Effects of Aerosols and Clouds on Solar Energy Production from Bifacial Solar Park in Kozani, NW Greece
Abstract
Highlights
- First long-term analysis (20 years) of the effect of aerosols and clouds on solar energy production in a bifacial solar park in Eastern Europe. Aerosols dominate mainly in spring and summer while clouds in winter.
- Annual increase in solar energy production by +800.7 MWh, corresponding to an annual reduction of ~538 metric tons of CO2 and a financial gain of ~12,827 €.
- Combining reanalysis and Earth Observation datasets (ERA5, CAMS and PVGIS) to quantify climatological drivers of solar energy production.
- The methodological framework, based on globally accessible datasets and standardized modeling procedures, is transferable and could be applied to other regions with bifacial photovoltaic infrastructures.
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Methodology
3.3. Energy, Emissions & Revenue Estimation
4. Results and Discussion
4.1. ERA5 and CAMS Radiation Data
4.2. Aerosol and Cloud Effects
4.3. Trend Analysis
4.4. Emissions & Revenue
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMF | Aerosol Modification Factor |
AOD | Aerosol Optical Depth |
ASR | Arctic System Reanalysis v2 |
AeroCom | Aerosol Comparisons between Observations and Models |
AWS | Automatic Weather Stations |
BPV | Bifacial Photovoltaic |
CAMS | Copernicus Atmosphere Monitoring Service |
CLARA | Cloud, Albedo Radiation Dataset Edition 2 |
CMF | Cloud Modification Factor |
CM SAF | Satellite Application Facility on Climate Monitoring |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
CRE | Cloud Radiation Effect |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EO | Earth Observations |
EPA | Environmental Protection Agency |
ERA5 | ECMWF Reanalysis 5 |
ESEM | Environmental Scanning Electron Microscopy |
ESA | European Space Agency |
ENVISAT | ESA’s Environmental Satellite |
GHG | Greenhouse Gas |
GHI | Global Horizontal Irradiance |
HELAPCO | Hellenic Association of Photovoltaic Companies |
IEA | International Energy Agency |
IRENA | International Renewable Energy Agency |
ITRPV | International Technology Roadmap for Photovoltaics |
LCOE | Levelized Cost of Electricity |
MBE | Mean Bias Error |
ME | Mean Error |
MERIS | Medium Resolution Imaging Spectrometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
OMI | Ozone Monitoring Instrument |
PECD | Pan-European Climate Database |
PMF | Positive Matrix Factorization |
PV | Photovoltaic |
PVGIS | Photovoltaic Geographical Information System |
Rdif | Diffused Radiation |
Rdir | Direct Radiation |
RMSD | Root Mean Square Deviation |
RMSE | Root Mean Square Error |
Rs | Surface Radiation |
SARAH | Surface Solar Radiation Dataset-Heliosat Edition 2 |
SEVIRI | Spinning Enhanced Visible and Infrared Imager |
SoDa Pro | Solar Radiation and Data Services |
SSRD | Surface Solar Radiation Downwards |
TOA | Top of the Atmosphere |
eGRID | Emissions & Generation Resource Integrated Database |
References
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Lelieveld, J. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Neira, M.; Erguler, K.; Ahmady-Birgani, H.; Al-Hmoud, N.D.; Fears, R.; Gogos, C.; Hobbhahn, N.; Koliou, M.; Kostrikis, L.G.; Lelieveld, J.; et al. Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. Environ. Res. 2023, 216, 114537. [Google Scholar] [CrossRef]
- Myers, D.R. Solar Radiation: Practical Modeling for Renewable Energy Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–159. [Google Scholar]
- Minelli, F.; Ciriello, I.; Minichiello, F.; D’Agostino, D. From net zero energy buildings to an energy sharing model—The role of NZEBs in renewable energy communities. Renew. Energy 2024, 224, 120110. [Google Scholar] [CrossRef]
