Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = cloud attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4255 KB  
Article
Enhanced Velocity Extraction of Moving Subject Using Through-Wall-Imaging Radar
by Yea-Jun Jung, Hak-Hoon Lee and Hyun-Chool Shin
Appl. Sci. 2025, 15(20), 11120; https://doi.org/10.3390/app152011120 - 16 Oct 2025
Viewed by 138
Abstract
Detecting human movement through walls is vital for disaster response and security, where obstacles obscure visibility and endanger rescue operations, necessitating advanced through-wall radar (TWR) solutions. This study introduces a novel method to enhance velocity estimation accuracy in TWR systems despite signal attenuation [...] Read more.
Detecting human movement through walls is vital for disaster response and security, where obstacles obscure visibility and endanger rescue operations, necessitating advanced through-wall radar (TWR) solutions. This study introduces a novel method to enhance velocity estimation accuracy in TWR systems despite signal attenuation caused by walls. Our proposed method dynamically adjusts the beamforming range based on radar-target distance, improving point cloud reconstruction and enabling precise velocity measurements. We conducted experiments in 1D and 2D indoor environments, with and without a brick wall, to validate the proposed method’s effectiveness. In both 1D and 2D experiments, the proposed method successfully restored the velocity information of five subjects located behind a brick wall, achieving root mean square error (RMSE) values of approximately 0.1–0.2 m/s in most cases. Furthermore, statistical comparisons before and after applying the proposed method in the brick wall environment revealed significant reductions in RMSE (p < 0.05) and significant increases in the number of detected point clouds (p < 0.05), confirming the method’s effectiveness in enhancing both velocity extraction accuracy and detection capability. Full article
Show Figures

Figure 1

19 pages, 1327 KB  
Article
An IoT Architecture for Sustainable Urban Mobility: Towards Energy-Aware and Low-Emission Smart Cities
by Manuel J. C. S. Reis, Frederico Branco, Nishu Gupta and Carlos Serôdio
Future Internet 2025, 17(10), 457; https://doi.org/10.3390/fi17100457 - 4 Oct 2025
Viewed by 396
Abstract
The rapid growth of urban populations intensifies congestion, air pollution, and energy demand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT) offers a means to monitor, coordinate, and optimize transport systems in real time. This paper presents [...] Read more.
The rapid growth of urban populations intensifies congestion, air pollution, and energy demand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT) offers a means to monitor, coordinate, and optimize transport systems in real time. This paper presents an Internet of Things (IoT)-based architecture integrating heterogeneous sensing with edge–cloud orchestration and AI-driven control for green routing and coordinated Electric Vehicle (EV) charging. The framework supports adaptive traffic management, energy-aware charging, and multimodal integration through standards-aware interfaces and auditable Key Performance Indicators (KPIs). We hypothesize that, relative to a static shortest-path baseline, the integrated green routing and EV-charging coordination reduce (H1) mean travel time per trip by ≥7%, (H2) CO2 intensity (g/km) by ≥6%, and (H3) station peak load by ≥20% under moderate-to-high demand conditions. These hypotheses are tested in Simulation of Urban MObility (SUMO) with Handbook Emission Factors for Road Transport (HBEFA) emission classes, using 10 independent random seeds and reporting means with 95% confidence intervals and formal significance testing. The results confirm the hypotheses: average travel time decreases by approximately 9.8%, CO2 intensity by approximately 8%, and peak load by approximately 25% under demand multipliers ≥1.2 and EV shares ≥20%. Gains are attenuated under light demand, where congestion effects are weaker. We further discuss scalability, interoperability, privacy/security, and the simulation-to-deployment gap, and outline priorities for reproducible field pilots. In summary, a pragmatic edge–cloud IoT stack has the potential to lower congestion, reduce per-kilometer emissions, and smooth charging demand, provided it is supported by reliable data integration, resilient edge services, and standards-compliant interoperability, thereby contributing to sustainable urban mobility in line with the objectives of SDG 11 (Sustainable Cities and Communities). Full article
Show Figures

