along with short response and recovery times. Extra-dry air (1500 cm3/min) was used as the carrier gas to stabilize the films’ surfaces during propane detection. These findings lead us to conclude that the CoSb2O6 could serve as an excellent gas detector. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Figure 1

10 pages, 8704 KiB  
Article
Effect of Preparation Method on the Optical Properties of Novel Luminescent Glass-Crystalline Composites
by Radosław Lisiecki, Natalia Miniajluk-Gaweł and Bartosz Bondzior
Appl. Sci. 2025, 15(16), 8877; https://doi.org/10.3390/app15168877 - 12 Aug 2025
Viewed by 158
Abstract
Phosphor-in-glass (PiG) composites are promising materials for applications in various fields of material engineering. There are competing methods of preparation of PiGs which result in materials with different structural and performance characteristics. The glass-crystal composites comprising tellurite-zinc-sodium glass (TZN) and perovskite LaAlO3 [...] Read more.
Phosphor-in-glass (PiG) composites are promising materials for applications in various fields of material engineering. There are competing methods of preparation of PiGs which result in materials with different structural and performance characteristics. The glass-crystal composites comprising tellurite-zinc-sodium glass (TZN) and perovskite LaAlO3 doped with Eu3+ (LAO:Eu) are prepared using three distinct methods: remelt, direct-doping and co-sintering, in order to evaluate the impact of the preparation method on the structural, optical and luminescence properties of the novel phosphor-in-glass (PiG) composites. The composites prepared by the remelt and direct-doping method suffer from the decomposition of LAO:Eu and Eu3+ ion diffusion into the glass matrix. The highest rate of preservation and luminescence intensity of LAO:Eu is achieved in the composites prepared by the co-sintering method. Unfortunately, the loss of transparency is substantial. This article demonstrates the challenges and tradeoffs that are yet to be resolved in preparation of PiG composites. The preservation of the crystalline phase leads to the lower transparency of the final material. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

22 pages, 9002 KiB  
Article
Systematic Study of Preparing Porous CaCO3 Vaterite Particles for Controlled Drug Release
by Nan Zhang, Binhang Zhao, Pan Yang and Haifei Zhang
Nanomaterials 2025, 15(16), 1227; https://doi.org/10.3390/nano15161227 - 12 Aug 2025
Viewed by 314
Abstract
Porous CaCO3 vaterite particles have been widely used as drug carriers for biomedical applications due to their high biocompatibility and low production costs. However, controlling the particle size and porosity of CaCO3 nanoparticles with the desired crystalline phase is still challenging. [...] Read more.
Porous CaCO3 vaterite particles have been widely used as drug carriers for biomedical applications due to their high biocompatibility and low production costs. However, controlling the particle size and porosity of CaCO3 nanoparticles with the desired crystalline phase is still challenging. In this study, we have systematically investigated the preparation of CaCO3 nanoparticles under various conditions including precursor types/ratios/concentrations, additive concentrations (ethylene glycol), and temperatures. The materials were fully characterized by optical microscopy, scanning and transmission electron microscopy, infrared spectroscopy, powder X-ray diffraction, dynamic laser scattering, thermogravimetric analysis, and gas sorption. The impacts of the reaction parameters were rationalized and the mechanism for the formation of porous vaterite particles was suggested. It was possible to produce porous vaterite nanoparticles (200 nm) under the optimized conditions, which were further used as drug carrier to upload a model drug curcumin. The potential of using these vaterite particles for controlled drug release was demonstrated. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

18 pages, 6481 KiB  
Article
Integrating Carbon-Coated Cu/Cu2O Nanoparticles with Biochars Enabled Efficient Capture and Electrocatalytic Reduction of CO2
by Yutong Hong, Xiaokai Zhou and Fangang Zeng
Catalysts 2025, 15(8), 767; https://doi.org/10.3390/catal15080767 - 11 Aug 2025
Viewed by 435
Abstract
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core [...] Read more.
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core diameters (28.2–24.2 nm) and shell thicknesses (7.8–3.0 layers) were fabricated via lased ablation in liquid. A thin Cu2O layer was confirmed between the interface of the Cu core and the graphene shell, providing an interfacial Cu0/Cu+. Cu@G cross-linked biochars (Cu@G/Bs) with developed porosity (31.8–155.9 m2/g) were synthesized. Morphology, crystalline structure, porosity, and elemental chemical states of Cu@G and Cu@G/Bs were characterized. Cu@G/Bs captured CO2 with a maximum sorption capacity of 107.03 mg/g at 0 °C. Furthermore, 95.3–97.1% capture capacity remained after 10 cycles. Cu@G/Bs exhibited the most superior performance with 40.7% of FEC2H4 and 21.7 mA/cm2 of current density at −1.08 V vs. RHE, which was 1.7 and 2.7 times higher than Cu@G. Synergistic integration of developed porosity for efficient CO2 capture and the fast charge transfer rate of interfacial Cu2O/Cu enabled this improvement. Favorable long-term stability of the phase/structure and CO2 electroreduction activity were present. This work provides new insight for integrating Cu@G and a biochar platform to efficiently capture and electro-reduce CO2. Full article
Show Figures