- Özdemir, S.; Yavuzdogan, A.; Bilgilioğlu, B.; Akbulut, Z. SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data. Renew. Energy 2023, 216, 119022. [Google Scholar] [CrossRef]
- Zisos, A.; Chatzopoulos, D.; Efstratiadis, A. The concept of spatial reliability across renewable energy systems—An application to decentralized solar PV energy. Energies 2024, 17, 5900. [Google Scholar] [CrossRef]
- Esposito, E.; Leanza, G.; Di Francia, G. Comparative analysis of ground-based solar irradiance measurements and Copernicus satellite observations. Energies 2024, 17, 1579. [Google Scholar] [CrossRef]
- Elazab, R.; Daowd, M. New geographic information system-based sustainability metric for isolated photovoltaic systems. Sci. Rep. 2025, 15, 85222. [Google Scholar] [CrossRef]
- Abreu, E.F.M.; Gueymard, C.; Canhoto, P.; Costa, M.J. Performance assessment of clear-sky solar irradiance predictions using state-of-the-art radiation models and input atmospheric data from reanalysis or ground measurements. Sol. Energy 2023, 252, 309–321. [Google Scholar] [CrossRef]
- Minelli, F.; D’Agostino, D.; Migliozzi, M.; Minichiello, F.; D’Agostino, P. PhloVer: A modular and integrated tracking photovoltaic shading device for sustainable large urban spaces—Preliminary study and prototyping. Energies 2023, 16, 5786. [Google Scholar] [CrossRef]
- Lazaroiu, A.C.; Gmal Osman, M.; Strejoiu, C.-V.; Lazaroiu, G. A Comprehensive Overview of Photovoltaic Technologies and Their Efficiency for Climate Neutrality. Sustainability 2023, 15, 16297. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Bhattacharjee, A.; Ghosh, A.; Chanchangi, Y.N.; Chakraborty, C.; Mallick, T.K.; Goel, S. Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems. Energy 2022, 239, 122213. [Google Scholar] [CrossRef]
- Memme, S.; Fossa, M. Maximum energy yield of PV surfaces in France and Italy from climate-based equations for optimum tilt at different azimuth angles. Renew. Energy 2022, 200, 845–866. [Google Scholar] [CrossRef]
- Couto, A.; Estanqueiro, A. Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal. J. Clean. Prod. 2021, 278, 126097. [Google Scholar] [CrossRef]
- Okorieimoh, C.C.; Norton, B.; Conlon, M. Reviewing the External Factors that Influence PV Output Performance in the Irish Climate; Technological University Dublin: Dublin, Ireland, 2021. [Google Scholar] [CrossRef]
- Ghazi, S.; Ip, K. The effect of weather conditions on the efficiency of PV panels in southeast of UK. Renew. Energy 2014, 69, 50–59. [Google Scholar] [CrossRef]
- Bamisile, O.; Acen, C.; Cai, D.; Huang, Q.; Staffell, I. The environmental factors affecting solar photovoltaic output. Renew. Sustain. Energy Rev. 2025, 208, 115073. [Google Scholar] [CrossRef]
- Neher, I.; Buchmann, T.; Crewell, S.; Pospichal, B.; Meilinger, S. Impact of atmospheric aerosols on solar power. Meteorol. Z. 2019, 28, 305–321. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Andrews, E.; Alastuey, A.; Arsov, T.P.; Backman, J.; Brem, B.T.; Bukowiecki, N.; Couret, C.; Eleftheriadis, K.; Flentje, H.; et al. Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmos. Chem. Phys. 2020, 20, 8867–8908. [Google Scholar] [CrossRef]
- Rana, A.; Rawat, P.; Sarkar, S. Sources, transport pathways and radiative effects of BC aerosol during 2018–2020 at a receptor site in the eastern Indo-Gangetic Plain. Atmos. Environ. 2023, 303, 119900. [Google Scholar] [CrossRef]
- Dutta, M.; Ghosh, A.; Sharma, S.K.; Mandal, T.K.; Chatterjee, A. CCN activation of ultrafine biogenic-WSOC under restricted anthropogenic emissions: A study over eastern Himalaya in India. Atmos. Res. 2023, 290, 106704. [Google Scholar] [CrossRef]
- Rupakheti, D.; Rupakheti, M.; Abdullaev, S.F.; Yin, X.; Kang, S. Columnar aerosol properties and radiative effects over Dushanbe, Tajikistan in Central Asia. Environ. Pollut. 2020, 266, 114872. [Google Scholar] [CrossRef]