Figure 1

25 pages, 3618 KB  
Article
Effects of Aerosols and Clouds on Solar Energy Production from Bifacial Solar Park in Kozani, NW Greece
by Effrosyni Baxevanaki, Panagiotis G. Kosmopoulos, Rafaella-Eleni P. Sotiropoulou, Stavros Vigkos and Dimitris G. Kaskaoutis
Remote Sens. 2025, 17(18), 3201; https://doi.org/10.3390/rs17183201 - 16 Sep 2025
Viewed by 732
Abstract
The impact of aerosols and clouds on solar energy production is a critical factor for the performance of photovoltaic systems, particularly in regions with dynamic and seasonally variable atmospheric conditions. In Northwestern Greece, the bifacial solar park in Kozani—the largest in Eastern Europe—serves [...] Read more.
The impact of aerosols and clouds on solar energy production is a critical factor for the performance of photovoltaic systems, particularly in regions with dynamic and seasonally variable atmospheric conditions. In Northwestern Greece, the bifacial solar park in Kozani—the largest in Eastern Europe—serves as a valuable case study for evaluating these effects over a 20-year period (2004–2024). By integrating ERA5 reanalysis data and CAMS satellite-based radiation products with modeling tools such as PVGIS, seasonal and annual trends in solar irradiance attenuation were investigated. Results indicate that aerosols have the greatest impact on solar energy production during spring and summer, primarily due to increased anthropogenic and natural emissions, while cloud cover exerts the strongest effect in winter, consistent with the region’s climatic characteristics. ERA5’s estimation of absolute energy output shows a strong correlation with CAMS satellite data (R2 = 0.981), supporting its reliability for trend analysis and climatological studies related to solar potential dynamics in the Southern Balkans. The bifacial park demonstrates an increasing energy yield of approximately 800.71 MWh/year over the study period, corresponding to an annual reduction of ~538 metric tons of CO2 and a financial gain of ~12,827 €. This is the first study in the Eastern Mediterranean that combined ERA5 and CAMS datasets with the PVGIS simulation tool in a long-term evaluation of bifacial PV systems. The combined use of reanalysis and satellite datasets, rarely applied in previous studies, highlights the importance of localized, climate-informed modeling for energy planning and management, especially in a region undergoing delignification and decarbonization. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 11577 KB  
Article
Study on the Parameter Distributions of Three Types of Cloud Precipitation in Xi’an Based on Millimeter-Wave Cloud Radar and Precipitation Data
by Qinze Chen, Yun Yuan, Jia Sun, Ning Chen, Huige Di and Dengxin Hua
Remote Sens. 2025, 17(17), 2947; https://doi.org/10.3390/rs17172947 - 25 Aug 2025
Viewed by 746
Abstract
This study utilizes Ka-band millimeter-wave cloud radar (MMCR), assisted by a precipitation phenomenon instrument, to conduct case studies and analyses of convective precipitation, cumulus precipitation, and stratus precipitation in the Xi’an region. Using the Doppler spectral data of the MMCR, dynamic parameters such [...] Read more.
This study utilizes Ka-band millimeter-wave cloud radar (MMCR), assisted by a precipitation phenomenon instrument, to conduct case studies and analyses of convective precipitation, cumulus precipitation, and stratus precipitation in the Xi’an region. Using the Doppler spectral data of the MMCR, dynamic parameters such as vertical air motion velocity (updraft and downdraft) and particle terminal fall velocity within these three types of cloud precipitation were retrieved. The results show that above the melting layer, the maximum updraft velocity in convective clouds reaches 15 m·s−1, and the strong updraft drives cloud droplets to move upward at an average velocity of about 5 m·s−1. The average updraft velocity in cumulus clouds is greater than that in stratus clouds, with updrafts in cumulus and stratus mainly distributed within 1.5–3 m·s−1 and 1–2 m·s−1, respectively. The reflectivity factor of precipitation particles (Ze) is used to correct the equivalent reflectivity factor (Ka-Ze) after attenuation correction below the MMCR melting layer. The accuracy of calculating the raindrop concentration using the Ka-Ze of MMCR was improved below the melting layer. Based on the relationship between terminal fall velocity and particle diameter and using the conversion between the MMCR power spectrum and raindrop spectrum, the concentration, fall velocity, and particle diameter of raindrops are calculated below the melting layer. The results show that the average reflectivity factor, average concentration, and average particle diameter of raindrops follow the order of convective precipitation > cumulus precipitation > stratiform precipitation. However, the average terminal fall velocity distribution of raindrop particles follows a different order: convective precipitation > stratiform precipitation > cumulus precipitation. Full article
Show Figures