Graphical abstract

15 pages, 2015 KiB  
Article
Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation
by Nailma Martins and Oscar W. Perez-Lopez
Catalysts 2025, 15(8), 760; https://doi.org/10.3390/catal15080760 - 8 Aug 2025
Viewed by 440
Abstract
CO2 methanation offers a sustainable route to reduce greenhouse gas emissions by converting carbon dioxide into methane, a valuable renewable fuel. This exothermic reaction not only mitigates its environmental impact but also provides energy-efficient benefits, as the heat generated can be reused [...] Read more.
CO2 methanation offers a sustainable route to reduce greenhouse gas emissions by converting carbon dioxide into methane, a valuable renewable fuel. This exothermic reaction not only mitigates its environmental impact but also provides energy-efficient benefits, as the heat generated can be reused in industrial applications. In this study, CO2 methanation was carried out in a continuous flow reactor with a CO2:H2 molar ratio of 1:4 and a gas hourly space velocity (GHSV) of 12,000 h−1, using a Ni-Al-LDH catalyst with a molar ratio of 2.3. The research focused on how calcination and reduction conditions affect catalyst structure and activity. Characterization techniques such as BET, XRD, TPR, H2-TPD, and CO2-TPD revealed that these conditions significantly influence surface area, crystallinity, phase composition, and metal dispersion. A higher reduction temperature decreased the surface area and increased both the crystallite size and basicity. The findings highlight that thermal treatment play a crucial role in optimizing the catalytic properties of NiAl catalyst. The sample calcined at 600 °C showed greater activity at lower reaction temperatures, while the catalyst calcined at 400 °C performed better above 300 °C. Additionally, the evaluation of the effect of the reduction atmosphere during catalyst activation showed that H2 is a more effective reducing gas at lower reaction temperatures, whereas biogas showed a better performance at higher temperatures. Importantly, XRD results showed the catalysts maintained their structural integrity post-reaction, with no significant carbon deposition in the H2 atmosphere, confirming their potential for long-term application in CO2 methanation. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
Show Figures

Graphical abstract

12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 - 2 Aug 2025
Viewed by 378
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

19 pages, 4569 KiB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 331
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 411
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

13 pages, 3623 KiB  
Article
Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
by Ha-Jung Kim, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim and Hee-Chul Lee
Materials 2025, 18(15), 3547; https://doi.org/10.3390/ma18153547 - 29 Jul 2025
Viewed by 391
Abstract
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN [...] Read more.
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN electrode structure, incorporating W electrodes as insertion layers, were fabricated. Rapid thermal annealing (RTA) was subsequently employed to control the crystalline phase of the films. The electrical and structural properties of the capacitors were analyzed based on the RTA temperature, and the presence, thickness, and position of the W insertion electrode layer. Consequently, the capacitor with 5 nm-thick W electrode layers inserted on both the top and bottom sides and annealed at 700 °C exhibited the highest remnant polarization (2Pr = 61.0 μC/cm2). Moreover, the symmetric hybrid electrode capacitors annealed at 500–600 °C also exhibited high 2Pr values of approximately 50.4 μC/cm2, with a leakage current density of approximately 4 × 10−5 A/cm2 under an electric field of 2.5 MV/cm. The findings of this study are expected to contribute to the development of electrode structures for improved performance of HZO-based ferroelectric memory devices. Full article
Show Figures

Figure 1

18 pages, 5270 KiB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Viewed by 400
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 298
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
Integrated Compositional Modeling and Machine Learning Analysis of REE-Bearing Coal Ash from a Weathered Dumpsite
by Rashid Nadirov, Kaster Kamunur, Lyazzat Mussapyrova, Aisulu Batkal, Olesya Tyumentseva and Ardak Karagulanova
Minerals 2025, 15(7), 734; https://doi.org/10.3390/min15070734 - 14 Jul 2025
Viewed by 329
Abstract
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power [...] Read more.
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power generation using coal from the Ekibastuz Basin. A multi-method approach—comprising bulk chemical characterization, unsupervised clustering, X-ray diffraction (XRD), scanning electron microscopy (SEM), and supervised machine learning (ML)—was applied to identify consistent indicators of REE enrichment. While conventional regression models failed to predict individual REE concentrations accurately, ML algorithms consistently highlighted vanadium (V) as the most robust predictor of ΣREE across Random Forest, XGBoost, and LASSO. This suggests that V may act as a geochemical proxy for REE-bearing phases, potentially due to co-retention in amorphous or ferruginous matrices. Despite compositional similarity among many samples, XRD and SEM revealed marked variability in phase structure and crystallinity, underscoring the limitations of bulk oxide data alone. These findings demonstrate that REE behavior in ash cannot be predicted deterministically, but ML can be used to screen for informative compositional signals. The proposed workflow may support the preliminary classification and valorization of heterogeneous ash materials in secondary resource strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 401
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

Back to TopTop