- Gunturu, U.B. Aerosol-Cloud Interactions: A New Perspective in Precipitation Enhancement. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA, USA, 2010. [Google Scholar]
- Katopodis, T.; Markantonis, I.; Politi, N.; Vlachogiannis, D.; Sfetsos, A. High-Resolution Solar Climate Atlas for Greece under Climate Change Using the Weather Research and Forecasting (WRF) Model. Atmosphere 2020, 11, 761. [Google Scholar] [CrossRef]
- Chesnoiu, G.; Ferlay, N.; Chiapello, I.; Auriol, F.; Catalfamo, D.; Compiègne, M.; Elias, T.; Jankowiak, I. Influence of cloudy and clear-sky partitions, aerosols, and geometry on the recent variability in surface solar irradiance components in northern France. Atmos. Chem. Phys. 2024, 24, 12375–12407. [Google Scholar] [CrossRef]
- Tijhuis, M.; van Stratum, B.J.H.; van Heerwaarden, C.C. The impact of coupled 3D shortwave radiative transfer on surface radiation and cumulus clouds over land. Atmos. Chem. Phys. 2024, 24, 10567–10582. [Google Scholar] [CrossRef]
- Musiolková, M.; Huszár, P.; Navrátil, M.; Špunda, V. The impact of season, cloud cover and air pollution on the different spectral regions of ultraviolet and visible incident solar radiation at the surface. Q. J. R. Meteorol. Soc. 2021, 147, 3621–3637. [Google Scholar] [CrossRef]
- Wu, J.; Faccinetto, A.; Petitprez, D. On the correlation between hygroscopic properties and chemical composition of cloud condensation nuclei obtained from the chemical aging of soot particles with O3 and SO2. Sci. Total Environ. 2024, 906, 167745. [Google Scholar] [CrossRef]
- Psiloglou, B.E.; Kambezidis, H.D.; Kaskaoutis, D.G.; Karagiannis, D.; Polo, J.M. Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece. Renew. Energy 2020, 146, 1372–1391. [Google Scholar] [CrossRef]
- Tzoumanikas, P.; Nikitidou, E.; Bais, A.F.; Kazantzidis, A. The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system. Renew. Energy 2016, 95, 314–322. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Spanos, S.I.; Papamanolis, N.; Krauss, T.W. Climatological and microphysical cloud features towards rain enhancement or agriculture in Greece. J. Weather Modif. 1996, 28, 59–74. [Google Scholar]
- International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS). Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications; Report IEA PVPS T13 14:2021; International Energy Agency: Paris, France, 2021; Available online: https://iea-pvps.org/wp-content/uploads/2021/04/IEA-PVPS-T13-14_2021-Bifacial-Photovoltaic-Modules-and-Systems-report.pdf (accessed on 19 March 2025).
- VDMA. International Technology Roadmap for Photovoltaic (ITRPV); VDMA: Frankfurt, Germany, October 2019; Available online: https://www.qualenergia.it/wp-content/uploads/2024/06/ITRPV-15th-Edition-2024-2.pdf (accessed on 19 March 2025).
- Jouttijärvi, S.; Lobaccaro, G.; Kamppinen, A.; Miettunen, K. Benefits of bifacial solar cells combined with low voltage power grids at high latitudes. Renew. Sustain. Energy Rev. 2022, 161, 112354. [Google Scholar] [CrossRef]
- Jahangir, J.B.; Al-Mahmud, M.; Shakir, M.S.S.; Haque, A.; Alam, M.A.; Khan, M.R. A critical analysis of bifacial solar farm configurations: Theory and experiments. IEEE Access 2022, 10, 47726–47740. [Google Scholar] [CrossRef]
- JinkoSolar. JinkoSolar to Supply 126 MW of Modules for a Utility PV Project in Chile. July 2020. Available online: https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolar-supply-126-mw-modules-utility-pv-project-chile (accessed on 27 March 2025).
- JinkoSolar. JinkoSolar to Supply Swan Bifacial Modules for Shanghai Electric’s DEWA Project under Strategic Partnership Agreement. August 2020. Available online: https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolar-supply-swan-bifacial-modules-shanghai-electrics-dewa (accessed on 27 March 2025).