Figure 1

25 pages, 9720 KB  
Article
ICESat-2 Water Photon Denoising and Water Level Extraction Method Combining Elevation Difference Exponential Attenuation Model with Hough Transform
by Xilai Ju, Yongjian Li, Song Ji, Danchao Gong, Hao Liu, Zhen Yan, Xining Liu and Hao Niu
Remote Sens. 2025, 17(16), 2885; https://doi.org/10.3390/rs17162885 - 19 Aug 2025
Viewed by 680
Abstract
For addressing the technical challenges of photon denoising and water level extraction in ICESat-2 satellite-based water monitoring applications, this paper proposes an innovative solution integrating Gaussian function fitting with Hough transform. The method first employs histogram Gaussian fitting to achieve coarse denoising of [...] Read more.
For addressing the technical challenges of photon denoising and water level extraction in ICESat-2 satellite-based water monitoring applications, this paper proposes an innovative solution integrating Gaussian function fitting with Hough transform. The method first employs histogram Gaussian fitting to achieve coarse denoising of water body regions. Subsequently, a probability attenuation model based on elevation differences between adjacent photons is constructed to accomplish refined denoising through iterative optimization of adaptive thresholds. Building upon this foundation, the Hough transform technique from image processing is introduced into photon cloud processing, enabling robust water level extraction from ICESat-2 data. Through rasterization, discrete photon distributions are converted into image space, where straight lines conforming to the photon distribution are then mapped as intersection points of sinusoidal curves in Hough space. Leveraging the noise-resistant characteristics of the Hough space accumulator, the interference from residual noise photons is effectively eliminated, thereby achieving high-precision water level line extraction. Experiments were conducted across five typical water bodies (Qinghai Lake, Long Land, Ganquan Island, Qilian Yu Islands, and Miyun Reservoir). The results demonstrate that the proposed denoising method outperforms DBSCAN and OPTICS algorithms in terms of accuracy, precision, recall, F1-score, and computational efficiency. In water level estimation, the absolute error of the Hough transform-based line detection method remains below 2 cm, significantly surpassing the performance of mean value, median value, and RANSAC algorithms. This study provides a novel technical framework for effective global water level monitoring. Full article
Show Figures

Figure 1

8 pages, 4452 KB  
Proceeding Paper
Synthetic Aperture Radar Imagery Modelling and Simulation for Investigating the Composite Scattering Between Targets and the Environment
by Raphaël Valeri, Fabrice Comblet, Ali Khenchaf, Jacques Petit-Frère and Philippe Pouliguen
Eng. Proc. 2025, 94(1), 11; https://doi.org/10.3390/engproc2025094011 - 25 Jul 2025
Viewed by 540
Abstract
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s [...] Read more.
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s characteristics. Moreover, for a complex scene of interest with targets located on a rough soil, a composite scattering between the target and the surface occurs and creates distortions on the SAR image. These characteristics can make the SAR images difficult to analyse and process. To better understand the complex EM phenomena and their signature in the SAR image, we propose a methodology to generate raw SAR signals and SAR images for scenes of interest with a target located on a rough surface. With this prospect, the entire radar acquisition chain is considered: the sensor parameters, the atmospheric attenuation, the interactions between the incident EM field and the scene, and the SAR image formation. Simulation results are presented for a rough dielectric soil and a canonical target considered as a Perfect Electric Conductor (PEC). These results highlight the importance of the composite scattering signature between the target and the soil. Its power is 21 dB higher that that of the target for the target–soil configuration considered. Finally, these simulations allow for the retrieval of characteristics present in actual SAR images and show the potential of the presented model in investigating EM phenomena and their signatures in SAR images. Full article
Show Figures