- JinkoSolar. JinkoSolar Delivers TOPCon Bifacial Modules to the Largest Project in Bulgaria. June 2023. Available online: https://jinkosolar.eu/news/jinkosolar-delivers-topcon-bifacial-modules-to-the-largest-project-in-bulgaria/ (accessed on 27 March 2025).
- JinkoSolar. JinkoSolar Delivers over 500,000 Ultra-Efficiency Modules to One of the Biggest Bifacial Projects in Europe. April 2022. Available online: https://www.jinkosolar.com/en/site/newsdetail/1700 (accessed on 27 March 2025).
- Peretto, M.; Eichhammer, W.; Süsser, D. Just energy transition in coal regions: Innovative framework for assessing territorial just transition plans. Renew. Sustain. Energy Trans. 2025, 7, 100101. [Google Scholar] [CrossRef]
- Tranoulidis, A.; Sotiropoulou, R.-E.P.; Bithas, K.; Tagaris, E. Decarbonization and transition to the post-lignite era: Analysis for a sustainable transition in the region of Western Macedonia. Sustainability 2022, 14, 10173. [Google Scholar] [CrossRef]
- Garas, S.K.; Triantafyllou, A.G.; Tolis, E.I.; Diamantopoulos, C.; Bartzis, J. Positive matrix factorization on elemental concentrations of PM10 samples collected in areas within, proximal and far from mining and power station operations in Greece. Glob. NEST J. 2020, 22, 132–142. Available online: https://journal.gnest.org/publication/gnest_03128 (accessed on 9 April 2025).
- King, J.; Slesser, M. Can the world make the transition to a sustainable economy driven by solar energy. Int. J. Environ. Pollut. 1995, 5, 14–29. [Google Scholar]
- Maka, A.O.M.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, United Arab Emirates, 2018; Available online: https://abeeolica.org.br/wp-content/uploads/2018/05/IRENA_Report_GlobalEnergyTransformation_A-Roadmapto2050_2018.pdf (accessed on 9 April 2025).
- Güney, T. Solar energy, governance and CO2 emissions. Renew. Energy 2022, 184, 791–798. [Google Scholar] [CrossRef]
- Yu, J.; Tang, Y.M.; Chau, K.Y.; Nazar, R.; Ali, S.; Iqbal, W. Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation. Renew. Energy 2022, 182, 216–226. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Carvalho, F.; Lee, H.K.; Blaydes, H.; Treasure, L.; Harrison, L.J.; Montag, H.; Vucic, K.; Scurlock, J.; White, P.C.L.; Sharp, S.P.; et al. Integrated policymaking is needed to deliver climate and ecological benefits from solar farms. J. Appl. Ecol. 2024; in press. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Clean Energy Market Monitor–March 2024; International Energy Agency: Paris, France, 2024; Available online: https://www.iea.org/reports/clean-energy-market-monitor-march-2024 (accessed on 19 March 2025).
- Hellenic Association of Photovoltaic Companies (HELAPCO). Greek PV Market Opportunities; Hellenic Association of Photovoltaic Companies: Athens, Greece, 2019; Available online: https://helapco.gr/pdf/Greek_PV_Market_Opportunities_Aug2019.pdf (accessed on 19 March 2025).
- Forstinger, A.; Wilbert, S.; Jensen, A.R.; Kraas, B.; Fernández Peruchena, C.; Gueymard, C.A.; Ronzio, D.; Yang, D.; Collino, E.; Polo Martinez, J.; et al. Worldwide Benchmark of Modelled Solar Irradiance Data; IEA-PVPS Task 16 Technical Report T16-05; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Copernicus Climate Change Service (C3S); SIS–Energy (PECD) Dataset; Climate Data Store (CDS). European Centre for Medium-Range Weather Forecasts (ECMWF). Version 4.2, Published 24 June 2025; Updated 15 July 2025. Available online: https://cds.climate.copernicus.eu/datasets/sis-energy-pecd?tab=overview (accessed on 19 March 2025).
- Hou, X.; Wild, M.; Folini, D.; Kazadzis, S.; Wohland, J. Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth Syst. Dynam. 2021, 12, 1099–1113. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kosmopoulos, P.G.; Ningombam, S.S.; Masoom, A. Impact of Aerosol and Cloud on the Solar Energy Potential over the Central Gangetic Himalayan Region. Remote Sens. 2021, 13, 3248. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Fountoulakis, I.; Bais, A.F.; Psiloglou, B.E.; Papadimitriou, N.; Raptis, I.-P.; Kazantzidis, A.; Kontoes, C.; Hatzaki, M.; Kazadzis, S. Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting. Atmos. Meas. Tech. 2024, 17, 1851–1877. [Google Scholar] [CrossRef]
- Lorenz, E.; Nouri, B.; Cros, S.; Nielsen, K.P.; Fritz, R.; Good, G.; Pierro, M.; Hernandez, G.S.; Lauret, P.; David, M.; et al. Forecasting solar radiation and photovoltaic power. In Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 4th ed.; Renné, D., Ed.; National Renewable Energy Laboratory: Golden, CO, USA, 2017; Chapter 8. [Google Scholar]
- Eltbaakh, Y.A.; Ruslan, M.H.; Alghoul, M.A.; Othman, M.Y.; Sopian, K.; Razykov, T.M. Solar attenuation by aerosols: An overview. Renew. Sustain. Energy Rev. 2012, 16, 4264–4276. [Google Scholar] [CrossRef]
- Kosmopoulos, P. Planning and Management of Solar Power from Space, 1st ed.; Academic Press: London, UK, 2023; ISBN 978-0-12-823390-0. [Google Scholar]
- Kiriakidis, P.; Christoudias, T.; Kushta, J.; Lelieveld, J. Projected wind and solar energy potential in the eastern Mediterranean and Middle East in 2050. Sci. Total Environ. 2024, 927, 172120. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, S.; Tarhini, M.; Touati, M.; Gonzalez Garcia, D.; Alario, J. The Mediterranean solar plan: Project proposals for renewable energy in the Mediterranean Partner Countries region. Energy Policy 2012, 44, 291–300. [Google Scholar] [CrossRef]
- IRENA. Solar Energy—International Renewable Energy Agency. 2021. Available online: https://www.irena.org/solar (accessed on 9 April 2025).
- Kanakidou, M.; Mihalopoulos, N.; Kindap, T.; Im, U.; Vrekoussis, M.; Gerasopoulos, E.; Dermitzaki, E.; Unal, A.; Koçak, M.; Markakis, K.; et al. Megacities as hot spots of air pollution in the East Mediterranean. Atmos. Environ. 2011, 45, 1223–1235. [Google Scholar] [CrossRef]
- Soupiona, O.; Papayannis, A.; Kokkalis, P.; Foskinis, R.; Sánchez Hernández, G.; Ortiz-Amezcua, P.; Mylonaki, M.; Papanikolaou, C.-A.; Papagiannopoulos, N.; Samaras, S.; et al. EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014–2017): Properties and impact on radiative forcing. Atmos. Chem. Phys. 2020, 20, 15147–15166. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos, S.; Gerasopoulos, E.; et al. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmos. Meas. Tech. 2017, 10, 2435–2453. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Dumka, U.C.; Rashki, A.; Psiloglou, B.E.; Gavriil, A.; Mofidi, A.; Petrinoli, K.; Karagiannis, D.; Kambezidis, H.D. Analysis of intense dust storms over the eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmos. Environ. 2019, 209, 23–39. [Google Scholar] [CrossRef]
- Masoom, A.; Fountoulakis, I.; Kazadzis, S.; Raptis, I.-P.; Kampouri, A.; Psiloglou, B.E.; Kouklaki, D.; Papachristopoulou, K.; Marinou, E.; Solomos, S.; et al. Investigation of the effects of the Greek extreme wildfires of August 2021 on air quality and spectral solar irradiance. Atmos. Chem. Phys. 2023, 23, 8487–8514. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Petrinoli, K.; Grivas, G.; Kalkavouras, P.; Tsagkaraki, M.; Tavernaraki, K.; Papoutsidaki, K.; Stavroulas, I.; Paraskevopoulou, D.; Bougiatioti, A.; et al. Impact of peri-urban forest fires on air quality and aerosol optical and chemical properties: The case of the August 2021 wildfires in Athens, Greece. Sci. Total Environ. 2024, 907, 168028. [Google Scholar] [CrossRef] [PubMed]