Figure 1

16 pages, 4815 KB  
Technical Note
Preliminary Analysis of a Novel Spaceborne Pseudo Tripe-Frequency Radar Observations on Cloud and Precipitation: EarthCARE CPR-GPM DPR Coincidence Dataset
by Zhen Li, Shurui Ge, Xiong Hu, Weihua Ai, Jiajia Tang, Junqi Qiao, Shensen Hu, Xianbin Zhao and Haihan Wu
Remote Sens. 2025, 17(15), 2550; https://doi.org/10.3390/rs17152550 - 23 Jul 2025
Viewed by 684
Abstract
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses [...] Read more.
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses to cloud and precipitation structure. Results demonstrate that the W-band is highly sensitive to high-altitude cloud particles and snowfall (reflectivity < 0 dBZ), yet it experiences substantial signal attenuation under heavy precipitation conditions, and with low-altitude reflectivity reductions exceeding 50 dBZ, its probability density distribution is more widespread, with low-altitude peaks increasing first, and then decreasing as precipitation increases. In contrast, the Ku and Ka-band radars maintain relatively stable detection capabilities, with attenuation differences generally within 15 dBZ, but its probability density distribution exhibits multiple peaks. As the precipitation rate increases, the peak value of the dual-frequency ratio (Ka/W) gradually rises from approximately 10 dBZ to 20 dBZ, and can even reach up to 60 dBZ under heavy rainfall conditions. Several cases analyses reveal clear contrasts: In stratiform precipitation regions, W-band radar reflectivity is higher above the melting layer than below, whereas the opposite pattern is observed in the Ku and Ka bands. Doppler velocities exceeding 5 m s−1 and precipitation rates surpassing 30 mm h−1 exhibit strong positive correlations in convection-dominated regimes. Furthermore, the dataset confirms the impact of ice–water cloud phase interactions and terrain-induced precipitation variability, underscoring the complementary strengths of multi-frequency radar observations for capturing diverse precipitation processes. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 4282 KB  
Article
Stability Assessment of Hazardous Rock Masses and Rockfall Trajectory Prediction Using LiDAR Point Clouds
by Rao Zhu, Yonghua Xia, Shucai Zhang and Yingke Wang
Appl. Sci. 2025, 15(12), 6709; https://doi.org/10.3390/app15126709 - 15 Jun 2025
Viewed by 726
Abstract
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with [...] Read more.
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with a Zenmuse L2 airborne LiDAR (Light Detection And Ranging) sensor with detailed structural-joint survey data. First, qualitative structural interpretation is conducted with stereographic projection. Next, safety factors are quantified using the limit-equilibrium method, establishing a dual qualitative–quantitative diagnostic framework. This framework delineates six hazardous rock zones (WY1–WY6), dominated by toppling and free-fall failure modes, and evaluates their stability under combined rainfall infiltration, seismic loading, and ambient conditions. Subsequently, six-degree-of-freedom Monte Carlo simulations incorporating realistic three-dimensional terrain and block geometry are performed in RAMMS::ROCKFALL (Rapid Mass Movements Simulation—Rockfall). The resulting spatial patterns of rockfall velocity, kinetic energy, and rebound height elucidate their evolution coupled with slope height, surface morphology, and block shape. Results show peak velocities ranging from 20 to 42 m s−1 and maximum kinetic energies between 0.16 and 1.4 MJ. Most rockfall trajectories terminate within 0–80 m of the cliff base. All six identified hazardous rock masses pose varying levels of threat to residential structures at the slope foot, highlighting substantial spatial variability in hazard distribution. Drawing on the preceding diagnostic results and dynamic simulations, we recommend a three-tier “zonal defense with in situ energy dissipation” scheme: (i) install 500–2000 kJ flexible barriers along the crest and upper slope to rapidly attenuate rockfall energy; (ii) place guiding or deflection structures at mid-slope to steer blocks and dissipate momentum; and (iii) deploy high-capacity flexible nets combined with a catchment basin at the slope foot to intercept residual blocks. This staged arrangement maximizes energy attenuation and overall risk reduction. This study shows that integrating high-resolution 3D point clouds with rigid-body contact dynamics overcomes the spatial discontinuities of conventional surveys. The approach substantially improves the accuracy and efficiency of hazardous rock stability assessments and rockfall trajectory predictions, offering a quantifiable, reproducible mitigation framework for long slopes, large rock volumes, and densely fractured cliff faces. Full article
(This article belongs to the Special Issue Emerging Trends in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