- Koukouli, M.-E.; Pseftogkas, A.; Karagkiozidis, D.; Mermigkas, M.; Panou, T.; Balis, D.; Bais, A. Extreme wildfires over Northern Greece during Summer 2023—Part B. Adverse effects on regional air quality. Atmos. Res. 2025, 320, 108034. [Google Scholar] [CrossRef]
- Alexandri, G.; Georgoulias, A.K.; Balis, D. Effect of aerosols, tropospheric NO2 and clouds on surface solar radiation over the eastern Mediterranean (Greece). Remote Sens. 2021, 13, 2587. [Google Scholar] [CrossRef]
- Amiridis, V.; Kazadzis, S.; Gkikas, A.; Voudouri, K.A.; Kouklaki, D.; Koukouli, M.-E.; Garane, K.; Georgoulias, A.K.; Solomos, S.; Varlas, G.; et al. Natural aerosols, gaseous precursors and their impacts in Greece: A review from the remote sensing perspective. Atmosphere 2024, 15, 753. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Kaskaoutis, D.G.; Karagiannis, D.; Petrinoli, K.; Gavriil, A.; Kavadias, K. Generation of typical meteorological years for 33 locations in Greece: Adaptation to the needs of various applications. Theor. Appl. Climatol. 2020, 141, 1313–1330. [Google Scholar] [CrossRef]
- WeatherSpark. Average Weather and Climate in [City/Region]. Available online: https://weatherspark.com (accessed on 19 March 2025).
- Jiang, H.; Yang, Y.; Bai, Y.; Wang, H. Evaluation of the total, direct, and diffuse solar radiations from the ERA5 reanalysis data in China. IEEE Geosci. Remote Sens. Lett. 2020, 17, 47–51. [Google Scholar] [CrossRef]
- Babar, B.; Graversen, R.; Boström, T. Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5. Sol. Energy 2019, 182, 397–411. [Google Scholar] [CrossRef]
- Khalil, S.A.; Khamees, A.S.; Morsy, M.; Hassan, A.H.; Rahoma, U.A.; Sayad, T. Evaluation of global solar radiation estimated from ECMWF-ERA5 and validation with measured data over Egypt. Turk. J. Comput. Math. Educ. 2021, 12, 3996–4012. [Google Scholar]
- Ariffudin, P.; Prajitno, A.; Sopaheluwakan, N.; Ananda, N. Evaluation of NASA POWER and ERA5 for estimating solar radiation. In Proceedings of the 2024 Beyond Technology Summit on Informatics International Conference (BTS-I2C), Jember, East Java, Indonesia, 19–20 December 2024; pp. 198–202. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Tang, H. Evaluation of the hourly ERA5 radiation product and its relationship with aerosols over China. Atmos. Res. 2023, 294, 106941. [Google Scholar] [CrossRef]
- Dhake, H.; Kosmopoulos, P.; Mantakas, A.; Kashyap, Y.; El-Askary, H.; Elbadawy, O. Climatological trends and effects of aerosols and clouds on large solar parks: Application examples in Benban (Egypt) and Al Dhafrah (UAE). Remote Sens. 2024, 16, 4379. [Google Scholar] [CrossRef]
- CAMS Radiation Service—SoDa. Available online: https://www.soda-pro.com/web-services/radiation/cams-radiation-service (accessed on 19 March 2025).
- Photovoltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 19 March 2025).
- Vigkos, S.; Kosmopoulos, P.G. Photovoltaics Energy Potential in the Largest Greek Cities: Atmospheric and Urban Fabric Effects, Climatic Trends Influences and Socio-Economic Benefits. Energies 2024, 17, 3821. [Google Scholar] [CrossRef]
- Raptis, I.-P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.-P.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. [Google Scholar] [CrossRef]
- PV Power Plant Kozani. Juwi. Available online: https://www.juwi.com/references/project-stories/article/pv-power-plant-kozani (accessed on 7 August 2025).
- European Commission; Joint Research Centre. PVGIS User Manual, Version 5.3. Photovoltaic Geographical Information System (PVGIS). European Commission: Brussels, Belgium, 2024.