11 pages, 1433 KB  
Article
The Effects of Nonplanar Cloud Top on Lightning Optical Observations from Space-Based Instruments
by Bingzhe Dai, Qilin Zhang and Xingke Pan
Atmosphere 2025, 16(6), 657; https://doi.org/10.3390/atmos16060657 - 29 May 2025
Viewed by 442
Abstract
Satellite optical observations of lightning are influenced by a variety of factors. Studying these factors can provide valuable reference information for applications such as lightning parameter inversion. However, due to the variability of natural factors and the high cost of field observations, research [...] Read more.
Satellite optical observations of lightning are influenced by a variety of factors. Studying these factors can provide valuable reference information for applications such as lightning parameter inversion. However, due to the variability of natural factors and the high cost of field observations, research requiring controlled variables often relies heavily on effective simulation models. To this end, we applied our developed optical transmission model for lightning, which can simultaneously account for the spatiotemporal characteristics of lightning sources and observation angles, as well as inhomogeneous and irregular cloud environments, to analyze an unexplained hypothesis from previous studies—that non-planar cloud tops may also be an influencing factor. Our analysis confirms that non-planar cloud tops are indeed an important factor that must be considered, especially under smaller or larger observation angles. In the simulation results, undulations caused an energy increase of up to 43.19% at a 0° observation angle, while at a 60° observation angle, the undulations resulted in an additional attenuation of approximately 17.5%. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

31 pages, 7090 KB  
Article
Analysis of the Integrated Signal Design for Near-Space Communication, Navigation, and TT&C Based on K/Ka Frequency Bands
by Lvyang Ye, Shaojun Cao, Zhifei Gu, Deng Pan, Binhu Chen, Xuqian Wu, Kun Shen and Yangdong Yan
Atmosphere 2025, 16(5), 586; https://doi.org/10.3390/atmos16050586 - 13 May 2025
Viewed by 1382
Abstract
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, [...] Read more.
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, navigation, and telemetry, tracking, and command (TT&C), this paper proposes an overall integration of communication, navigation, and TT&C (ICNT) signals scheme based on the K/Ka frequency band. Firstly, the K/Ka frequency band is selected according to the ITU frequency division, high-speed communication requirements, advantages of space-based over-the-horizon relay, overcoming the blackout problem, and the development trend of high frequencies. Secondly, the influence of the physical characteristics of the NS on ICNT is analyzed through simulation. The results show that when the K/Ka signal is transmitted in the NS, the path loss changes significantly with the elevation angle. The bottom layer loss at an elevation angle of 90° is between 143.5 and 150.5 dB, and the top layer loss is between 157.5 and 164.4 dB; the maximum attenuation of the bottom layer and the top layer at an elevation angle of 0° is close to 180 dB and 187 dB, respectively. In terms of rainfall attenuation, when a 30 GHz signal passes through a 100 km rain area under moderate rain conditions, the horizontal and vertical polarization losses reach 225 dB and 185 dB, respectively, and the rainfall attenuation increases with the increase in frequency. For gas absorption, the loss of water vapor is higher than that of oxygen molecules; when a 30 GHz signal is transmitted for 100 km, the loss of water vapor is 17 dB, while that of oxygen is 2 dB. The loss of clouds and fog is relatively small, less than 1 dB. Increasing the frequency and the antenna elevation angle can reduce the atmospheric scintillation. In addition, factors such as the plasma sheath and multipath also affect the signal propagation. In terms of modulation technology, the constant envelope signal shows an advantage in spectral efficiency; the new integrated signal obtained by integrating communication, navigation, and TT&C signals into a single K/Ka frequency point has excellent characteristics in the simulation of power spectral density (PSD) and autocorrelation function (ACF), verifying the feasibility of the scheme. The proposed ICNT scheme is expected to provide an innovative solution example for the communication, navigation, and TT&C requirements of NS vehicles during the re-entry phase. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

26 pages, 17670 KB  
Article
Adaptive High-Precision 3D Reconstruction of Highly Reflective Mechanical Parts Based on Optimization of Exposure Time and Projection Intensity
by Ci He, Rong Lai, Jin Sun, Kazuhiro Izui, Zili Wang, Xiaojian Liu and Shuyou Zhang
J. Imaging 2025, 11(5), 149; https://doi.org/10.3390/jimaging11050149 - 8 May 2025
Viewed by 1036
Abstract
This article is used to reconstruct mechanical parts with highly reflective surfaces. Three-dimensional reconstruction based on Phase Measuring Profilometry (PMP) is a key technology in non-contact optical measurement and is widely applied in the intelligent inspection of mechanical components. Due to the high [...] Read more.
This article is used to reconstruct mechanical parts with highly reflective surfaces. Three-dimensional reconstruction based on Phase Measuring Profilometry (PMP) is a key technology in non-contact optical measurement and is widely applied in the intelligent inspection of mechanical components. Due to the high reflectivity of metallic parts, direct utilization of the captured high-dynamic-range images often results in significant information loss in the oversaturated areas and excessive noise in the dark regions, leading to geometric defects and reduced accuracy in the reconstructed point clouds. Many image-fusion-based solutions have been proposed to solve these problems. However, unknown geometric structures and reflection characteristics of mechanical parts lead to the lack of effective guidance for the design of important imaging parameters. Therefore, an adaptive high-precision 3D reconstruction method of highly reflective mechanical parts based on optimization of exposure time and projection intensity is proposed in this article. The projection intensity is optimized to adapt the captured images to the linear dynamic range of the hardware. Image sequence under the obtained optimal intensities is fused using an integration of Genetic Algorithm and Stochastic Adam optimizer to maximize the image information entropy. Then, histogram-based analysis is employed to segment regions with similar reflective properties and determine the optimal exposure time. Experimental validation was carried out on three sets of typical mechanical components with diverse geometric characteristics and varying complexity. Compared with both non-saturated single-exposure techniques and conventional image fusion methods employing fixed attenuation steps, the proposed method reduced the average whisker range of reconstruction error by 51.18% and 25.09%, and decreased the median error by 42.48% and 25.42%, respectively. These experimental results verified the effectiveness and precision performance of the proposed method. Full article
(This article belongs to the Special Issue Geometry Reconstruction from Images (2nd Edition))
Show Figures