- Kosmopoulos, P.; Dhake, H.; Melita, N.; Tagarakis, K.; Georgakis, A.; Stefas, A.; Vaggelis, O.; Korre, V.; Kashyap, Y. Multi-Layer Cloud Motion Vector Forecasting for Solar Energy Applications. Appl. Energy 2024, 353 Pt B, 122144. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Greenhouse Gas Equivalencies Calculator. 2024. Available online: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (accessed on 19 March 2025).
- Kosmopoulos, P.G.; Mechilis, M.T.; Kaoura, P. Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters. Energies 2022, 15, 9406. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M.M. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sens. 2018, 10, 1870. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations-description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Sawadogo, W.; Bliefernicht, J.; Fersch, B.; Salack, S.; Guug, S.; Diallo, B.; Ogunjobi, K.O.; Nakoulma, G.; Tanu, M.; Meilinger, S.; et al. Hourly global horizontal irradiance over West Africa: A case study of one-year satellite- and reanalysis-derived estimates vs. in situ measurements. Renew. Energy 2023, 216, 119066. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Mihalopoulos, N.; Querol, X.; Vardavas, I. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. J. Geophys. Res. 2008, 113, D11205. [Google Scholar] [CrossRef]
- Floutsi, A.A.; Korras-Carraca, M.B.; Matsoukas, C.; Hatzianastassiou, N.; Biskos, G. Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002–2014) based on Collection 006 MODIS aqua data. Sci. Total Environ. 2016, 551–552, 292–303. [Google Scholar] [CrossRef]
- Yoon, J.; Burrows, J.P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D.Y.; Richter, A.; Hilboll, A. Changes in atmospheric aerosol loading retrieved from space based measurements during the past decade. Atmos. Chem. Phys. 2014, 14, 6881–6902. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.A.; Lelieveld, J.; Zanis, P.; Pöschl, U.; Levy, R.; Amiridis, V.; Marinou, E.; Tsikerdekis, A. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean. Atmos. Chem. Phys. 2016, 16, 13853–13884. [Google Scholar] [CrossRef]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef]
- Koukouli, M.E.; Kazadzis, S.; Amiridis, V.; Ichoku, C.; Balis, D.S.; Bais, A. Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans. Atmos. Environ. 2010, 44, 1219–1228. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Rashki, A.; Dumka, U.C.; Mofidi, A.; Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Petrinoli, K.; Gavriil, A. Atmospheric dynamics associated with exceptionally dusty conditions over the eastern Mediterranean and Greece in March 2018. Atmos. Res. 2019, 218, 269–284. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kalliampakos, G.K.; Rashki, A.; Wild, M. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979–2012. J. Atmos. Sol.-Terr. Phys. 2016, 150–151, 31–46. [Google Scholar] [CrossRef]
- Vigkos, S.; Kosmopoulos, P.G. Mapping Solar Future Perspectives of a Climate Change Hotspot: An In-Depth Study of Greece’s Regional Solar Energy Potential, Climatic Trends Influences and Insights for Sustainable Development. Atmosphere 2025, 16, 762. [Google Scholar] [CrossRef]
- Balkan Green Energy News. Hellenic Petroleum Acquires Juwi’s 204 MW Solar Power Plant Project. 2021. Available online: https://balkangreenenergynews.com/hellenic-petroleum-acquires-juwis-204-mw-solar-power-plant-project/ (accessed on 24 April 2025).
- IRENA. Renewable Power Generation Costs in 2023; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2024; Available online: http://large.stanford.edu/courses/2024/ph240/lutz1/docs/irena-2024.pdf (accessed on 24 April 2025).
- US Environmental Protection Agency. AVoided Emissions and geneRation Tool (AVERT): User Manual (Version 4.1); U.S. EPA: Washington, DC, USA, 2023. Available online: https://www.epa.gov/system/files/documents/2023-04/avert-user-manual-v4.1.pdf (accessed on 24 April 2025).