Figure 1

17 pages, 5879 KB  
Article
Modeling and Performance Analysis of MDM−WDM FSO Link Using DP-QPSK Modulation Under Real Weather Conditions
by Tanmeet Kaur, Sanmukh Kaur and Muhammad Ijaz
Telecom 2025, 6(2), 29; https://doi.org/10.3390/telecom6020029 - 22 Apr 2025
Viewed by 1053
Abstract
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link [...] Read more.
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link as a result of aggregate attenuation caused by different weather conditions in a region. In the present work, empirical models have been derived in terms of visibility, considering fog, haze, and cloud conditions of diverse geographical regions of Delhi, Washington, London, and Cape Town. Mean square error (MSE) and goodness of fit (R squared) have been employed as measures for estimating model performance. The dual polarization-quadrature phase shift keying (DP-QPSK) modulation technique has been employed with hybrid mode and the wave division multiplexing (MDM-WDM) scheme for analyzing the performance of the FSO link with two Laguerre Gaussian modes (LG00 and LG 01) at 5 different wavelengths from 1550 nm to 1554 nm. The performance of the system has been analyzed in terms of received power and signal to noise ratio with respect to the transmission range of the link. Minimum received power and SNR values of −52 dBm and −33 dB have been obtained over the observed transmission range as a result of multiple impairments. Random forest (RF), k-nearest neighbors (KNN), multi-layer perceptron (MLP), gradient boosting (GB), and machine learning (ML) techniques have also been employed for estimating the SNR of the received signal. The maximum R squared (0.99) and minimum MSE (0.11), MAE (0.25), and RMSE (0.33) values have been reported in the case of the GB model, compared to other ML techniques, resulting in the best fit model. Full article
Show Figures

Figure 1

19 pages, 8660 KB  
Article
Bottom Plate Damage Localization Method for Storage Tanks Based on Bottom Plate-Wall Plate Synergy
by Yunxiu Ma, Linzhi Hu, Yuxuan Dong, Lei Chen and Gang Liu
Sensors 2025, 25(8), 2515; https://doi.org/10.3390/s25082515 - 16 Apr 2025
Viewed by 554
Abstract
Ultrasonic guided waves can be employed for in-service defect detection in storage tank bottom plates; however, conventional single-array approaches face challenges from boundary scattering noise at side connection welds. This study proposes a collaborative bottom plate-wall plate detection methodology to address these limitations. [...] Read more.
Ultrasonic guided waves can be employed for in-service defect detection in storage tank bottom plates; however, conventional single-array approaches face challenges from boundary scattering noise at side connection welds. This study proposes a collaborative bottom plate-wall plate detection methodology to address these limitations. Sensor arrays were strategically deployed on both the bottom plate and wall plate, achieving multidimensional signal acquisition through bottom plate array excitation and dual-array reception from both the bottom plate and tank wall. A correlation coefficient-based matching algorithm was developed to distinguish damage echoes from weld-induced scattering noise by exploiting path-dependent signal variations between the two arrays. The investigation revealed that guided wave signals processed through data matching effectively preserved damage echo signals while substantially attenuating boundary scattering signals. Building upon these findings, correlation matching was implemented on guided wave signals received by corresponding array elements from both the bottom plate and wall plate, followed by total focusing imaging (TFM) using the processed signals. Results demonstrate that the collaborative bottom plate-wall plate detection imaging cloud maps, after implementing signal correlation matching, effectively suppress artifacts compared with imaging results obtained solely from bottom plate arrays. The maximum relative localization error was measured as 5.4%, indicating superior detection accuracy. Full article
(This article belongs to the Special Issue Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing)
Show Figures