- Gkaras, S.; Triantafyllou, E.; Dougali, A.; Diamantopoulos, C.; Tolis, E.; Triantafyllou, A. Source Apportionment of the Atmospheric Aerosol in Western Macedonia, GREECE, Part 1: Concentrations of Metallic Components, Major Ions, and PAHs in PM10 Samples. Environ. Sci. Proc. 2023, 26, 85. [Google Scholar] [CrossRef]
- Triantafyllou, A.; Andreadou, S.; Moussiopoulos, N.; Garas, S.; Kapageridis, I.; Tsegas, G.; Diamantopoulos, C.; Sachanidis, C.; Skordas, I. Surface Mining in Western Macedonia, Greece: Fugitive Dust (PM10) Emissions and Dispersion. Int. J. Min. Miner. Eng. 2019, 10, 288–310. [Google Scholar] [CrossRef]
- Pavloudakis, F.; Sachanidis, C.; Roumpos, C. The Effects of Surface Lignite Mines Closure on the Particulates Concentrations in the Vicinity of Large-Scale Extraction Activities. Minerals 2022, 12, 347. [Google Scholar] [CrossRef]
- Seraskeri, M.; Kontos, N.; Michalopoulos, M.I.; Kardolama, P.; Karava, M.V.; Tasiopoulou, I.E.; Garas, S.K.; Sotiropoulou, R.-E.P.; Kaskaoutis, D.G.; Tagaris, E. Unveiling Light-Absorbing Carbonaceous Aerosols at a Regional Background Site in Southern Balkans. Atmosphere 2025, 16, 644. [Google Scholar] [CrossRef]
Data | ERA5 | CAMS |
---|---|---|
Data Type | Reanalysis | Satellite |
Spatial Resolution | 31 km | Spatial interpolation at the location under study |
Temporal Resolution | 1 h | 15 min |
Radiative Transfer Model | RTTOVv11 [93] | LibRadtran [94] |
Time Period | 1940 to present | 2004 to present |
Area of Coverage | Global | Europe, Africa, Middle East, Eastern of South America and Atlantic Ocean |
Month | Energy Production Trend (MWh/Year) |
---|---|
January | 82.42 |
February | 192.82 |
March | 304.88 |
April | 405.21 |
May | −390.87 |
June | −179.23 |
July | 173.93 |
August | −179.80 |
September | 186.05 |
October | 343.45 |
November | −205.25 |
December | 67.11 |
Month | Energy Production Trend (MWh/Year) | Emissions CO2 (tons/Year) | Revenue (€/Year) |
---|---|---|---|
January | 82.42 | 55.39 | 1320.37 |
February | 192.82 | 129.58 | 3088.98 |
March | 304.88 | 204.88 | 4884.18 |
April | 405.21 | 272.3 | 6491.46 |
May | −390.87 | −262.66 | −6261.74 |
June | −179.23 | −120.44 | −2871.26 |
July | 173.93 | 116.88 | 2786.36 |
August | −179.80 | −120.83 | −2880.4 |
September | 186.05 | 125.03 | 2980.52 |
October | 343.45 | 230.8 | 5502.07 |
November | −205.25 | −137.93 | −3288.1 |
December | 67.11 | 45.1 | 1075.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baxevanaki, E.; Kosmopoulos, P.G.; Sotiropoulou, R.-E.P.; Vigkos, S.; Kaskaoutis, D.G. Effects of Aerosols and Clouds on Solar Energy Production from Bifacial Solar Park in Kozani, NW Greece. Remote Sens. 2025, 17, 3201. https://doi.org/10.3390/rs17183201
Baxevanaki E, Kosmopoulos PG, Sotiropoulou R-EP, Vigkos S, Kaskaoutis DG. Effects of Aerosols and Clouds on Solar Energy Production from Bifacial Solar Park in Kozani, NW Greece. Remote Sensing. 2025; 17(18):3201. https://doi.org/10.3390/rs17183201
Chicago/Turabian StyleBaxevanaki, Effrosyni, Panagiotis G. Kosmopoulos, Rafaella-Eleni P. Sotiropoulou, Stavros Vigkos, and Dimitris G. Kaskaoutis. 2025. "Effects of Aerosols and Clouds on Solar Energy Production from Bifacial Solar Park in Kozani, NW Greece" Remote Sensing 17, no. 18: 3201. https://doi.org/10.3390/rs17183201
APA StyleBaxevanaki, E., Kosmopoulos, P. G., Sotiropoulou, R.-E. P., Vigkos, S., & Kaskaoutis, D. G. (2025). Effects of Aerosols and Clouds on Solar Energy Production from Bifacial Solar Park in Kozani, NW Greece. Remote Sensing, 17(18), 3201. https://doi.org/10.3390/rs17183201