Figure 1

32 pages, 3551 KB  
Article
Rooftop Solar Photovoltaic Potential in Polluted Indian Cities: Atmospheric and Urban Impacts, Climate Trends, Societal Gains, and Economic Opportunities
by Davender Sethi and Panagiotis G. Kosmopoulos
Remote Sens. 2025, 17(7), 1221; https://doi.org/10.3390/rs17071221 - 29 Mar 2025
Cited by 2 | Viewed by 2730
Abstract
This extensive study examines the solar rooftop photovoltaic potential (RTP) over polluted cities in major geographic and economic zones of India. The study examines the climatology of solar radiation attenuation due to aerosol, clouds, architectural effects, etc. The study exploits earth observations from [...] Read more.
This extensive study examines the solar rooftop photovoltaic potential (RTP) over polluted cities in major geographic and economic zones of India. The study examines the climatology of solar radiation attenuation due to aerosol, clouds, architectural effects, etc. The study exploits earth observations from ground, satellite, and radiative transfer modeling (RTM) in conjunction with geographic information systems tools. The study exploits long-term observations of cloud properties from the Meteosat Second Generation (MSG) satellites operated by EUMETSAT and aerosol properties data gathered from ground-based measurements provided by AERONET. The innovation in the study is defined in two steps. Firstly, we estimated the RTP using the current state of the art in the field, which involved using suitability factors and energy output based on the PVGIS simulations and extrapolating these for effective rooftop areas of the cities. Secondly, we advanced beyond the current state of the art by incorporating roof morphological characteristics and various area share factors to assess the RTP in more realistic terms. These two steps were applied under two different scenarios. The study determined that the optimum tilt angle is equal to the cities’ latitude for installing solar PV systems. In addition, the research emphasizes the advantages for the environment while offering energy and economic losses. According to our findings, the RTP in the rural city examined in this study is 31% greater than the urban city of India under both scenarios. The research has found that the metropolitan city, which boasts a maximum rooftop area of approximately 167 km2, could host a significant RTP of around 13,005 ± 1210.71 (6970 ± 751.38) MWh per year under scenario 1 (scenario 2). Overall, solar radiation losses due to aerosol effects dominate radiation losses due to cloud effects on the city scale. Amongst all polluted cities, estimated financial losses due to aerosols, clouds, and shadows are 11,241.70 million, 4439 million, and 1167.65 million rupees, respectively. Our findings emphasize the necessity of accounting for air pollution for accurate solar potential assessments in thoughtful city planning. The creative approach that utilizes publicly available data establishes a strong foundation for penetrating solar photovoltaic (PV) technology into society. This integration could significantly contribute to climate change mitigation and adaptation efforts, promoting environmentally sustainable urban development and prevention strategies. Full article
(This article belongs to the Special Issue Assessment of Solar Energy Based on Remote Sensing Data)
Show Figures

Graphical abstract

18 pages, 4080 KB  
Article
A Feature Extraction Algorithm for Corner Cracks in Slabs Based on Multi-Scale Adaptive Gradient Descent
by Kai Zeng, Zibo Xia, Junlei Qian, Xueqiang Du, Pengcheng Xiao and Liguang Zhu
Metals 2025, 15(3), 324; https://doi.org/10.3390/met15030324 - 17 Mar 2025
Viewed by 545
Abstract
Cracks at the corners of casting billets have a small morphology and rough surfaces. Corner cracks are generally irregular, with a depth of about 0.2–5 mm and a width of about 0.5–3 mm. It is difficult to detect the depth of cracks and [...] Read more.
Cracks at the corners of casting billets have a small morphology and rough surfaces. Corner cracks are generally irregular, with a depth of about 0.2–5 mm and a width of about 0.5–3 mm. It is difficult to detect the depth of cracks and the three-dimensional morphological characteristics. The severity of cracks is hard to evaluate with traditional inspection methods. To effectively extract the topographic features of corner cracks, a multi-scale surface crack feature extraction algorithm, based on weighted adaptive gradient descent, was proposed. Firstly, the point cloud data of the corners of the billet were collected by the three-dimensional visual inspection platform. The point cloud neighborhood density was calculated using the k-nearest neighbor method; then the weighted covariance matrix was used to calculate the normal rate of change. Secondly, the adaptive attenuation rate, based on normal change, was fused with the density weight, which can calculate the Gaussian weight in regard to the neighborhood. Gaussian weights were used to obtain the gradient changes between point clouds to acquire the multi-scale morphological features of the crack. Finally, the interference caused by surface and boundary effects was eliminated by DBSCAN density clustering. The complete three-dimensional morphology characteristics of the crack were obtained. The experimental results reveal that the precision rate, recall rate, and F-value of the improved algorithm are 96.68%, 91.32%, and 93.92%, respectively, which are superior to the results from the RANSAC and other mainstream algorithms. The three-dimensional morphological characteristics of corner cracks can be effectively extracted using the improved algorithm, which provides a basis for judging the severity of the defect. Full article
Show Figures

Figure 1

Back to TopTop